On a 2-class Polling Model...

Kevin Granville & Steve Drekic

Introduction and Preliminaries

Determination of the Steady-state Probabilities

Determination of the Waiting Time Distribution

Numerical Analysis

Concluding Remarks

On a 2-class Polling Model with Class-dependent Reneging, Switchover Times, and Phase-type Service

Kevin Granville & Steve Drekic

Department of Statistics & Actuarial Science University of Waterloo

MAM 9 June 28-30, 2016

- イロト (四) (下) (日) (日) (日) (日)

Kevin Granville & Steve Drekic On

On a 2-class Polling Model...

Kevin Granville & Steve Drekic

Introduction and Preliminaries

of the Steady-state Probabilities

Determination of the Waiting Time Distribution

Numerical Analysis

Concluding Remarks

Introduction and Preliminaries 1

2 Determination of the Steady-state Probabilities

Determination of the Waiting Time Distribution 3

Numerical Analysis 4

5 **Concluding Remarks**

イロト イヨト イヨト イヨト 三日

990

Kevin Granville & Steve Drekic

Polling Models

On a 2-class Polling Model...

Kevin Granville & Steve Drekic

Introduction and Preliminaries

Determination of the Steady-state Probabilities

Determination of the Waiting Time Distribution

Numerical Analysis

Concluding Remarks

- A typical polling model consists of multiple queues attended by a single server in cyclic order.
- Due to its wide use in the areas of public health systems, transportation, and communication and computer networks, polling models have drawn considerable attention over the past fifty years.

Notable References

On a 2-class Polling Model...

Kevin Granville & Steve Drekic

Introduction and Preliminaries

Determination of the Steady-state Probabilities

Determination of the Waiting Time Distribution

Numerical Analysis

Concluding Remarks

- M.A.A. Boon, "Polling Models: From Theory to Traffic Intersections". PhD Thesis, Eindhoven: Technische Universiteit Eindhoven, 190 pages, 2011.
- H. Levy & M. Sidi, "Polling systems: applications, modeling and optimization". *IEEE Transactions on Communications*, Vol. COM-38, No. 10, pp. 1750-1760, 1990.
- H. Takagi, "Queueing analysis of polling models". *ACM Computing Surveys*, Vol. **20**, No. 1, pp. 5-28, 1988.
- V.M. Vishnevskii & O.V. Semenova, "Mathematical methods to study the polling systems". Automation and Remote Control, Vol. 67, No. 2, pp. 173-220, 2006.
- S. Borst, O. Boxma & H. Levy, "The use of service limits for efficient operation of multistation single-medium communication systems", *IEEE/ACM Transactions on Networking*, Vol. 3, No. 5, pp. 602-612, 1995.

On a 2-class Polling Model...

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

Proposed Queueing Model

イロト イヨト イヨト イヨト

3

DQC

Proposed Queueing Model

On a 2-class Polling Model...

Kevin Granville & Steve Drekic

Introduction and Preliminaries

Determination of the Steady-state Probabilities

Determination of the Waiting Time Distribution

Numerical Analysis

Concluding Remarks ■ Service times for class-*i* customers, *i* = 1, 2, are assumed to follow a continuous phase-type distribution (of dimension s_i), with probability density function of the form

$$f_i(\omega) = \underline{\beta}_i \exp\{S_i\omega\}\underline{S}'_{0,i}, \ \omega > 0.$$

- Initial probability row vector is $\underline{\beta}_i = (\beta_{i,1}, \beta_{i,2}, \dots, \beta_{i,s_i}), \sum_{j=1}^{s_i} \beta_{i,j} = 1.$
- S_i is an $s_i \times s_i$ rate matrix and $\underline{S}'_{0,i} = -S_i \underline{e}'_{s_i}$, where \underline{e}'_{s_i} is a column vector of s_i ones.

Kevin Granville & Steve Drekic

On a 2-class Polling Model...

