Regenerative approach

Stationary Distribution 00 0000000 Concluding comments

Fluid flows with jumps at the boundary

Eleonora Deiana Guy Latouche Marie-Ange Remiche

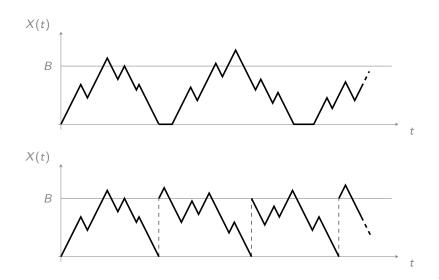
Université de Namur

The Ninth International Conference on Matrix-Analytic Methods in Stochastic Models Budapest, June 28 - 30, 2016

Regenerative approach 00

Stationary Distribution 00 0000000 Concluding comments

Classic fluid flow VS Fluid flow with jumps



Regenerative approach

Stationary Distribution 00 0000000 Concluding comments

Outline

Mathematical model

Regenerative approach

Stationary Distribution

Concluding comments

Regenerative approach

Stationary Distribution 00 0000000 Concluding comments

Definition and notations: FLUID FLOW

Two-dimensional process:

 $\{X(t),\phi(t)\}_{t\geq 0}$

• $\phi(t) \in S = S^+ \cup S^-$: phase process.

Evolution of the level X(t):

•
$$X(t) > 0, \ \phi(t) = i \in S$$
:

$$\frac{\mathrm{d}}{\mathrm{d}t}X(t)=c_i$$

• X(t) = 0: instantaneous jump to a fixed level *B*.

Regenerative approach

Stationary Distribution 00 0000000 Concluding comments

Matrices

Transition and rate matrices:

$$T = \left[egin{array}{cc} T_{++} & T_{+-} \ T_{-+} & T_{--} \end{array}
ight], \ {
m and} \ C = \left[egin{array}{cc} C_+ & 0 \ 0 & C_- \end{array}
ight].$$

Matrix of the change of phases in the jump:

$$W = \left[\begin{array}{cc} W_{-+} & W_{--} \end{array} \right].$$

OBJECTIVE

Regenerative approach

Stationary Distribution 00 0000000 Concluding comments

Calculation of the stationary distribution:

$$\prod_j(x) = \lim_{t \to \infty} P[X(t) < x, \phi(t) = j].$$

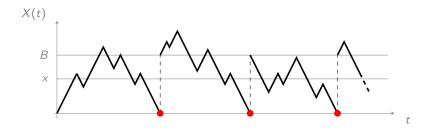
How?

REGENERATIVE APPROACH

Regenerative approach •O

Stationary Distribution 00 0000000 Concluding comments

Regenerative approach



Sequence of regeneration points $\{h_n\}_{n\geq 0}$ defined as:

$$h_0 = 0,$$

 $h_{n+1} = \inf \{t > h_n | X(t) = 0\}.$

Regenerative approach

Stationary Distribution 00 0000000 Concluding comments

Stationary distribution:

 $\mathbf{\Pi}(x) = (\boldsymbol{\nu}\boldsymbol{m})^{-1}\boldsymbol{\nu}\boldsymbol{M}(x).$

 \triangleright ν : stationary distribution of phases in the regeneration points:

u H =
u, where $H_{ij} = P[\phi(h_{n+1}) = j | \phi(h_n) = i], \quad i, j \in S^-.$

- M(x): mean sojourn time in [0, x] between two regeneration points;
- $m = M(B)\mathbf{1}$: mean sojourn time between two regenerative points given the phase of departure.

Regenerative approach

Stationary Distribution 00 0000000 Concluding comments

Stationary distribution:

 $\mathbf{\Pi}(x) = (\boldsymbol{\nu}\boldsymbol{m})^{-1}\boldsymbol{\nu}\boldsymbol{M}(x).$

 \triangleright ν : stationary distribution of phases in the regeneration points:

u H =
u, where $H_{ij} = P[\phi(h_{n+1}) = j | \phi(h_n) = i], \quad i, j \in S^-.$

- M(x): mean sojourn time in [0, x] between two regeneration points;
- $m = M(B)\mathbf{1}$: mean sojourn time between two regenerative points given the phase of departure.

Regenerative approach

Concluding comments

\triangleright ν : stationary distribution of phases in the regeneration points:

Transition matrix of phases between two regeneration points:

$$H = \begin{bmatrix} W_{-+} & W_{--} \end{bmatrix} \begin{bmatrix} \Psi \\ I \end{bmatrix} e^{Ub}.$$

Where:

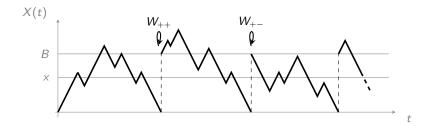
- Ψ : probability of the first return to the initial level,
- e^{Ux}: probability, starting from a fixed level x, to reach level 0 in a finite time.

