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1. Markov Modulated Fluid Models

Markov process {(Z (t), ϕ(t)) : t ∈ R+}
I Z (t) ∈ R+ is the continuous level
I ϕ(t) ∈ S is the phase : state of a discrete Markov chain with

state space S = S+∪S− and infinitesimal generator A,

A =

[
A++ A+−
A−+ A−−

]
where A++ : S+  S+, A+− : S+  S−, A−+ : S−  S+,
A−− : S−  S−

Evolution of the level, varies linearly according to the phase

d

dt
Z (t) =

{
cϕ(t) if Z (t) > 0

max{0, cϕ(t)} if Z (t) = 0



1. Markov Modulated Fluid Models

I Matrix of the rates

C = diag(ci : i ∈ S) =

[
C+

C−

]
I Joint distribution function of the level and the phase at time t

Fi (x , t) = Pr[Z (t) ≤ x , ϕ(t) = i ]

I Stationary density π(x) has components

πi (x) = lim
t→∞

∂

∂x
Fi (x , t)



2. Perturbation Analysis

We perturb :

1) the transition matrix : A(ε) = A + εÃ

2) the rate matrix : C (ε) = C + εC̃

Objective :

π(x , ε) = π(x , 0) + επ(1)(x , 0) + O
(
ε2
)

where
π(1)(x , 0) = lim

ε→0

π(x , ε)− π(x , 0)

ε



2. Perturbation Analysis
I For x > 0,

π(x) = p−A−+e
Kx [ C−1

+ Ψ
∣∣C−1
−
∣∣ ]

where p− is the unique solution of{
p−U = 0

p−1 + p−A−+(−K )−1 (C−1
+ 1 + Ψ

∣∣C−1
−
∣∣ 1) = 1

and

K = C−1
+ A++ + Ψ

∣∣C−1
−
∣∣A−+

(is such that exp(Kx) = matrix of expected number of
crossings of level x given that the initial level is 0, before
returning to 0)

U =
∣∣C−1
−
∣∣A−− +

∣∣C−1
−
∣∣A−+Ψ

(is such that exp (Ux) = matrix of probabilities that the
process reaches level 0 given that the initial level is x)



2. Perturbation Analysis
I The matrix of first return probabilities from above to the initial

level Ψ has components

Ψij = Pr [ϕ(τ(x)) = j |Z (0) = x , ϕ(0) = i ]

where i ∈ S+, j ∈ S−, for x ≥ 0 and

τ(x) = inf {t > 0 : Z (t) ≤ x}
I Ψ is the minimal nonnegative solution of the Riccati equation

C−1
+ A+− + C−1

+ A++Ψ + Ψ
∣∣C−1
−
∣∣A−− + Ψ

∣∣C−1
−
∣∣A−+Ψ = 0

Level

Time



2. Perturbation Analysis : A(ε) = A+ εÃ

Theorem
The matrix Ψ (ε) is analytic in a neighbourhood of zero.
Furthermore,

Ψ (ε) = Ψ̄ + εΨ(1) + O(ε2)

with limε→0 Ψ (ε) = Ψ̄ = Ψ and Ψ(1) = dΨ(ε)
dε

∣∣∣
ε=0

is the unique
solution of

KΨ(1) + Ψ(1)U = f (Ψ, Ã)

where

f (Ψ, Ã) = −C−1
+ Ã+− − C−1

+ Ã++Ψ

−Ψ
∣∣C−1
−
∣∣ Ã−− −Ψ

∣∣C−1
−
∣∣ Ã−+Ψ

K = C−1
+ A++ + Ψ

∣∣C−1
−
∣∣A−+

U =
∣∣C−1
−
∣∣A−− +

∣∣C−1
−
∣∣A−+Ψ



2. Perturbation Analysis : A(ε) = A+ εÃ
Sketch of Proof
I Key: Implicit Function Theorem
I Define F (ε,X ) the continuous operator as

C−1
+ A+−(ε)+C−1

+ A++(ε)X+X
∣∣C−1
−
∣∣A−−(ε)+X

∣∣C−1
−
∣∣A−+(ε)X

I One has : F (0,Ψ(0)) = 0 and for any Y ,H

∂XF (ε,X )|ε=0,X=Ψ(0) (Y ) = H

is equivalently to
KY + YU = H

I From Rogers (1994) and Govorun et al. (2013), we have

sp(K ) ∈ {z : Re(z) < 0}
sp(−U) ∈ {z : Re(z) ≥ 0}

I Conclusion: Ψ (ε) is differentiable at 0.