Kevin Granville & Steve Drekic

Introduction and Preliminaries

Determination of the Steady-state Probabilities

Determination of the Waiting Time Distribution

Numerical Analysis

Concluding Remarks

- For i = 1, 2, let X_i represent the number of class-i customers present in the system, so that 0 ≤ X_i ≤ b_i.
- Our first objective is to determine

$$\{P_{m,n}; m = 0, 1, \ldots, b_1, n = 0, 1, \ldots, b_2\},\$$

where P_{m,n} denotes the steady-state joint probability that X₁ = m and X₂ = n.
■ Define an associated quantity π_{m,n,l,y} representing the steady-state joint probability that X₁ = m, X₂ = n, the server being in *position l*, and the current phase of service being y (with y = 0 indicating that the system is in switchover mode).

・ロット ●日マ ・山マ ・山マ ・

Kevin Granville & Steve Drekic On a 2-class Polling Model...

On a 2-class Polling Model...

Kevin Granville & Steve Drekic

Introduction and Preliminaries

Determination of the Steady-state Probabilities

Determination of the Waiting Time Distribution

Numerical Analysis

Concluding Remarks • Dependent on m and n, component l takes on the following values:

$$\begin{array}{rcl} m=n=0 & \Longrightarrow & l= & k_1+k_2+1, k_1+k_2+2, \\ m\neq 0 \text{ and } n=0 & \Longrightarrow & l= & 1, 2, \dots, k_1, k_1+k_2+1, k_1+k_2+2, \\ m=0 \text{ and } n\neq 0 & \Longrightarrow & l= & k_1+1, k_1+2, \dots, k_1+k_2, k_1+k_2+1, \\ & & k_1+k_2+2, \\ m\neq 0 \text{ and } n\neq 0 & \Longrightarrow & l= & 1, 2, \dots, k_1, k_1+1, k_1+2, \dots, k_1+k_2, \\ & & k_1+k_2+1, k_1+k_2+2. \end{array}$$
(1)

- When $l = 1, 2, ..., k_1$, the server is serving its l^{th} customer from the class-1 queue.
- When $l = k_1 + 1, k_1 + 2, ..., k_1 + k_2$, the server is serving its $(l k_1)^{th}$ customer from the class-2 queue.
- When *l* = *k*₁ + *k*₂ + *i*, the server is conducting a switchover out of the class-*i* queue, *i* = 1, 2.

Kevin Granville & Steve Drekic

On a 2-class Polling Model...

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

On a 2-class Polling Model...

Kevin Granville & Steve Drekic

Introduction and Preliminaries

Determination of the Steady-state Probabilities

Determination of the Waiting Time Distribution

Numerical Analysis

Concluding Remarks ■ Similarly, component *y* depends on *l* in the following way:

$$I = 1, 2, \dots, k_1 \implies y = 1, 2, \dots, s_1,$$

$$I = k_1 + 1, k_1 + 2, \dots, k_1 + k_2 \implies y = 1, 2, \dots, s_2,$$

$$I = k_1 + k_2 + 1, k_1 + k_2 + 2 \implies y = 0.$$
(2)

Kevin Granville & Steve Drekic On

On a 2-class Polling Model...

(日) (四) (臣) (臣) (臣)

On a 2-class Polling Model...

Kevin Granville & Steve Drekic

Introduction and Preliminaries

Determination of the Steady-state Probabilities

Determination of the Waiting Time Distribution

Numerical Analysis

Concluding Remarks When m = n = 0 (i.e., the queue is empty), the system can only be in one of two kinds of switchover modes (as there are no customers to serve in either queue) and so P_{0,0} = π_{0,0,k1+k2+1,0} + π_{0,0,k1+k2+2,0}.

