Perturbation Analysis of Markov Modulated Fluid Models

Sarah Dendievel, Ghent University, TELIN Department, SMACS research group

joint work with Guy Latouche, Université libre de Bruxelles,
Faculté des Sciences

June 28, 2016

Perturbation analysis of Markov modulated fluid models

Contents

1. Markov Modulated Fluid Models
2. Perturbation Analysis
3. Markov Modulated Fluid Models with «Null Phases»
4. Perturbation Analysis

1. Markov Modulated Fluid Models

Markov process $\left\{(Z(t), \varphi(t)): t \in \mathbb{R}^{+}\right\}$

- $Z(t) \in \mathbb{R}^{+}$is the continuous level
- $\varphi(t) \in \mathcal{S}$ is the phase: state of a discrete Markov chain with state space $\mathcal{S}=\mathcal{S}_{+} \cup \mathcal{S}_{-}$and infinitesimal generator A,

$$
A=\left[\begin{array}{ll}
A_{++} & A_{+-} \\
A_{-+} & A_{--}
\end{array}\right]
$$

where $A_{++}: \mathcal{S}_{+} \rightsquigarrow \mathcal{S}_{+}, A_{+-}: \mathcal{S}_{+} \rightsquigarrow \mathcal{S}_{-}, A_{-+}: \mathcal{S}_{-} \rightsquigarrow \mathcal{S}_{+}$, $A_{--}: \mathcal{S}_{-} \rightsquigarrow \mathcal{S}_{-}$

Evolution of the level, varies linearly according to the phase

$$
\frac{d}{d t} Z(t)=\left\{\begin{array}{cc}
c_{\varphi(t)} & \text { if } Z(t)>0 \\
\max \left\{0, c_{\varphi(t)}\right\} & \text { if } Z(t)=0
\end{array}\right.
$$

1. Markov Modulated Fluid Models

- Matrix of the rates

$$
C=\operatorname{diag}\left(c_{i}: i \in \mathcal{S}\right)=\left[\begin{array}{ll}
C_{+} & \\
& C_{-}
\end{array}\right]
$$

- Joint distribution function of the level and the phase at time t

$$
F_{i}(x, t)=\operatorname{Pr}[Z(t) \leq x, \varphi(t)=i]
$$

- Stationary density $\pi(x)$ has components

$$
\pi_{i}(x)=\lim _{t \rightarrow \infty} \frac{\partial}{\partial x} F_{i}(x, t)
$$

2. Perturbation Analysis

We perturb:

1) the transition matrix : $A(\varepsilon)=A+\varepsilon \tilde{A}$

$$
\text { 2) the rate matrix: } C(\varepsilon)=C+\varepsilon \tilde{C}
$$

Objective :

$$
\boldsymbol{\pi}(x, \varepsilon)=\boldsymbol{\pi}(x, 0)+\varepsilon \boldsymbol{\pi}^{(1)}(x, 0)+O\left(\varepsilon^{2}\right)
$$

where

$$
\pi^{(1)}(x, 0)=\lim _{\varepsilon \rightarrow 0} \frac{\pi(x, \varepsilon)-\pi(x, 0)}{\varepsilon}
$$

2. Perturbation Analysis

- For $x>0$,

$$
\boldsymbol{\pi}(x)=\boldsymbol{p}_{-} A_{-+} e^{K x}\left[C_{+}^{-1}|\Psi| C_{-}^{-1} \mid\right]
$$

where \boldsymbol{p}_{-}is the unique solution of

$$
\left\{\begin{array}{c}
\boldsymbol{p}_{-} U=0 \\
\boldsymbol{p}_{-} \mathbf{1}+\boldsymbol{p}_{-} A_{-+}(-K)^{-1}\left(C_{+}^{-1} \mathbf{1}+\psi\left|C_{-}^{-1}\right| \mathbf{1}\right)=1
\end{array}\right.
$$

and

$$
K=C_{+}^{-1} A_{++}+\Psi\left|C_{-}^{-1}\right| A_{-+}
$$

(is such that $\exp (K x)=$ matrix of expected number of crossings of level x given that the initial level is 0 , before returning to 0)

$$
U=\left|C_{-}^{-1}\right| A_{--}+\left|C_{-}^{-1}\right| A_{-+} \Psi
$$

(is such that $\exp \left(U_{x}\right)=$ matrix of probabilities that the process reaches level 0 given that the initial level is x)