Regenerative approach

Stationary Distribution

Concluding comments

$$H = \begin{bmatrix} W_{-+} & W_{--} \end{bmatrix} \begin{bmatrix} \Psi \\ I \end{bmatrix} e^{Ub}.$$

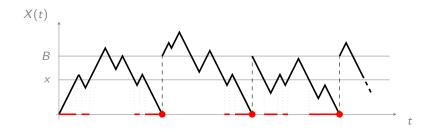


Regenerative approach

Stationary Distribution OO OOOOOO Concluding comments

Mean sojourn time M(x)

$$M(\mathbf{x}) = \begin{bmatrix} W_{-+} & W_{--} \end{bmatrix} \begin{bmatrix} \widetilde{M}_+(\mathbf{x}) \\ \widetilde{M}_-(\mathbf{x}) \end{bmatrix}.$$

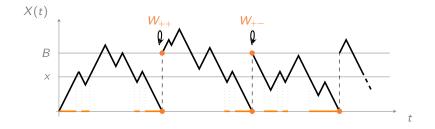


Regenerative approach

Stationary Distribution OO OOOOOO Concluding comments

Mean sojourn time M(x)

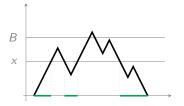
$$M(x) = \begin{bmatrix} W_{-+} & W_{--} \end{bmatrix} \begin{bmatrix} \widetilde{M}_{+}(x) \\ \widetilde{M}_{-}(x) \end{bmatrix}$$



Stationary Distribution

Concluding comments

 $\Gamma(x)$: mean sojourn time in [0, x] before the first return to the initial level, starting in level 0;



defined as:

$$\Gamma(x) = \int_0^x \mathrm{e}^{\kappa_u} \mathrm{d}u \left[\begin{array}{cc} C_+^{-1} & \Psi | C_-^{-1} | \end{array} \right],$$

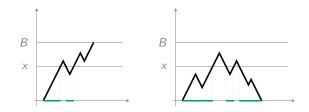
with e^{K_x} : expected number of crossing of level x, starting from level 0 before the first return to the initial level.

Regenerative approach

Stationary Distribution

Concluding comments

 $H^b_+(x)$: mean sojourn time in [0, x] before reaching either level 0 or level B, starting in level 0;



Regenerative approach

Stationary Distribution

Concluding comments

Similarly...

- $\widehat{\Gamma}(x)$: mean sojourn time in [0, x] before the first return to the initial level, starting in level *B*;
- ► H^b₋(x): mean sojourn time in [0, x] before reaching either level 0 or level B, starting in level B.

These quantities can be putted together in the system:

$$\left[\begin{array}{c} \Gamma(x)\\ \widehat{\Gamma}(x)\end{array}\right] = \left[\begin{array}{cc} I & \mathrm{e}^{Kb}\Psi\\ \mathrm{e}^{\widehat{K}b}\widehat{\Psi} & I\end{array}\right] \left[\begin{array}{c} H^b_+(x)\\ H^b_-(x)\end{array}\right],$$

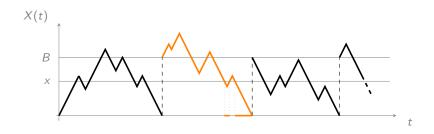
Regenerative approach

Stationary Distribution

Concluding comments

0 < x < b

$$\begin{cases} \widetilde{M}_{+}(x) = \Psi \widetilde{M}_{-}(x) \\ \widetilde{M}_{-}(x) = H^{b}_{-}(x) + \widehat{\Psi}^{b} \widetilde{M}_{+}(x) \end{cases}$$



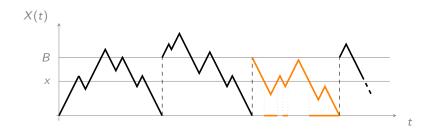
Regenerative approach

Stationary Distribution

Concluding comments

0 < x < b

$$\left\{ egin{aligned} \widetilde{M}_+(x) &= \Psi \widetilde{M}_-(x) \ \widetilde{M}_-(x) &= H^b_-(x) + \widehat{\Psi}^b \widetilde{M}_+(x) \end{aligned}
ight.$$



15 / 19

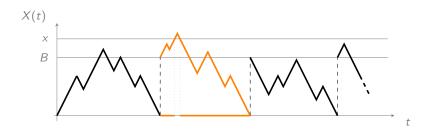
Regenerative approach

Stationary Distribution

Concluding comments

 $x \ge b$

$$\begin{cases} \widetilde{M}_+(x) = \Gamma(x-b) + \Psi \widetilde{M}_-(x) \\ \widetilde{M}_-(x) = H^b_-(b) + \widehat{\Psi}^b \widetilde{M}_+(x). \end{cases}$$



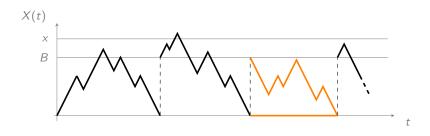
Regenerative approach

Stationary Distribution

Concluding comments

 $x \ge b$

$$\begin{cases} \widetilde{M}_+(x) = \Gamma(x-b) + \Psi \widetilde{M}_-(x) \\ \widetilde{M}_-(x) = H^b_-(b) + \widehat{\Psi}^b \widetilde{M}_+(x). \end{cases}$$



Regenerative approach

Stationary Distribution

Concluding comments

If
$$0 < x < b$$
:

$$\begin{cases} \widetilde{M}_+(x) = \Psi(I - \widehat{\Psi}^b \Psi)^{-1} H^b_-(x) \\ \widetilde{M}_-(x) = (I - \widehat{\Psi}^b \Psi)^{-1} H^b_-(x). \end{cases}$$

If
$$x \ge b$$

$$\begin{cases} \widetilde{M}_+(x) = (I - \Psi \widehat{\Psi}^b)^{-1} \left(\Gamma(x - b) + \Psi H^b_-(b) \right) \\ \widetilde{M}_-(x) = (I - \widehat{\Psi}^b \Psi)^{-1} \left(\widehat{\Psi}^b \Gamma(x - b) + H^b_-(b) \right). \end{cases}$$

Regenerative approach

Stationary Distribution 00 0000000 Concluding comments

Further work:

- random size of the jumps;
- jumps after a random interval of time;
- brownian motion.

Regenerative approach

Stationary Distribution 00 0000000 Concluding comments

Thank you for your attention!