It follows that

$$P_{0,n} = \sum_{l=k_1+1}^{k_1+k_2} \sum_{y=1}^{s_2} \pi_{0,n,l,y} + \sum_{l=k_1+k_2+1}^{k_1+k_2+2} \pi_{0,n,l,0} , \ n \ge 1,$$
$$P_{m,0} = \sum_{l=1}^{k_1} \sum_{y=1}^{s_1} \pi_{m,0,l,y} + \sum_{l=k_1+k_2+1}^{k_1+k_2+2} \pi_{m,0,l,0} , \ m \ge 1,$$

$$P_{m,n} = \sum_{l=1}^{k_1} \sum_{y=1}^{s_1} \pi_{m,n,l,y} + \sum_{l=k_1+1}^{k_1+k_2} \sum_{y=1}^{s_2} \pi_{m,n,l,y} + \sum_{l=k_1+k_2+1}^{k_1+k_2+2} \pi_{m,n,l,0} , \ m,n \ge 1.$$

Kevin Granville & Steve Drekic

On a 2-class Polling Model...

Kevin Granville & Steve Drekic

Introduction and Preliminaries

Determination of the Steady-state Probabilities

Determination of the Waiting Time Distribution

Numerical Analysis

Concluding Remarks

- Define the 0th steady-state probability row vector to be $\underline{\pi}_0 = (\underline{\pi}_{0,0}, \underline{\pi}_{0,1}, \dots, \underline{\pi}_{0,b_2})$, where $\underline{\pi}_{0,0} = (\pi_{0,0,k_1+k_2+1,0}, \pi_{0,0,k_2+k_2+2,0})$, and $\underline{\pi}_{0,n}$, $n = 1, 2, \dots, b_2$, is a row vector of size $z_1 = k_2 s_2 + 2$.
- For $m \ge 1$, the m^{th} steady-state probability row vector is defined as $\underline{\pi}_m = (\underline{\pi}_{m,0}, \underline{\pi}_{m,1}, \dots, \underline{\pi}_{m,b_2})$, where $\underline{\pi}_{m,0}$ is a row vector of size $k_1s_1 + 2$ and $\underline{\pi}_{m,n}$, $n = 1, 2, \dots, b_2$, is a row vector of size $z_2 = k_1s_1 + z_1$.
- Referring to X_1 as the *level* of the process, we remark that level 0 is comprised of $n_1 = b_2 z_1 + 2$ sub-levels, whereas each non-zero level consists of a total of $n_2 = b_2 z_2 + k_1 s_1 + 2$ sub-levels.

Kevin Granville & Steve Drekic

On a 2-class Polling Model...

Kevin Granville & Steve Drekic

Introduction and Preliminaries

Determination of the Steady-state Probabilities

Determination of the Waiting Time Distribution

Numerical Analysis

Concluding Remarks • Let $\underline{\pi} = (\underline{\pi}_0, \underline{\pi}_1, \dots, \underline{\pi}_{b_1})$ be the concatenated steady-state probability (row) vector having a total of $b_1 + 1$ levels.

- To determine <u>m</u> for m ≥ 0, we need to solve <u>0</u> = <u>m</u>Q where Q is the (n₁ + b₁n₂)-dimensioned infinitesimal generator of the process and <u>0</u> = (<u>0</u>_{n1}, <u>0</u>_{n2}, ..., <u>0</u>_{n2}) is an appropriately partitioned row vector (having a total of b₁ + 1 levels) such that <u>0</u>_{ni} denotes a 1 × n_i row vector of zeros.
- *Q* is block-structured as a level-dependent QBD process with blocks *Q_{m,j}* containing all transitions where *X*₁ changes from *m* to *j*.