2. Perturbation Analysis

- The matrix of first return probabilities from above to the initial level ψ has components

$$
\Psi_{i j}=\operatorname{Pr}[\varphi(\tau(x))=j \mid Z(0)=x, \varphi(0)=i]
$$

where $i \in \mathcal{S}_{+}, j \in \mathcal{S}_{-}$, for $x \geq 0$ and

$$
\tau(x)=\inf \{t>0: Z(t) \leq x\}
$$

- Ψ is the minimal nonnegative solution of the Riccati equation

$$
C_{+}^{-1} A_{+-}+C_{+}^{-1} A_{++} \Psi+\Psi\left|C_{-}^{-1}\right| A_{--}+\Psi\left|C_{-}^{-1}\right| A_{-+} \Psi=0
$$

Level

2. Perturbation Analysis : $A(\varepsilon)=A+\varepsilon \tilde{A}$

Theorem
The matrix $\Psi(\varepsilon)$ is analytic in a neighbourhood of zero.
Furthermore,

$$
\Psi(\varepsilon)=\bar{\Psi}+\varepsilon \Psi^{(1)}+O\left(\varepsilon^{2}\right)
$$

with $\lim _{\varepsilon \rightarrow 0} \Psi(\varepsilon)=\bar{\Psi}=\Psi$ and $\Psi^{(1)}=\left.\frac{d \Psi(\varepsilon)}{d \varepsilon}\right|_{\varepsilon=0}$ is the unique solution of

$$
K \psi^{(1)}+\Psi^{(1)} U=f(\Psi, \tilde{A})
$$

where

$$
\begin{aligned}
f(\Psi, \tilde{A})= & -C_{+}^{-1} \tilde{A}_{+-}-C_{+}^{-1} \tilde{A}_{++} \Psi \\
& -\Psi\left|C_{-}^{-1}\right| \tilde{A}_{--}-\Psi\left|C_{-}^{-1}\right| \tilde{A}_{-+} \Psi \\
K= & C_{+}^{-1} A_{++}+\Psi\left|C_{-}^{-1}\right| A_{-+} \\
U= & \left|C_{-}^{-1}\right| A_{--}+\left|C_{-}^{-1}\right| A_{-+} \Psi
\end{aligned}
$$

2. Perturbation Analysis : $A(\varepsilon)=A+\varepsilon \tilde{A}$

Sketch of Proof

- Key: Implicit Function Theorem
- Define $F(\varepsilon, \mathcal{X})$ the continuous operator as

$$
C_{+}^{-1} A_{+-}(\varepsilon)+C_{+}^{-1} A_{++}(\varepsilon) \mathcal{X}+\mathcal{X}\left|C_{-}^{-1}\right| A_{--}(\varepsilon)+\mathcal{X}\left|C_{-}^{-1}\right| A_{-+}(\varepsilon) \mathcal{X}
$$

- One has: $F(0, \Psi(0))=0$ and for any Y, H

$$
\left.\partial_{X} F(\varepsilon, \mathcal{X})\right|_{\varepsilon=0, \mathcal{X}=\Psi(0)}(Y)=H
$$

is equivalently to

$$
K Y+Y U=H
$$

- From Rogers (1994) and Govorun et al. (2013), we have

$$
\begin{aligned}
\operatorname{sp}(K) & \in\{z: \operatorname{Re}(z)<0\} \\
\operatorname{sp}(-U) & \in\{z: \operatorname{Re}(z) \geq 0\}
\end{aligned}
$$

- Conclusion: $\Psi(\varepsilon)$ is differentiable at 0 .

