An algorithmic approach to branching processes with countably infinitely many types

Peter Braunsteins

Supervisors: Sophie Hautphenne and Peter Taylor

29 June, 2016

Material of the talk

The material of this talk is taken from
S. Hautphenne, G. Latouche and G. Nguyen. Extinction probabilities of branching processes with countably infinitely many types. Advances in Applied Probability, 45(4) : 1068-1082, 2013.
and
P. Braunsteins, G. Decrouez, and S. Hautphenne. A pathwise iterative approach to the extinction of branching processes with countably many types. arXiv preprint arXiv :1605.03069, 2016.

Multi-type Galton-Watson process

- Each individual has a type $i \in \mathcal{S} \equiv \mathbb{N}$
- The process initially contains a single individual of type φ_{0}
- Each individual lives for a single generation
- At death individuals of type i have children according to the progeny distribution : $p_{i}(\mathbf{r}): \mathbf{r}=\left(r_{1}, r_{2}, \ldots\right)$, where $p_{i}(\mathbf{r})=$ probability that a type i gives birth to r_{1} children of type $1, r_{2}$ children of type 2 , etc.
- All individuals are independent

Multi-type Galton-Watson process

Population size : $\mathbf{Z}_{n}=\left(Z_{n 1}, Z_{n 2}, \ldots\right), n \in \mathbb{N}$, where
$Z_{n i}: \#$ of individuals of type i at the nth generation

In this example $\mathbf{Z}_{3}=(0,1,1,2,1,0,0, \ldots)$.
$\left\{\mathbf{Z}_{n}\right\}: \infty$-dim Markov process with state space $\left(\mathbb{N}_{0}\right)^{\infty}$ and an absorbing state $\mathbf{0}=(0,0, \ldots)$.

Multi-type Galton-Watson process

Progeny generating vector $\mathbf{G}(\mathbf{s})=\left(G_{1}(\mathbf{s}), G_{2}(\mathbf{s}), G_{3}(\mathbf{s}), \ldots\right)$, where $G_{i}(\mathbf{s})$ is the progeny generating function of an individual of type i

$$
G_{i}(\mathbf{s})=\sum_{\mathbf{r} \in\left(\mathbb{N}_{0}\right)^{\infty}} p_{i}(\mathbf{r}) \mathbf{s}^{\mathbf{r}}=\sum_{\mathbf{r} \in\left(\mathbb{N}_{0}\right)^{\infty}} p_{i}(\mathbf{r}) \prod_{k=1}^{\infty} s_{k}^{r_{k}}, \quad \mathbf{s} \in[0,1]^{\infty}
$$

Mean progeny matrix M with elements

$$
\begin{aligned}
M_{i j} & =\left.\frac{\partial G_{i}(\mathbf{s})}{\partial s_{j}}\right|_{\mathbf{s}=\mathbf{1}} \\
& =\text { expected number of direct offspring of type } j \\
& \quad \text { born to a parent of type } i
\end{aligned}
$$

There is a path from type i to $j \Leftrightarrow$ there exists ℓ such that $\left(M^{\ell}\right)_{i j}>0$.

Global extinction probability

Global extinction probability vector $\mathbf{q}=\left(q_{1}, q_{2}, q_{3}, \ldots\right)$, with entries

$$
q_{i}=\mathbb{P}\left[\lim _{n \rightarrow \infty} \mathbf{Z}_{n}=\mathbf{0} \mid \varphi_{0}=i\right]
$$

The vector \mathbf{q} is the (componentwise) minimal nonnegative solution of

$$
\mathbf{s}=\mathbf{G}(\mathbf{s}), \quad \mathbf{s} \in[0,1]^{\infty}
$$

Partial extinction probability

Partial extinction probability vector $\widetilde{\mathbf{q}}=\left(\widetilde{q}_{1}, \widetilde{q}_{2}, \widetilde{q}_{3}, \ldots\right)$, with

$$
\widetilde{q}_{i}=\mathbb{P}\left[\forall \ell: \lim _{n \rightarrow \infty} Z_{n \ell}=0 \mid \varphi_{0}=i\right]
$$

We have

$$
\mathbf{0} \leq \mathbf{q} \leq \widetilde{\mathbf{q}} \leq \mathbf{1}
$$

The vector \widetilde{q} also satisfies the fixed point equation

$$
\mathbf{s}=\mathbf{G}(\mathbf{s}), \quad \mathbf{s} \in[0,1]^{\infty}
$$

Example 1

Suppose

$$
p_{1}(\mathbf{r})= \begin{cases}1 / 6, & \mathbf{r}=3 \mathbf{e}_{1} \\ 1 / 6, & \mathbf{r}=3 \mathbf{e}_{2} \\ 2 / 3, & \mathbf{r}=\mathbf{0}\end{cases}
$$

and

$$
p_{i}(\mathbf{r})= \begin{cases}1 / 75, & \mathbf{r}=3 \mathbf{e}_{i-1} \\ 1 / 6, & \mathbf{r}=3 \mathbf{e}_{i} \\ 1 / 6, & \mathbf{r}=3 \mathbf{e}_{i+1} \\ 49 / 75, & \mathbf{r}=\mathbf{0}\end{cases}
$$

for $i \geq 2$.