		0	1	2		$b_1 - 2$	$b_1 - 1$	b_1		
	0	$(Q_{0,0})$	Q _{0,1}	0		0	0	0)	
		1								
	1	Q _{1,0}	$Q_{1,1}$	$Q_{1,2}$	•.	0	0	0		
Q =	2	0	$Q_{2,1}$	Q _{2,2}	•	0	0	0		
	:	:	۰.	۰.	۰.	:	:	:		
		•	•	•	•					
	$b_1 - 2$	0	0	0	• • •	Q_{b_1-2,b_1-2}	Q_{b_1-2,b_1-1}	0		
	$b_1 - 1$	0	0	0		Q_{b_1-1,b_1-2}	Q_{b_1-1,b_1-1}	Q_{b_1-1,b_1}		
	b_1	\ 0	0	0		0	Q_{b_1,b_1-1}	Q_{b_1,b_1})	
		`					-1,-1 -		/ 	

Kevin Granville & Steve Drekic

- On a 2-class Polling Model...
- Kevin Granville & Steve Drekic
- Introduction and Preliminaries
- Determination of the Steady-state Probabilities
- Determination of the Waiting Time Distribution
- Numerical Analysis
- Concluding Remarks

- Note that $Q_{1,2} = Q_{2,3} = \cdots = Q_{b_1-1,b_1} = \lambda_1 I_{n_2}$ where I_{n_2} denotes the $n_2 \times n_2$ identity matrix.
 - Define $\lambda = \lambda_1 + \lambda_2$.
- Define $\underline{e}_{i,j}$ to be a row vector of length *i*, with 1 as the j^{th} entry and zeros everywhere else.
- \otimes denotes the Kronecker product operator, $\delta_{i,j}$ denotes the Kronecker delta function, and the prime symbol, ', denotes vector transpose.
- Define $\underline{v} = (v_1, v_2)$, $V = \text{diag}(\underline{v})$, $V_1 = v_1 \underline{e}'_{2,1} \underline{e}_{2,2}$, $V_2 = v_2 \underline{e}'_{2,2} \underline{e}_{2,1}$.
- Some select blocks of *Q* are as follows:

Kevin Granville & Steve Drekic 0

On a 2-class Polling Model...