2. Perturbation Analysis: $C(\varepsilon)=C+\varepsilon \tilde{C}$

Theorem

The matrix $\Psi(\varepsilon)$ of first return probabilities from above is analytic near zero and

$$
\Psi(\varepsilon)=\bar{\Psi}+\varepsilon \Psi^{(1)}+O\left(\varepsilon^{2}\right)
$$

where $\bar{\Psi}=\lim _{\varepsilon \rightarrow 0} \Psi(\varepsilon)=\Psi$ and $\Psi^{(1)}$ is the unique solution to

$$
K \Psi^{(1)}+\Psi^{(1)} U=g(\Psi, \tilde{C})
$$

where

$$
\begin{aligned}
\psi^{(1)} & =\left.\frac{d \Psi_{+-}(\varepsilon)}{d \varepsilon}\right|_{\varepsilon=0} \\
g(\Psi, \tilde{C}) & =\Psi_{+-}\left|C_{-}^{-1}\right| \tilde{C}_{-} U-C_{+}^{-1} \tilde{C}_{+} \Psi U \\
K & =C_{+}^{-1} A_{++}+\Psi\left|C_{-}^{-1}\right| A_{-+} \\
U & =\left|C_{-}^{-1}\right| A_{--}+\left|C_{-}^{-1}\right| A_{-+} \Psi
\end{aligned}
$$

3. Markov Modulated Fluid Models with《Null Phases»

Markov process $\left\{(Z(t), \varphi(t)): t \in \mathbb{R}^{+}\right\}$

- $Z(t) \in \mathbb{R}^{+}$is the continuous level
- $\varphi(t) \in \mathcal{S}$ is the phase: state of a discrete Markov chain with state space $\mathcal{S}=\mathcal{S}_{+} \cup \mathcal{S}_{-} \cup \mathcal{S}_{0}$ and infinitesimal generator A,

$$
A=\left[\begin{array}{c|c|c}
A_{++} & A_{+0} & A_{+-} \\
\hline A_{0+} & A_{00} & A_{0-} \\
\hline A_{-+} & A_{-0} & A_{--}
\end{array}\right]
$$

- Matrix of the rates

$$
C=\left[\begin{array}{l|l|l}
C_{+} & & \\
\hline & C_{0} & \\
\hline & & C_{-}
\end{array}\right]
$$

3. Markov Modulated Fluid Models with《Null Phases»

Theorem
The matrix of first return probabilities to the initial level ψ with dimension $\left|\mathcal{S}_{+}\right| \times\left|\mathcal{S}_{-}\right|$is the minimal nonnegative solution of the Riccati equation

$$
\psi\left|C_{-}^{-1}\right| Q_{--}+\psi\left|C_{-}^{-1}\right| Q_{-+} \Psi+C_{+}^{-1} Q_{+-}+C_{+}^{-1} Q_{++} \psi=0
$$

where

$$
\begin{aligned}
{\left[\begin{array}{cc}
Q_{++} & Q_{+-} \\
Q_{-+} & Q_{--}
\end{array}\right]=} & {\left[\begin{array}{ll}
A_{++} & A_{+-} \\
A_{-+} & A_{--}
\end{array}\right] } \\
& +\left[\begin{array}{l}
A_{+0} \\
A_{-0}
\end{array}\right]\left(-A_{00}\right)^{-1}\left[\begin{array}{ll}
A_{0+} & A_{0-}
\end{array}\right]
\end{aligned}
$$

4. Perturbation Analysis: $C(\varepsilon)=C+\varepsilon \tilde{C}$

Case 1 Migration from S_{0} to S_{-}

$$
C=\left[\begin{array}{l|l|l}
C_{+} & & \\
\hline & C_{0} & \\
\hline & & C_{-}
\end{array}\right] \Longrightarrow C(\varepsilon)=\left[\begin{array}{l|ll}
C_{+}(\varepsilon) & & \\
\hline & C_{\ominus}(\varepsilon) & \\
& & C_{-}(\varepsilon)
\end{array}\right]
$$

Partition of the same transition matrix before and after perturbation

$$
A=\left[\begin{array}{c|c|c}
A_{++} & A_{+0} & A_{+-} \\
\hline A_{0+} & A_{00} & A_{0-} \\
\hline A_{-+} & A_{-0} & A_{--}
\end{array}\right]=\left[\begin{array}{c|cc}
A_{++} & A_{+\ominus} & A_{+-} \\
\hline A_{\ominus+} & A_{\ominus \ominus} & A_{\ominus-} \\
A_{-+} & A_{-\ominus} & A_{--}
\end{array}\right]
$$