2. Perturbation Analysis : C (ε) = C + εC̃

Theorem
The matrix Ψ (ε) of first return probabilities from above is analytic
near zero and

Ψ (ε) = Ψ̄ + εΨ(1) + O(ε2)

where Ψ̄ = limε→0 Ψ (ε) = Ψ and Ψ(1) is the unique solution to

KΨ(1) + Ψ(1)U = g(Ψ, C̃ )

where

Ψ(1) =
dΨ+−(ε)

dε

∣∣∣∣
ε=0

g(Ψ, C̃ ) = Ψ+−
∣∣C−1
−
∣∣ C̃−U − C−1

+ C̃+ΨU

K = C−1
+ A++ + Ψ

∣∣C−1
−
∣∣A−+

U =
∣∣C−1
−
∣∣A−− +

∣∣C−1
−
∣∣A−+Ψ



3. Markov Modulated Fluid Models with «Null Phases»

Markov process {(Z (t), ϕ(t)) : t ∈ R+}
I Z (t) ∈ R+ is the continuous level
I ϕ(t) ∈ S is the phase : state of a discrete Markov chain with

state space S = S+∪S−∪S0 and infinitesimal generator A,

A =

 A++ A+0 A+−
A0+ A00 A0−
A−+ A−0 A−−



I Matrix of the rates

C =

 C+

C0

C−





3. Markov Modulated Fluid Models with «Null Phases»

Theorem
The matrix of first return probabilities to the initial level Ψ with
dimension |S+| × |S−| is the minimal nonnegative solution of the
Riccati equation

Ψ
∣∣C−1
−
∣∣Q−− + Ψ

∣∣C−1
−
∣∣Q−+Ψ + C−1

+ Q+− + C−1
+ Q++Ψ = 0

where[
Q++ Q+−
Q−+ Q−−

]
=

[
A++ A+−
A−+ A−−

]
+

[
A+0
A−0

]
(−A00)−1 [ A0+ A0−

]



4. Perturbation Analysis : C (ε) = C + εC̃

Case 1 Migration from S0 to S−

C =

 C+

C0

C−

 =⇒ C (ε) =

 C+(ε)

C	(ε)
C−(ε)


Partition of the same transition matrix before and after
perturbation

A =

 A++ A+0 A+−
A0+ A00 A0−
A−+ A−0 A−−

 =

 A++ A+	 A+−
A	+ A		 A	−
A−+ A−	 A−−





4. Perturbation Analysis : C (ε) = C + εC̃
I For ε > 0, t Ψ(ε) =

[
Ψ+	(ε) Ψ+−(ε)

]
may be written as

Ψ(ε) = Ψ̄ + εΨ(1) + O(ε2)

is the minimal nonnegative solution of the Riccati equation

Ψ(ε)

 ∣∣∣εC̃	∣∣∣ ∣∣∣C− + εC̃−

∣∣∣
−1 [

A		 A	−
A−	 A−−

]

+Ψ(ε)

 ∣∣∣εC̃	∣∣∣ ∣∣∣C− + εC̃−

∣∣∣
−1 [

A	+

A−+

]
Ψ(ε)

+
(
C+ + εC̃+

)−1 [
A+	 A+−

]
+
(
C+ + εC̃+

)−1
A++Ψ(ε) = 0

We have Ψ
(1)
+− is the unique solution of KΨ(1) + Ψ(1)U = g(Ψ, C̃ )



4. Perturbation Analysis : C (ε) = C + εC̃

Need to compare Ψ with domension |S+| × |S−| and Ψ(ε) with
dimension (|S+|)× (|S	|+ |S−|) :

Ψ̄ =
[

Ψ+	(0) Ψ+−(0)
]

=
[
0 Ψ

]
where Ψ with dimension |S+| × |S−| is the minimal nonnegative
solution of the Riccati equation

Ψ
∣∣C−1
−
∣∣Q−− + Ψ

∣∣C−1
−
∣∣Q−+Ψ + C−1

+ Q+− + C−1
+ Q++Ψ = 0

where[
Q++ Q+−
Q−+ Q−−

]
=

[
A++ A+−
A−+ A−−

]
+

[
A+0
A−0

]
(−A00)−1 [ A0+ A0−

]