Kevin Granville & Steve Drekic

Introduction and Preliminaries

Determination of the Steady-state Probabilities

Determination of the Waiting Time Distribution

Numerical Analysis

Concluding Remarks

$$\begin{split} & \begin{array}{c} 0 & 1 & 2 & \dots & b_2 - 1 & b_2 \\ & 0 & & \left(-(\lambda l_2 + V - V_1 - V_2) & \left[& 0 & \lambda_2 l_2 & \right] & 0 & \dots & 0 & 0 \\ & 1 & & \left[& \frac{e_{k_2} e_{2,2} \otimes S'_{0,2}}{\alpha_2 l_2} & \right] & \Delta_1 & \lambda_2 l_{z_1} & \ddots & 0 & 0 \\ & & \left[& \frac{e_{k_2} e_{2,2} \otimes S'_{0,2}}{\alpha_2 l_2} & \right] & \Delta_1 & \lambda_2 l_{z_1} & \ddots & 0 & 0 \\ & & 0 & & \Gamma_2 & \Delta_2 & \ddots & 0 & 0 \\ & & \vdots & \ddots & \ddots & \ddots & \vdots & \vdots \\ & & 0 & & 0 & 0 & \dots & \Delta_{b_2 - 1} & \lambda_2 l_{z_1} \\ & & 0 & & 0 & 0 & \dots & \Gamma_{b_2} & \Delta_{b_2} \\ \end{array} \right), \\ & \Gamma_j = \begin{bmatrix} & (j-1)\alpha_2 l_{k_2 s_2} + U_2 & \underline{e}_{k_2, k_2} \underline{e}_{2,2} \otimes S'_{0,2} \\ & 0 & & 0 & 0 & \dots & \Gamma_{b_2} & \Delta_{b_2} \\ \end{array} \right], \quad U_i = \begin{cases} 0 & & \text{if } k_i = 1, \\ \begin{bmatrix} & 0'_{k_i - 1} & l_{k_i - 1} \\ & 0 & 0_{k_i - 1} \\ \end{bmatrix} \otimes \underline{S}'_{0, i} \underline{\beta}_i & \text{if } k_i \geq 2, \end{cases} \\ & \Delta_j = \begin{bmatrix} & -l_{k_2} \otimes ((\lambda - \lambda_2 \delta_{j_1 b_2} + (j - 1)\alpha_2) l_{s_2} - S_2) & & ((\lambda - \lambda_2 \delta_{j_1 b_2} + (j - 1)\alpha_2) l_{s_2} - S_2) \\ & \Delta_i = \begin{bmatrix} & -l_{k_2} \otimes ((\lambda - \lambda_2 \delta_{j_1 b_2} + (j - 1)\alpha_2) l_{s_2} - S_2) & & ((\lambda - \lambda_2 \delta_{j_1 b_2} + (j - 1)\alpha_2) l_{s_2} - S_2) \\ & \Delta_i = \begin{bmatrix} & -l_{k_2} \otimes ((\lambda - \lambda_2 \delta_{j_1 b_2} + (j - 1)\alpha_2) l_{s_2} - S_2) & & ((\lambda - \lambda_2 \delta_{j_1 b_2} + (j - 1)\alpha_2) l_{s_2} - S_2) \\ & \Delta_i = \begin{bmatrix} & -l_{k_2} \otimes ((\lambda - \lambda_2 \delta_{j_1 b_2} + (j - 1)\alpha_2) l_{s_2} - S_2) & & ((\lambda - \lambda_2 \delta_{j_1 b_2} + (j - 1)\alpha_2) l_{s_2} - S_2) \\ & \Delta_i = \begin{bmatrix} & -l_{k_2} \otimes ((\lambda - \lambda_2 \delta_{j_1 b_2} + (j - 1)\alpha_2) l_{s_2} - S_2) & & ((\lambda - \lambda_2 \delta_{j_1 b_2} + (j - 1)\alpha_2) l_{s_2} - S_2) \\ & \Delta_i = \begin{bmatrix} & 0 & & 0 & & 0 & & 0 \\ & \Delta_i = \begin{bmatrix} & 0 & & 0 & & 0 & & 0 \\ & \Delta_i = \begin{bmatrix} & 0 & & 0 & & 0 & & 0 \\ & \Delta_i = \begin{bmatrix} & 0 & & 0 & & 0 & & 0 \\ & \Delta_i = \begin{bmatrix} & 0 & & 0 & & 0 & & 0 \\ & \Delta_i = \begin{bmatrix} & 0 & & 0 & & 0 & & 0 \\ & \Delta_i = \begin{bmatrix} & 0 & & 0 & & 0 & & 0 \\ & \Delta_i = \begin{bmatrix} & 0 & & 0 & & 0 & & 0 \\ & \Delta_i = \begin{bmatrix} & 0 & & 0 & & 0 & & 0 & & 0 \\ & \Delta_i = \begin{bmatrix} & 0 & & 0 & & 0 & & 0 & & 0 \\ & \Delta_i = \begin{bmatrix} & 0 & & 0 & & 0 & & 0 & & 0 \\ & \Delta_i = \begin{bmatrix} & 0 & & 0 & & 0 & & 0 & & 0 \\ & \Delta_i = \begin{bmatrix} & 0 & & 0 & & 0 & & 0 & & 0 \\ & \Delta_i = \begin{bmatrix} & 0 & & 0 & & 0 & & 0 & & 0 \\ & \Delta_i = \begin{bmatrix} & 0 & & 0 & & 0 & & 0 & & 0 \\ & \Delta_i = \begin{bmatrix} & 0 & & 0 & & 0 & & 0 & & 0 \\ & \Delta_i = \begin{bmatrix} & 0 & & 0 & & 0 & & 0 & & 0 \\ & \Delta_i = \begin{bmatrix} & 0 & & 0 & & 0 & & 0 & & 0$$

$$\Delta_{j} = \begin{bmatrix} -l_{k_{2}} \otimes ((\lambda - \lambda_{2}\delta_{j,b_{2}} + (j-1)\alpha_{2})l_{s_{2}} - S_{2}) & \mathbf{0} \\ \underline{e}_{2,1}^{\prime}\underline{e}_{k_{2},1} \otimes v_{1}\underline{\beta}_{2} & -((\lambda - \lambda_{2}\delta_{j,b_{2}} + j\alpha_{2})l_{2} + V - V_{2}) \end{bmatrix},$$

<□> <@> < ≥> < ≥> < ≥</p> 200

Kevin Granville & Steve Drekic

Kevin Granville & Steve Drekic

On a 2-class Polling Model...

