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Context and Problem

m Multiclass closed queueing networks commonly used in
capacity planning and software performance engineering
m Product-form solution given by the BCMP theorem (1975)
m ldentical per-class service times at FCFS nodes
m Exponentially-distributed service times at FCFS nodes

Existing approximations for general FCFS nodes are brittle.

Contribution: an accurate matrix-analytic approximation for
multiclass networks with general FCFS nodes
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Model

Closed network of M FCFS queues with PH service

Cyclic topology (method applies also to arbitrary topology)
R job classes, each with K, jobs

Sir © mean service time of class-r jobs at queue i

Vjr : mean visits of class-r jobs at queue i

0ir = visjy - mean demand of class-r jobs at queue i
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Solving product-form models (AMVA)

m Product-form case: s;, = s;5, r # s, exponential service.

m Mean value analysis (MVA) solves model using Little's law
and the arrival theorem:

R
Wir = 05 +0; > AL
s=1

m W, : mean response time at queue i for class-r jobs
(). . . .
[ A,-Sr : mean class-s queue seen at i by arriving class-r job.
m Approximate MVA (AMVA):

[ Ag) approximated with inexpensive fixed-point iteration.
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Including general FCFS nodes (AMVA-FCFS)

m We now consider general FCFS nodes (arbitrary s;,).
m AMVA-FCFS corrects the arrival theorem at FCFS nodes as
R
Wi = 0 + > 0AY)
s=1
m Each queue-length is weighted differently according to class.

m Pretty good approximation, but two key problems:

m Brittle: models with > 15% — 20% error are not uncommon.
m Insensitive: no moments other than means, no residual time.
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Sensitivity to higher-order moments

m Decomposition method for single-class FCFS queues with PH
service (Casale & Harrison, ICPE 2012).

m FCFS queues considered in isolation, fed by throughput X
same as in the closed network.

m Isolated queues treated as MAP/PH /1 queues
m Approximation! True arrival rate is state-dependent.
m Start with a guess for X, then iteratively update the guess.
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Sensitivity to higher-order moments

m We approximate QBD solution with a scalar expression:

" (1—pi) n=0
pi(n) = n
pi(L—=mni)nf n>0

m Similar to a diffusion approximation for closed networks.
m p;: utilization
m 7);: tail decay rate (caudal characteristic)
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Sensitivity to higher-order moments

m X iteratively updated based on the above approximation.

m FCFS queue replaced by a load-dependent exponential node
that contributes p;(n;) to the product-form expression, i.e.,

_ Pi(m)pa(n2) - - - pm(nm)
NINES

p(ny,... C

where G is a normalising constant.
m New value for X efficiently obtained from this approximation.
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Problems towards a multiclass extension

m What is the caudal characteristic 77 for a multiclass queue?
m What kind of population growth should we consider?

m Multiclass load-dependent nodes are difficult to handle, how
do we iteratively update guesses on X?
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Multiclass Extension

m Network decomposed into MMAP[R]/PH[R]/1 queues.
m Arrival rates given by throughputs: X = (Xi,..., Xg)

m Arrival process obtained by scaling of input PHs and
superpositions.
m Traffic flow superpositions and aggregations needed for
arbitrary topologies.
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MMAP[R]/PH[R]/1 queues

m For a state n = (ny,..., ng) the queue has
(1-p) n[=0
pi(n) = R
7T(0) Zr:17n,>0 L(I’I - ef)hf |I1‘ >0

m L(n): recursively calculated by Sylvester matrix equations.
m 7(0): initial vector of the age process.

m h,: 1 for states where class-r job is in service, 0 elsewhere.
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MMAP[R]/PH[R]/1: Multinomial Approximation

m For tractability, we apply a multinomial approximation

n1+ i) ,
(1—2%) 1R
i

n,-R!

m 7). tail decay of class r at queue i

m p;(n;) leads to approximate product-form equilibrium

P(n1, .. .,nM) ~ ﬁl(nl)ﬁ2(n2é' : 'ﬁM(nM)

solvable by standard algorithms, such as AMVA.
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MMAP[R]/PH[R]/1: Decay rate

leg(P(n1,n2))

beta=(0.5,0.5)

Y
e e

m Population growth under fixed class mix 5 = n;/|n;]|
m 7);, obtain by choosing 5; = E[n;]/|E[n/]|

m Population growth limited to reachable vectors n; : n;, < K.
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MMAP[R]/PH[R]/1: Multinomial Approximation
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Decay Rate Approximation (DRA)

Initial guess of throughputs X by AMVA-FCFS.
Decompose into MMAP[R]/PH[R]/1 queues and find E[n;]
Obtain decay rates 7;, under average mix

Parameterize a product-form model with queues having
demands n;, /X,

Solve product-form model to obtain new throughputs X’

Repeat until minimizing weighted distance between X and X’.
m We use a non-linear constrained optimization solver.
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Validation: Methodology

80 networks solved by simulation, AMVA, AMVA-FCFS, DRA.
R = 2 job classes

M € {2,3,4,8} queues

K € {15,30,45,60} jobs, K = 2Kj.

One queue is hyper-exponential: ¢ € {1,2,5}.

We study errors on mean queue-lengths:

1 M R ]
error = > |Elni] — Elng™],

i=1r=1
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Validation: Results

Table: Distribution of errors for different methods across all test cases

Method
Error (%) | DRA | AMVA-FCFS | AMVA
0-5 42 5% 33.75% 20%
5-10 45% 30% 38.75%
10 - 15 12.5% 27.5% 26.25%
15-20 - 7.5% 11.25%
20 - 25 - 1.25% 3.75%
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Ongoing and Future work

Ongoing work:

m Arbitrary topologies

m Reduction of computational cost of update

m Inclusion of other node types (PS, delay servers)

m Random validation on networks with arbitrary topologies
Future work:

m Generalization to priorities and fork-join queueing systems.
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