4. Perturbation Analysis: $C(\varepsilon)=C+\varepsilon \tilde{C}$

- For $\varepsilon>0, \mathrm{t} \boldsymbol{\Psi}(\varepsilon)=\left[\begin{array}{ll}\Psi_{+\ominus}(\varepsilon) & \Psi_{+-}(\varepsilon)\end{array}\right]$ may be written as

$$
\boldsymbol{\Psi}(\varepsilon)=\bar{\psi}+\varepsilon \boldsymbol{\psi}^{(1)}+O\left(\varepsilon^{2}\right)
$$

is the minimal nonnegative solution of the Riccati equation

$$
\begin{aligned}
& \boldsymbol{\Psi (\varepsilon)}\left[\begin{array}{ll}
\left|\varepsilon \tilde{C}_{\ominus}\right| & \\
& \left|C_{-}+\varepsilon \tilde{C}_{-}\right|
\end{array}\right]^{-1}\left[\begin{array}{ll}
A_{\ominus \ominus} & A_{\ominus-} \\
A_{-\ominus} & A_{--}
\end{array}\right] \\
& +\boldsymbol{\Psi}(\varepsilon)\left[\begin{array}{ll}
\left|\varepsilon \tilde{C}_{\ominus}\right| & \\
& \left|C_{-}+\varepsilon \tilde{C}_{-}\right|
\end{array}\right]^{-1}\left[\begin{array}{l}
A_{\ominus+} \\
A_{-+}
\end{array}\right] \boldsymbol{\Psi}(\varepsilon) \\
& \\
& +\left(C_{+}+\varepsilon \tilde{C}_{+}\right)^{-1}\left[\begin{array}{ll}
A_{+\ominus} & \left.A_{+-}\right] \\
& +\left(C_{+}+\varepsilon \tilde{C}_{+}\right)^{-1} A_{++} \boldsymbol{\Psi}(\varepsilon)=0
\end{array}\right.
\end{aligned}
$$

We have $\Psi_{+-}^{(1)}$ is the unique solution of $K \psi^{(1)}+\psi^{(1)} U=g(\Psi, \tilde{C})$
4. Perturbation Analysis: $C(\varepsilon)=C+\varepsilon \tilde{C}$

Need to compare ψ with domension $\left|\mathcal{S}_{+}\right| \times\left|\mathcal{S}_{-}\right|$and $\boldsymbol{\Psi}(\varepsilon)$ with dimension $\left(\left|\mathcal{S}_{+}\right|\right) \times\left(\left|\mathcal{S}_{\ominus}\right|+\left|\mathcal{S}_{-}\right|\right)$:

$$
\bar{\Psi}=\left[\begin{array}{ll}
\Psi_{+\ominus}(0) & \Psi_{+-}(0)
\end{array}\right]=\left[\begin{array}{ll}
0 & \Psi
\end{array}\right]
$$

where ψ with dimension $\left|\mathcal{S}_{+}\right| \times\left|\mathcal{S}_{-}\right|$is the minimal nonnegative solution of the Riccati equation

$$
\Psi\left|C_{-}^{-1}\right| Q_{--}+\Psi\left|C_{-}^{-1}\right| Q_{-+} \Psi+C_{+}^{-1} Q_{+-}+C_{+}^{-1} Q_{++} \Psi=0
$$

where

$$
\begin{aligned}
{\left[\begin{array}{cc}
Q_{++} & Q_{+-} \\
Q_{-+} & Q_{--}
\end{array}\right]=} & {\left[\begin{array}{ll}
A_{++} & A_{+-} \\
A_{-+} & A_{--}
\end{array}\right] } \\
& +\left[\begin{array}{l}
A_{+0} \\
A_{-0}
\end{array}\right]\left(-A_{00}\right)^{-1}\left[\begin{array}{ll}
A_{0+} & A_{0-}
\end{array}\right]
\end{aligned}
$$

4. Perturbation Analysis: $C(\varepsilon)=C+\varepsilon \tilde{C}$

Case 1 Migration from S_{0} to S_{+}

$$
C=\left[\begin{array}{l|l|l}
C_{+} & & \\
\hline & C_{0} & \\
\hline & & C_{-}
\end{array}\right] \Rightarrow C(\varepsilon)=\left[\begin{array}{ll|l}
C_{+}(\varepsilon) & & \\
& C_{\oplus}(\varepsilon) & \\
\hline & & C_{-}(\varepsilon)
\end{array}\right]
$$