Kevin Granville & Steve Drekic

Introduction and Preliminaries

Determination of the Steady-state Probabilities

Determination of the Waiting Time Distribution

Numerical Analysis

Concluding Remarks

$$C_{i,j} = \begin{cases} \begin{bmatrix} -l_{k_1} \otimes ((\lambda - \lambda_1 \delta_{i,b_1} + (i-1)\alpha_1)l_{s_1} - S_1) & \mathbf{0} \\ \underline{e}'_{2,2}\underline{e}_{k_1,1} \otimes v_2\underline{\beta}_1 & -((\lambda - \lambda_1 \delta_{i,b_1} + i\alpha_1)l_2 + V - V_1) \end{bmatrix} & \text{if } j = 0, \\ \begin{bmatrix} \zeta_{1,i,j} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \zeta_{2,i,j} & \mathbf{0} \\ \underline{e}'_{2,2}\underline{e}_{k_1,1} \otimes v_2\underline{\beta}_1 & \underline{e}'_{2,1}\underline{e}_{k_2,1} \otimes v_1\underline{\beta}_2 & -((\lambda - \lambda_1 \delta_{i,b_1} - \lambda_2 \delta_{j,b_2} + i\alpha_1 + j\alpha_2)l_2 + V) \end{bmatrix} & \text{if } j = 1, 2, \dots, b_2, \end{cases}$$

$$\zeta_{x,i,j} = -I_{k_x} \otimes ((\lambda - \lambda_1 \delta_{i,b_1} - \lambda_2 \delta_{j,b_2} + (i - \delta_{x,1})\alpha_1 + (j - \delta_{x,2})\alpha_2)I_{s_x} - S_x),$$

Kevin Granville & Steve Drekic

On a 2-class Polling Model...

<□> <@> < ≥> < ≥> < ≥</p>

On a 2-class Polling Model... Kevin Granville & Steve Drekic Introduction and Preliminaries Determination of the Steady-state Probabilities Determination of the $A_{i,j} = \begin{bmatrix} (i-1)\alpha_1 / k_1 s_1 + U_1 & \underline{e}'_{k_1,k_1} \underline{e}_{k_2 s_2 \delta_{j,1} + 2, k_2 s_2 \delta_{j,1} + 1} \otimes \underline{S}'_{0,1} \\ \mathbf{0} & i\alpha_1 / k_{n s n \delta_1 + 12} \end{bmatrix}.$ Waiting Time Distribution Numerical Analysis Concluding Remarks

Kevin Granville & Steve Drekic

On a 2-class Polling Model...

(

On a 2-class Polling Model...

Kevin Granville & Steve Drekic

Introduction and Preliminaries

Determination of the Steady-state Probabilities

Determination of the Waiting Time Distribution

Numerical Analysis

Concluding Remarks Level-dependent QBD processes are well-studied in the literature, and it is possible to develop a computational procedure for calculating the steady-state probabilities associated with our model.

From $\underline{\tilde{0}} = \underline{\pi} Q$, the equilibrium equations in block form are obtained:

$$Q_{n_1} = \underline{\pi}_0 Q_{0,0} + \underline{\pi}_1 Q_{1,0}, \tag{3}$$

$$\underline{0}_{n_2} = \underline{\pi}_0 Q_{0,1} + \underline{\pi}_1 Q_{1,1} + \underline{\pi}_2 Q_{2,1}, \tag{4}$$

$$\underline{0}_{n_2} = \lambda_1 \underline{\pi}_{m-1} + \underline{\pi}_m Q_{m,m} + \underline{\pi}_{m+1} Q_{m+1,m}, \ m = 2, 3, \dots, b_1 - 1,$$
 (5)

$$\underline{0}_{n_2} = \lambda_1 \underline{\pi}_{b_1 - 1} + \underline{\pi}_{b_1} Q_{b_1, b_1}.$$
(6)

・ロト・「中・・中・・日・・日・

Kevin Granville & Steve Drekic

On a 2-class Polling Model...

