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1. Markov Modulated Fluid Models

Markov process {(Z(t), ¢(t)) : t € Rt}
» Z(t) € RT is the continuous level

» ¢(t) € S is the phase : state of a discrete Markov chain with
state space S = S;US_ and infinitesimal generator A,

_ | Avr A
a=lh a ]

where A++ IS+ ~ S+, A+_ . S+ ~ S_, A_+ tS_ S+,
A__:S5_~ S

Evolution of the level, varies linearly according to the phase

iZ(t) { Co(t) If Z(t) >0
dt max{0, c,»} if Z(t) =0



1. Markov Modulated Fluid Models

» Matrix of the rates
C =diag(c;: 1 € 8) = [ C+ c }
» Joint distribution function of the level and the phase at time ¢t
Fi(x,t) = Pr[Z(t) < x,p(t) = 1]

» Stationary density 7r(x) has components

7T,'(X): lim 2F,'(X, t)

t—o0 OX



2. Perturbation Analysis

We perturb :

1) the transition matrix : A(g) = A+ €A

2) the rate matrix : C(¢) = C+¢C
Objective :

7(x,€) = 7(x,0) + ewM(x,0) + O (%)

where 0
20 (x.0) = lim T08) = 7(x.0)

e—0 £




2. Perturbation Analysis
» For x > 0,
m(x) = p_A_ e C? ‘ v |C:1‘ ]

where p_ is the unique solution of

p_.U=0
pl+p A (-K)H(Cil1+wCcTH 1) =1
and
K = Cl'Ap +V|CTH AL

(is such that exp(Kx) = matrix of expected number of
crossings of level x given that the initial level is 0, before
returning to 0)

U=|CTHA_+|CTH ALV

(is such that exp (Ux) = matrix of probabilities that the
process reaches level 0 given that the initial level is x)



2. Perturbation Analysis

» The matrix of first return probabilities from above to the initial
level W has components

Vi = Prlp(r(x)) = j|Z(0) = x, ¢(0) = ]
where i € Sy, j € S_, for x > 0 and
7(x) =inf{t >0:Z(t) < x}

WV is the minimal nonnegative solution of the Riccati equation

v

CilAL_+ CTPAL U+ V[ CTHA_+ v |CTH ALV =0

Level




2. Perturbation Analysis : A(s) = A+ cA

Theorem

The matrix V (g) is analytic in a neighbourhood of zero.

Furthermore,

with lim._o W () = U = W and () = 4¥()

solution of

where

T . is the unique

= —C'A_ - C*ALL v

—W|CTH A —v|CTY A v

= C_:]'A_;'__i_ —|— \U ‘C__1| A_+
= |CHA_+|CTH AV



2. Perturbation Analysis : A(s) = A+ cA
Sketch of Proof

» Key: Implicit Function Theorem

v

Define F(e, X) the continuous operator as

ColAL(@)+C AL (B) X+ X | CTH AL (e)+X | CTH Ay (e)X

v

One has : F(0,¥(0)) =0 and for any Y, H

OxF(e, X)|c—ox—w() (V) =H

is equivalently to
KY+YU=H

From Rogers (1994) and Govorun et al. (2013), we have

v

sp(K) € {z:Re(z) <0}
sp(—U) € {z:Re(z) >0}

v

Conclusion: W (¢) is differentiable at 0.



2. Perturbation Analysis : C(¢) = C +¢C

Theorem

The matrix V () of first return probabilities from above is analytic
near zero and

W(e) =W+ v 4 0(2)

where W = lim._,o V (¢) = ¥ and W) js the unique solution to
Kv® L vy = g(v, &)

where

dVv_(e)
de =0
) = v _|c Y Cu-citGvu

K = Cl'A +V|CTH AL

U = |[CCHA_+|CTHA_v



3. Markov Modulated Fluid Models with «Null Phases»

Markov process {(Z(t),¢(t)): t € R"}
» Z(t) € R is the continuous level

» ¢(t) € S is the phase : state of a discrete Markov chain with
state space S = S, US_US) and infinitesimal generator A,

Apy | Ao | Ao
A= Aot | Ao | Ao
AL Ao A
» Matrix of the rates
o
C= G




3. Markov Modulated Fluid Models with «Null Phases»

Theorem

The matrix of first return probabilities to the initial level W with

dimension |S4| x |S_| is the minimal nonnegative solution of the
Riccati equation