Partition of the same transition matrix before and after perturbation

$$
A=\left[\begin{array}{c|c|c}
A_{++} & A_{+0} & A_{+-} \\
\hline A_{0+} & A_{00} & A_{0-} \\
\hline A_{-+} & A_{-0} & A_{--}
\end{array}\right]=\left[\begin{array}{cc|c}
A_{++} & A_{+\oplus} & A_{+-} \\
A_{\oplus+} & A_{\oplus \oplus} & A_{\oplus-} \\
\hline A_{-+} & A_{-\oplus} & A_{--}
\end{array}\right]
$$

4. Perturbation Analysis: $C(\varepsilon)=C+\varepsilon \tilde{C}$

- For $\varepsilon>0, \boldsymbol{\Psi}(\varepsilon)=\left[\begin{array}{c}\Psi_{+-}(\varepsilon) \\ \Psi_{\oplus-}(\varepsilon)\end{array}\right]$ may be written as

$$
\boldsymbol{\Psi}(\varepsilon)=\bar{\psi}+\varepsilon \boldsymbol{\psi}^{(1)}+O\left(\varepsilon^{2}\right)
$$

It is the minimal nonnegative solution of

$$
\begin{array}{r}
\boldsymbol{\Psi (\varepsilon)}\left|C_{-}+\varepsilon \tilde{C}_{-}\right|^{-1} A_{--} \\
+\boldsymbol{\Psi}(\varepsilon)\left|C_{-}+\varepsilon \tilde{C}_{-}\right|^{-1}\left[\begin{array}{ll}
A_{-+} & \left.A_{-\oplus}\right] \boldsymbol{\Psi}(\varepsilon) \\
+\left[\begin{array}{ll}
C_{+}+\varepsilon \tilde{C}_{+} & \\
+\left[\begin{array}{ll}
C_{+}+\varepsilon \tilde{C}_{+} & \\
& \varepsilon \tilde{C}_{\oplus}
\end{array}\right]^{-1}\left[\begin{array}{l}
A_{+-} \\
A_{\oplus-}
\end{array}\right] \\
& {\left[\begin{array}{ll}
A_{++} & A_{+\oplus} \\
A_{\oplus+} & A_{\oplus \oplus}
\end{array}\right] \boldsymbol{\Psi}(\varepsilon)=0}
\end{array}\right.
\end{array}+\begin{array}{rl}
-1
\end{array}\right]
\end{array}
$$

We have : $\Psi_{+-}^{(1)}$ is the unique solution of $K \Psi^{(1)}+\Psi^{(1)} U=g(\Psi, \tilde{C})$

4. Perturbation Analysis: $C(\varepsilon)=C+\varepsilon \tilde{C}$

Substitute for the matrix of first return probabilities :

$$
\begin{aligned}
\bar{\Psi} & =\left[\begin{array}{l}
\lim _{\varepsilon \rightarrow 0} \Psi_{+-}(\varepsilon) \\
\lim _{\varepsilon \rightarrow 0} \Psi_{\oplus-}(\varepsilon)
\end{array}\right] \\
& =\left[\begin{array}{c}
\psi \\
\left(-A_{\oplus \oplus}\right)^{-1} A_{\oplus-}+\left(-A_{\oplus \oplus}\right)^{-1} A_{\oplus+} \Psi
\end{array}\right]
\end{aligned}
$$

Interpretation
For $i \in \mathcal{S}_{\oplus}, j \in \mathcal{S}_{-}$

- $\left(\left(-A_{\oplus \oplus}\right)^{-1} \tilde{C}_{\oplus}^{-1} A_{\oplus-}\right)_{i j}=$ probability that the phase process goes grom phase i to j, after some time spend in phases of \mathcal{S}_{\oplus}
- $\left(\left(-A_{\oplus \oplus}\right)^{-1} \tilde{C}_{\oplus}^{-1} A_{\oplus+} \Psi\right)_{i j}=$ probability the phase process leaves i for a phase in S_{+}and later returns to the initial level in j