Example 1

The mean progeny matrix has entries

$$
M_{11}=M_{12}=1 / 2
$$

and

$$
M_{i, i-1}=1 / 25, \quad M_{i, i}=M_{i, i+1}=1 / 2
$$

for $i \geq 2$.

Figure : A graphical representation of the mean progeny matrix.

Example 1

Question: How to compute \mathbf{q} and $\widetilde{\mathbf{q}}$?

Example 1

The progeny generating vector, $\mathbf{G}(\mathbf{s})$, has the form

$$
\begin{aligned}
G_{1}(\mathbf{s}) & =\frac{s_{1}^{3}}{6}+\frac{s_{2}^{3}}{6}+\frac{2}{3} \\
G_{2}(\mathbf{s}) & =\frac{s_{1}^{3}}{75}+\frac{s_{2}^{3}}{6}+\frac{s_{3}^{3}}{6}+\frac{49}{75} \\
& \vdots \\
G_{i}(\mathbf{s}) & =\frac{s_{i-1}^{3}}{75}+\frac{s_{i}^{3}}{6}+\frac{s_{i+1}^{3}}{6}+\frac{49}{75}
\end{aligned}
$$

Example 1

The fixed point equation, $\mathbf{s}=\mathbf{G}(\mathbf{s})$, is

$$
\begin{aligned}
s_{1} & =\frac{s_{1}^{3}}{6}+\frac{s_{2}^{3}}{6}+\frac{2}{3} \\
s_{2} & =\frac{s_{1}^{3}}{75}+\frac{s_{2}^{3}}{6}+\frac{s_{3}^{3}}{6}+\frac{49}{75} \\
& \vdots \\
s_{i} & =\frac{s_{i-1}^{3}}{75}+\frac{s_{i}^{3}}{6}+\frac{s_{i+1}^{3}}{6}+\frac{49}{75}
\end{aligned}
$$

Example 1

Take the first k elements of $\mathbf{G}(\mathbf{s})$

$$
\begin{aligned}
s_{1} & =\frac{s_{1}^{3}}{6}+\frac{s_{2}^{3}}{6}+\frac{2}{3} \\
s_{2} & =\frac{s_{1}^{3}}{75}+\frac{s_{2}^{3}}{6}+\frac{s_{3}^{3}}{6}+\frac{49}{75} \\
& \vdots \\
s_{i} & =\frac{s_{i-1}^{3}}{75}+\frac{s_{i}^{3}}{6}+\frac{s_{i+1}^{3}}{6}+\frac{49}{75} \\
& \vdots \\
s_{k} & =\frac{s_{k-1}^{3}}{75}+\frac{s_{k}^{3}}{6}+\frac{s_{k+1}^{3}}{6}+\frac{49}{75}
\end{aligned}
$$

Computing $\widetilde{\mathbf{q}}$

Define $\left\{\widetilde{\mathbf{Z}}_{n}^{(k)}\right\}$ by modifying $\left\{\mathbf{Z}_{n}\right\}$ such that all types $>k$ are sterile

Computing $\widetilde{\mathbf{q}}$

- Denote $\widetilde{\mathbf{q}}^{(k)}$: the (global) extinction probability of $\left\{\widetilde{\mathbf{Z}}_{n}^{(k)}\right\}$

$$
\widetilde{\mathbf{q}}^{(k)} \searrow \widetilde{\mathbf{q}} \quad \text { as } k \rightarrow \infty
$$

- The proof is an application of the monotone convergence theorem
- For each $k, \widetilde{\mathbf{q}}^{(k)}$ can be computed, for instance using functional iteration

