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Context and Problem

Multiclass closed queueing networks commonly used in
capacity planning and software performance engineering

Product-form solution given by the BCMP theorem (1975)

Identical per-class service times at FCFS nodes
Exponentially-distributed service times at FCFS nodes

Existing approximations for general FCFS nodes are brittle.

Contribution: an accurate matrix-analytic approximation for
multiclass networks with general FCFS nodes
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Model

Closed network of M FCFS queues with PH service

Cyclic topology (method applies also to arbitrary topology)

R job classes, each with Kr jobs

sir : mean service time of class-r jobs at queue i

vir : mean visits of class-r jobs at queue i

θir = vir sir : mean demand of class-r jobs at queue i
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Solving product-form models (AMVA)

Product-form case: sir = sis , r 6= s, exponential service.

Mean value analysis (MVA) solves model using Little’s law
and the arrival theorem:

Wir = θir + θir

R∑
s=1

A
(r)
is

Wir : mean response time at queue i for class-r jobs

A
(r)
is : mean class-s queue seen at i by arriving class-r job.

Approximate MVA (AMVA):

A
(r)
is approximated with inexpensive fixed-point iteration.
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Including general FCFS nodes (AMVA-FCFS)

We now consider general FCFS nodes (arbitrary sir ).

AMVA-FCFS corrects the arrival theorem at FCFS nodes as

Wir ≈ θir +
R∑

s=1

θisA
(r)
is

Each queue-length is weighted differently according to class.

Pretty good approximation, but two key problems:

Brittle: models with > 15%− 20% error are not uncommon.
Insensitive: no moments other than means, no residual time.
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Sensitivity to higher-order moments

Decomposition method for single-class FCFS queues with PH
service (Casale & Harrison, ICPE 2012).

FCFS queues considered in isolation, fed by throughput X
same as in the closed network.

Isolated queues treated as MAP/PH/1 queues
Approximation! True arrival rate is state-dependent.
Start with a guess for X , then iteratively update the guess.
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Sensitivity to higher-order moments

We approximate QBD solution with a scalar expression:

p̃i (n) =

{
(1− ρi ) n = 0

ρi (1− ηi )ηni n > 0

Similar to a diffusion approximation for closed networks.
ρi : utilization
ηi : tail decay rate (caudal characteristic)
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Sensitivity to higher-order moments

X iteratively updated based on the above approximation.

FCFS queue replaced by a load-dependent exponential node
that contributes p̃i (ni ) to the product-form expression, i.e.,

p(n1, . . . , nM) ≈ p̃1(n1)p̃2(n2) · · · p̃M(nM)

G

where G is a normalising constant.
New value for X efficiently obtained from this approximation.
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Problems towards a multiclass extension

What is the caudal characteristic η for a multiclass queue?

What kind of population growth should we consider?

Multiclass load-dependent nodes are difficult to handle, how
do we iteratively update guesses on X?
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Multiclass Extension

Network decomposed into MMAP[R]/PH[R]/1 queues.

Arrival rates given by throughputs: X = (X1, . . . ,XR)

Arrival process obtained by scaling of input PHs and
superpositions.

Traffic flow superpositions and aggregations needed for
arbitrary topologies.
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MMAP[R]/PH[R]/1 queues

For a state n = (n1, . . . , nR) the queue has

pi (n) =

{
(1− ρi ) |n| = 0

π(0)
∑R

r=1,nr>0 L(n− er )hr |n| > 0

L(n): recursively calculated by Sylvester matrix equations.

π(0): initial vector of the age process.

hr : 1 for states where class-r job is in service, 0 elsewhere.
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MMAP[R]/PH[R]/1: Multinomial Approximation

For tractability, we apply a multinomial approximation

pi (ni ) ≈
(

1−
R∑

s=1

ηis

)(ni1 + · · ·+ niR)!

ni1! · · · niR !
ηni1i1 · · · η

niR
iR .

ηir : tail decay of class r at queue i

pi (ni ) leads to approximate product-form equilibrium

p(n1, . . . ,nM) ≈ p̃1(n1)p̃2(n2) · · · p̃M(nM)

G

solvable by standard algorithms, such as AMVA.
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MMAP[R]/PH[R]/1: Decay rate

Population growth under fixed class mix β = ni/|ni |
ηir obtain by choosing βi = E [ni ]/|E [ni ]|
Population growth limited to reachable vectors ni : nir ≤ Kr .
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MMAP[R]/PH[R]/1: Multinomial Approximation
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Figure: Distribution of the number of class-2 jobs given that the total
number of jobs is 200
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Decay Rate Approximation (DRA)

Initial guess of throughputs X by AMVA-FCFS.

Decompose into MMAP[R]/PH[R]/1 queues and find E [ni ]

Obtain decay rates ηir under average mix

Parameterize a product-form model with queues having
demands ηir/Xr

Solve product-form model to obtain new throughputs X′

Repeat until minimizing weighted distance between X and X′.

We use a non-linear constrained optimization solver.
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Validation: Methodology

80 networks solved by simulation, AMVA, AMVA-FCFS, DRA.

R = 2 job classes

M ∈ {2, 3, 4, 8} queues

K ∈ {15, 30, 45, 60} jobs, K2 = 2K1.

One queue is hyper-exponential: c2 ∈ {1, 2, 5}.
We study errors on mean queue-lengths:

error =
1

2K

M∑
i=1

R∑
r=1

|E [nir ]− E [nsimir ]|,

A Matrix-Analytic Approximation for Closed Queueing Networks with General FCFS Nodes. 16/18



Validation: Results

Table: Distribution of errors for different methods across all test cases

Method
Error (%) DRA AMVA-FCFS AMVA

0 - 5 42.5% 33.75% 20%
5 - 10 45% 30% 38.75%

10 - 15 12.5% 27.5% 26.25%
15 - 20 - 7.5% 11.25%
20 - 25 - 1.25% 3.75%
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Ongoing and Future work

Ongoing work:

Arbitrary topologies

Reduction of computational cost of update

Inclusion of other node types (PS, delay servers)

Random validation on networks with arbitrary topologies

Future work:

Generalization to priorities and fork-join queueing systems.

A Matrix-Analytic Approximation for Closed Queueing Networks with General FCFS Nodes. 18/18