4. Perturbation Analysis : C (ε) = C + εC̃

Case 1 Migration from S0 to S+

C =

 C+

C0

C−

⇒ C (ε) =

 C+(ε)
C⊕(ε)

C−(ε)


Partition of the same transition matrix before and after
perturbation

A =

 A++ A+0 A+−
A0+ A00 A0−
A−+ A−0 A−−

 =

 A++ A+⊕ A+−
A⊕+ A⊕⊕ A⊕−
A−+ A−⊕ A−−





4. Perturbation Analysis : C (ε) = C + εC̃

I For ε > 0, Ψ(ε) =

[
Ψ+−(ε)
Ψ⊕−(ε)

]
may be written as

Ψ(ε) = Ψ̄ + εΨ(1) + O(ε2)

It is the minimal nonnegative solution of

Ψ(ε)
∣∣∣C− + εC̃−

∣∣∣−1
A−−

+Ψ(ε)
∣∣∣C− + εC̃−

∣∣∣−1 [
A−+ A−⊕

]
Ψ(ε)

+

[
C+ + εC̃+

εC̃⊕

]−1 [
A+−
A⊕−

]
+

[
C+ + εC̃+

εC̃⊕

]−1 [
A++ A+⊕
A⊕+ A⊕⊕

]
Ψ(ε) = 0

We have : Ψ
(1)
+− is the unique solution of

KΨ(1) + Ψ(1)U = g(Ψ, C̃ )



4. Perturbation Analysis : C (ε) = C + εC̃
Substitute for the matrix of first return probabilities :

Ψ̄ =

[
limε→0 Ψ+−(ε)
limε→0 Ψ⊕−(ε)

]
=

[
Ψ

(−A⊕⊕)−1 A⊕− + (−A⊕⊕)−1 A⊕+Ψ

]

Interpretation
For i ∈ S⊕, j ∈ S−
I
(

(−A⊕⊕)−1 C̃−1
⊕ A⊕−

)
ij

= probability that the phase

process goes grom phase i to j , after some time spend in
phases of S⊕

I
(

(−A⊕⊕)−1 C̃−1
⊕ A⊕+Ψ

)
ij

= probability the phase process

leaves i for a phase in S+ and later returns to the initial
level in j



4. Perturbation Analysis : C (ε) = C + εC̃
General Case

C =

 C+

C0

C−

→ C (ε) =


C+(ε)

C⊕(ε)

C	(ε)
C−(ε)


Partition of the same transition matrix before and after
perturbation

A =

 A++ A+0 A+−
A0+ A00 A0−
A−+ A−0 A−−

 =


A++ A+⊕ A+	 A+−
A⊕+ A⊕⊕ A⊕	 A⊕−
A	+ A	⊕ A		 A	−
A−+ A−⊕ A−	 A−−


Here:

Ψ(ε) =

[
Ψ+	(ε) Ψ+−(ε)
Ψ⊕	(ε) Ψ⊕−(ε)

]
−→
ε→0

[
0 Ψ

Ψ⊕	 Ψ⊕−

]



4. Perturbation Analysis : C (ε) = C + εC̃

For i ∈ S⊕ and j ∈ S−

[Ψ⊕−]ij =
[
−K−1

⊕⊕C̃
−1
⊕ A⊕−

]
ij

+
[
−K−1

⊕⊕C̃
−1
⊕ (−A⊕⊕)−1 A⊕+Ψ

]
ij

+
[
−K−1

⊕⊕Ψ⊕	

∣∣∣C̃−1
	

∣∣∣A	−]
ij

+
[
−K−1

⊕⊕Ψ⊕	

∣∣∣C̃−1
	

∣∣∣A	+Ψ
]
ij

with
K⊕⊕ = C̃−1

⊕ A⊕⊕ + Ψ⊕	

∣∣∣C̃−1
	

∣∣∣A	⊕



4. Perturbation Analysis : C (ε) = C + εC̃

Ψ⊕	 is the unique solution of the Riccati equation

Ψ⊕	
∣∣C−1
	
∣∣A		+Ψ⊕	

∣∣C−1
	
∣∣A	⊕Ψ⊕	+C−1

⊕ A⊕	+C−1
⊕ A⊕⊕Ψ⊕	 = 0

The block matrix Ψ⊕	 is the matrix of first return probabilities
from above for a Markov modulated fluid model with infinitesimal
sub-generator [

A⊕⊕ A⊕	
A	⊕ A		

]
and rate matrix [

C⊕
C	

]



Thanks for your attention !