4. Perturbation Analysis: $C(\varepsilon)=C+\varepsilon \tilde{C}$

General Case
$C=\left[\begin{array}{l|l|l}C_{+} & & \\ \hline & C_{0} & \\ \hline & & C_{-}\end{array}\right] \rightarrow C(\varepsilon)=\left[\begin{array}{ll|ll}C_{+}(\varepsilon) & & & \\ & C_{\oplus}(\varepsilon) & & \\ \hline & & C_{\ominus}(\varepsilon) & \\ \hline & & & C_{-}(\varepsilon)\end{array}\right]$

Partition of the same transition matrix before and after perturbation

$$
A=\left[\begin{array}{c|c|c}
A_{++} & A_{+0} & A_{+-} \\
\hline A_{0+} & A_{00} & A_{0-} \\
\hline A_{-+} & A_{-0} & A_{--}
\end{array}\right]=\left[\begin{array}{cc|cc}
A_{++} & A_{+\oplus} & A_{+\ominus} & A_{+-} \\
A_{\oplus+} & A_{\oplus \oplus} & A_{\oplus \ominus} & A_{\oplus-} \\
\hline A_{\ominus+} & A_{\ominus \oplus} & A_{\ominus \ominus} & A_{\ominus-} \\
A_{-+} & A_{-\oplus} & A_{-\ominus} & A_{--}
\end{array}\right]
$$

Here:

$$
\boldsymbol{\Psi}(\varepsilon)=\left[\begin{array}{cc}
\Psi_{+\ominus}(\varepsilon) & \Psi_{+-}(\varepsilon) \\
\Psi_{\oplus \ominus}(\varepsilon) & \Psi_{\oplus-}(\varepsilon)
\end{array}\right] \underset{\varepsilon \rightarrow 0}{\longrightarrow}\left[\begin{array}{cc}
0 & \psi \\
\Psi_{\oplus \ominus} & \Psi_{\oplus-}
\end{array}\right]
$$

4. Perturbation Analysis: $C(\varepsilon)=C+\varepsilon \tilde{C}$

For $i \in S_{\oplus}$ and $j \in S_{-}$

$$
\begin{aligned}
{\left[\Psi_{\oplus-}\right]_{i j}=} & {\left[-K_{\oplus \oplus}^{-1} \tilde{C}_{\oplus}^{-1} A_{\oplus-}\right]_{i j} } \\
& +\left[-K_{\oplus \oplus}^{-1} \tilde{C}_{\oplus}^{-1}\left(-A_{\oplus \oplus}\right)^{-1} A_{\oplus+} \Psi\right]_{i j} \\
& +\left[-K_{\oplus \oplus}^{-1} \Psi_{\oplus \ominus}\left|\tilde{C}_{\ominus}^{-1}\right| A_{\ominus-}\right]_{i j} \\
& +\left[-K_{\oplus \oplus}^{-1} \Psi_{\oplus \ominus}\left|\tilde{C}_{\ominus}^{-1}\right| A_{\ominus+} \psi\right]_{i j}
\end{aligned}
$$

with

$$
K_{\oplus \oplus}=\tilde{C}_{\oplus}^{-1} A_{\oplus \oplus}+\Psi_{\oplus \ominus}\left|\tilde{C}_{\ominus}^{-1}\right| A_{\ominus \oplus}
$$

4. Perturbation Analysis: $C(\varepsilon)=C+\varepsilon \tilde{C}$

$\Psi_{\oplus \ominus}$ is the unique solution of the Riccati equation
$\Psi_{\oplus \ominus}\left|C_{\ominus}^{-1}\right| A_{\ominus \ominus}+\Psi_{\oplus \ominus}\left|C_{\ominus}^{-1}\right| A_{\ominus \oplus} \Psi_{\oplus \ominus}+C_{\oplus}^{-1} A_{\oplus \ominus}+C_{\oplus}^{-1} A_{\oplus \oplus} \Psi_{\oplus \ominus}=0$

The block matrix $\Psi_{\oplus \ominus}$ is the matrix of first return probabilities from above for a Markov modulated fluid model with infinitesimal sub-generator

$$
\left[\begin{array}{ll}
A_{\oplus \oplus} & A_{\oplus \ominus} \\
A_{\ominus \oplus} & A_{\ominus \ominus}
\end{array}\right]
$$

and rate matrix

$$
\left[\begin{array}{ll}
C_{\oplus} & \\
& C_{\ominus}
\end{array}\right]
$$

Thanks for your attention!