Computing $\widetilde{\mathbf{q}}$

In Example 1 the progeny generating vector, $\tilde{\mathbf{G}}^{(k)}(\mathbf{s})$, is

$$
\begin{aligned}
\tilde{G}_{1}^{(k)}(\mathbf{s}) & =\frac{s_{1}^{3}}{6}+\frac{s_{2}^{3}}{6}+\frac{2}{3} \\
\tilde{G}_{2}^{(k)}(\mathbf{s}) & =\frac{s_{1}^{3}}{75}+\frac{s_{2}^{3}}{6}+\frac{s_{3}^{3}}{6}+\frac{49}{75} \\
& \vdots \\
\tilde{G}_{i}^{(k)}(\mathbf{s}) & =\frac{s_{i-1}^{3}}{75}+\frac{s_{i}^{3}}{6}+\frac{s_{i+1}^{3}}{6}+\frac{49}{75} \\
& \vdots \\
\tilde{G}_{k}^{(k)}(\mathbf{s}) & =\frac{s_{k-1}^{3}}{75}+\frac{s_{k}^{3}}{6}+\frac{1}{6}+\frac{49}{75}
\end{aligned}
$$

Computing \mathbf{q}

Define $\left\{\mathbf{Z}_{n}^{(k)}\right\}$ by modifying $\left\{\mathbf{Z}_{n}\right\}$ such that all types $>k$ are replaced by an immortal type Δ

Computing q

- Denote $\mathbf{q}^{(k)}$: the (global) extinction probability of $\left\{\mathbf{Z}_{n}^{(k)}\right\}$

$$
\mathbf{q}^{(k)} \nearrow \mathbf{q} \text { as } k \rightarrow \infty
$$

- The proof is again an application of the monotone convergence theorem
- For each $k, \mathbf{q}^{(k)}$ can be computed, for instance using functional iteration

Computing q

In Example 1 the progeny generating vector, $\mathbf{G}^{(k)}(\mathbf{s})$, is

$$
\begin{aligned}
G_{1}^{(k)}(\mathbf{s}) & =\frac{s_{1}^{3}}{6}+\frac{s_{2}^{3}}{6}+\frac{2}{3} \\
G_{2}^{(k)}(\mathbf{s}) & =\frac{s_{1}^{3}}{75}+\frac{s_{2}^{3}}{6}+\frac{s_{3}^{3}}{6}+\frac{49}{75} \\
& \vdots \\
G_{i}^{(k)}(\mathbf{s}) & =\frac{s_{i-1}^{3}}{75}+\frac{s_{i}^{3}}{6}+\frac{s_{i+1}^{3}}{6}+\frac{49}{75} \\
& \vdots \\
G_{k}^{(k)}(\mathbf{s}) & =\frac{s_{k-1}^{3}}{75}+\frac{s_{k}^{3}}{6}+0+\frac{49}{75}
\end{aligned}
$$

Random replacement

Define $\left\{\overline{\mathbf{Z}}_{n}^{(k)}\right\}$ by modifying $\left\{\mathbf{Z}_{n}\right\}$ such that

- All types $>k$ are replaced by a type in $\{1,2 \ldots, k\}$
- The types of the replaced individuals are selected independently using the probability distribution $\boldsymbol{\alpha}^{(k)}=\left(\alpha_{1}^{(k)}, \alpha_{2}^{(k)}, \ldots, \alpha_{3}^{(k)}\right)$

For example

- $\boldsymbol{\alpha}^{(k)}=\mathbf{e}_{1}$: replacement by type 1
- $\boldsymbol{\alpha}^{(k)}=1 / k$: replacement by a type uniformly distributed on $\{1, \ldots, k\}$
- $\boldsymbol{\alpha}^{(k)}=\mathbf{e}_{k}$: replacement by type k

Denote $\overline{\mathbf{q}}^{(k)}$: the (global) extinction probability of $\left\{\overline{\mathbf{Z}}_{n}^{(k)}\right\}$

Random replacement

An illustration when $\boldsymbol{\alpha}^{(k)}=\mathbf{e}_{1}$

Random replacement

In Example 1 the progeny generating vector, $\overline{\mathbf{G}}^{(k)}(\mathbf{s})$, is

$$
\begin{aligned}
\bar{G}_{1}^{(k)}(\mathbf{s}) & =\frac{s_{1}^{3}}{6}+\frac{s_{2}^{3}}{6}+\frac{2}{3} \\
\bar{G}_{2}^{(k)}(\mathbf{s}) & =\frac{s_{1}^{3}}{75}+\frac{s_{2}^{3}}{6}+\frac{s_{3}^{3}}{6}+\frac{49}{75} \\
& \vdots \\
\bar{G}_{i}^{(k)}(\mathbf{s}) & =\frac{s_{i-1}^{3}}{75}+\frac{s_{i}^{3}}{6}+\frac{s_{i+1}^{3}}{6}+\frac{49}{75} \\
& \vdots \\
\bar{G}_{k}^{(k)}(\mathbf{s}) & =\frac{s_{k-1}^{3}}{75}+\frac{s_{k}^{3}}{6}+\frac{\left(\sum_{\ell=1}^{k} \alpha_{\ell}^{(k)} s_{\ell}\right)^{3}}{6}+\frac{49}{75}
\end{aligned}
$$

Random replacement

What conditions on $\left\{\mathbf{Z}_{n}\right\}$ and $\left\{\boldsymbol{\alpha}^{(k)}\right\}$ are required for

$$
\overline{\mathbf{q}}^{(k)} \rightarrow \mathbf{q}
$$

as $k \rightarrow \infty$?