V]CTH Qo + V| CTH @y W 4+ €1 Qi + Qv =0

where

[Q++ Q+—] _ [A++ A+—]
Q. Q. AL A

+ [ Qfg } (—Aw0) [ Aos  Ao- ]



4. Perturbation Analysis : C(¢) = C +¢C

Case 1 Migration from Sy to S_

Ct
C= G

C

] = C(e) =

Partition of the same transition matrix before and after

perturbation

Avo | A App |Ae Ap
A Ao lA A A A




4. Perturbation Analysis : C(¢) = C +¢C
» Fore>0,tW(e)=[ Wi (e) Vi () | may be written as

W(e) =W+ w4 0e?)

is the minimal nonnegative solution of the Riccati equation
~ -1
‘EC@’ [ Ace Ac_ ]
chee|| LA

~ —1
eC Aot
€5 ‘c+eé\] [AJw(e)

+ <C+ +5(.~"+>71 (A A ]

W(e)

+W(e)

+ <C+ + ec“;)d AW =0

We have \IIS:), is the unique solution of KWW + WMy = g(v, €)



4. Perturbation Analysis : C(¢) = C +¢C

Need to compare W with domension |S;| x |S_| and W(e) with
dimension (|S4]) x (|S-| +[S-]) :

¥ o=[v(0) v (0)]= [0 V]

where W with dimension S| x |S_| is the minimal nonnegative
solution of the Riccati equation

V|CTHQ -+ V|CTHQ W+ Q- + CM QW =0

where

[Q++ Q+—] _ [A++ A+—]
Q. Q. AL A

+ [ Q*g } (—Aw) ™ [ Aos Ao ]



4. Perturbation Analysis : C(¢) = C +¢C

Case 1 Migration from Sy to S

S R S
C= G = C(e) = C.(¢)
| C_(¢)

C

Partition of the same transition matrix before and after
perturbation

Arg [ Ao | Ao A Are | Ape
A= Aot | Ao | Ao | = | Astr Ase | As-

AL A |A AL A |A_




4. Perturbation Analysis : C(¢) = C +¢C

» Fore >0, W(e) = { $+_E2 } may be written as

W(e) =V 4w 4 0(?)

It is the minimal nonnegative solution of

L -1
Y(e) ‘C_ + 8C_’ A__
‘—1

+W@wc_+eé, (A, A ]W()

+ C+ + €6+ . -t A+_
€C«‘= A;,

" -1
Cr+eCy At Ass
. S lw =
* [ €C+ ] [ Ax\»v Asae (6) 0

We have : \USLI)_ is the unique solution of
Ku® vy = g(v, C)



4. Perturbation Analysis : C(¢) = C +¢C

Substitute for the matrix of first return probabilities :

v = [jmov ]

|\
[ (—Ace) A+ (A) T ALY

Interpretation

Forie Sg,j€S_
> ((—A w)*l CiélA‘/l\‘,) _ = probability that the phase
ij

process goes grom phase i to j, after some time spend in
phases of Sg

> ((—A ,j,)_l feglA\‘)v\U> = probability the phase process

ij

leaves i for a phase in S and later returns to the initial
level in j



4. Perturbation Analysis : C(¢) = C +¢C

General Case

C
C= { G ] 5 Ce) = C:()
c

Partition of the same transition matrix before and after
perturbation

A Ain | Al Ay

A++ A+0 A+— A+i AT A A—:—,

A= Aot | Ao | Ao- | = A:; A A A
Ap | Ao A AL A | A A

vo=[ v Vo =l



4. Perturbation Analysis : C(¢) = C +¢C

Forie Sg and je S

Wl = [KEA ]

i

+ [—K;ﬁa(:‘él (—A-. ) A;q%\ll}

ij
-1 =_1
+ [—K@@\U% ‘C@ ‘Ae—}

i
+ [*Ke_aéa"’% ‘59_1‘ A9+W] )
ij
with ) )
Kf'\,rﬂ}" = nglA@@ + wq);j ‘Ce_l‘ Ae@



4. Perturbation Analysis : C(¢) = C +¢C

V.~ is the unique solution of the Riccati equation

Ve |G AcotVer |G Ace Ve + G5 Age+ Cat Aga Ve =0

The block matrix W. - is the matrix of first return probabilities
from above for a Markov modulated fluid model with infinitesimal

sub-generator
Ase Ass
Ace Ace

]

and rate matrix



Thanks for your attention !