Assumptions

Assumption (1)

$$
\inf _{i \in \mathcal{S}} q_{i}>0
$$

Assumption (2)
There exists constants $N_{1}, N_{2} \geq 1$ and $a>0$, all independent of k, such that

$$
\sum_{i=1}^{\min \left\{N_{1}, k\right\}} \alpha_{i}^{(k)} \geq a
$$

for all $k \geq N_{2}$.

Main result

Theorem

Suppose Assumptions 1 and 2 hold. In addition, assume that there exists N_{1} such that either

- $\tilde{q}_{j}<1$ for all $j \in\left\{1, \ldots, N_{1}\right\}$, or
- $\tilde{q}_{j}=1$ for all $j \in\left\{1, \ldots, N_{1}\right\}$, and there is a path from any $j \in\left\{1, \ldots, N_{1}\right\}$ to the initial type i.
Then

$$
\lim _{k \rightarrow \infty} \bar{q}_{i}^{(k)} \rightarrow q_{i}
$$

for any initial type i.

Coupling of the branching processes

We place $\left\{\mathbf{Z}_{n}\right\},\left\{\mathbf{Z}_{n}^{(k)}\right\},\left\{\tilde{\mathbf{Z}}_{n}^{(k)}\right\}$, and $\left\{\overline{\mathbf{Z}}_{n}^{(k)}\right\}$ on the same probability space, for all $k \geq 1$.

Coupling of the branching processes

We place $\left\{\mathbf{Z}_{n}\right\},\left\{\mathbf{Z}_{n}^{(k)}\right\},\left\{\tilde{\mathbf{Z}}_{n}^{(k)}\right\}$, and $\left\{\overline{\mathbf{Z}}_{n}^{(k)}\right\}$ on the same probability space, for all $k \geq 1$.

Example 1

Example 2

Consider the branching process with progeny generating function $\mathbf{G}(\mathbf{s})$ such that $a, c>0, d>1$ and

$$
G_{1}(\mathbf{s})=\frac{c d}{t} s_{2}^{t}+1-\frac{c d}{t},
$$

and for $i \geq 2$,

$$
G_{i}(\mathbf{s})= \begin{cases}\frac{c d}{u} s_{i+1}^{u}+\frac{a d}{u} s_{i-1}^{u}+1-\frac{d(a+c)}{u} & \text { when } i \text { is odd, } \\ \frac{c}{d v} s_{i+1}^{v}+\frac{a}{d v} s_{i-1}^{v}+1-\frac{(a+c)}{d v} & \text { when } i \text { is even, }\end{cases}
$$

where $t=\lceil d c\rceil+1, u=\lceil d(c+a)\rceil+1$ and $v=\lceil(c+a) / d\rceil+1$.

Example 2

When $i \geq 2$ the mean progeny matrix M has entries,

$$
M_{i, i-1}=a d \quad \text { and } \quad M_{i, i+1}=c d
$$

for i odd and

$$
M_{i, i-1}=a / d \quad \text { and } \quad M_{i, i+1}=c / d
$$

for i even.

Example 2

Concluding remarks

- Example 2 demonstrates that when $\boldsymbol{\alpha}^{(k)}=\mathbf{e}_{k}, \lim _{k \rightarrow \infty} \overline{\mathbf{q}}^{(k)}$ does not necessarily exist
- For this example we can prove that when $\boldsymbol{\alpha}^{(k)}=\mathbf{e}_{k}$ for any $a, c>0$ and $d>1$,

$$
\liminf _{k \rightarrow \infty} \overline{\mathbf{q}}^{(k)}=\mathbf{q} .
$$

Under Assumption 1 we believe this to be true in general.

- When $\boldsymbol{\alpha}^{(k)}=\mathbf{1} / k$, we can construct an example where $\mathbf{q}<\lim _{k \rightarrow \infty} \overline{\mathbf{q}}^{(k)}=\widetilde{\mathbf{q}}$.

Questions?