Kevin Granville & Steve Drekic

Introduction and Preliminaries

Determination of the Steady-state Probabilities

Determination of the Waiting Time Distribution

Numerical Analysis

Concluding Remarks ■ Solving equations (4) through (6) inductively yields

$$\underline{\pi}_m = \underline{\pi}_0 \prod_{j=1}^m \mathcal{S}_j, \ m = 1, 2, \dots, b_1,$$
(7)

where the set of matrices $\{\mathcal{S}_j \ ; \ j=1,2,\ldots,b_1\}$ satisfy the recursive relation

$$S_j = -\lambda_1 (Q_{j,j} + S_{j+1}Q_{j+1,j})^{-1}, \ j = 2, 3, \dots, b_1 - 1,$$

with

$$\mathcal{S}_{b_1} = -\lambda_1 \mathcal{Q}_{b_1,b_1}^{-1}$$
 and $\mathcal{S}_1 = -\mathcal{Q}_{0,1} (\mathcal{Q}_{1,1} + \mathcal{S}_2 \mathcal{Q}_{2,1})^{-1}$

• Defining $S_0 = Q_{0,0} + S_1 Q_{1,0}$, equation (3) becomes

$$\underline{\pi}_0 \mathcal{S}_0 = \underline{0}_{n_1}.\tag{8}$$

・ロト・日本・モン・モン・ ヨー つへで

Kevin Granville & Steve Drekic

On a 2-class Polling Model...

Kevin Granville & Steve Drekic

Introduction and Preliminaries

Determination of the Steady-state Probabilities

Determination of the Waiting Time Distribution

Numerical Analysis

Concluding Remarks ■ Since all probabilities sum to 1, we must have that

$$\underline{\pi}_{0}\underline{e}_{n_{1}}' + \underline{\pi}_{0}\mathcal{S}_{1}\underline{e}_{n_{2}}' + \underline{\pi}_{0}\mathcal{S}_{1}\mathcal{S}_{2}\underline{e}_{n_{2}}' + \dots + \underline{\pi}_{0}\mathcal{S}_{1}\mathcal{S}_{2}\cdots\mathcal{S}_{b_{1}}\underline{e}_{n_{2}}' = 1.$$
(9)

 \blacksquare Factoring out $\underline{\pi}_0$ and defining the column vector

$$\underline{u}' = \underline{e}'_{n_1} + \sum_{m=1}^{b_1} \prod_{j=1}^m S_j \underline{e}'_{n_2},$$

equations (8) and (9) give rise to the following system of linear equations which must be solved to determine $\underline{\pi}_0$:

$$\underline{\pi}_{0} \begin{bmatrix} \mathcal{S}_{0} & \underline{u}' \end{bmatrix} = (\underline{0}_{n_{1}}, 1).$$
(10)

◆□ > ◆□ > ◆臣 > ◆臣 > 三臣 - のへで

In equation (10), $(\underline{0}_{n_1}, 1)$ represents the concatenated row vector of size $n_1 + 1$.

Kevin Granville & Steve Drekic

On a 2-class Polling Model...

Kevin Granville & Steve Drekic

Introduction and Preliminaries

Determination of the Steady-state Probabilities

Determination of the Waiting Time Distribution

Numerical Analysis

Concluding Remarks

- Once $\underline{\pi}_0$ is determined, $\underline{\pi}_m, m \ge 1$, is obtained via equation (7).
- Having calculated the steady-state probabilities, the blocking probabilities for each class can be defined:

$$P_{b_{1},\bullet} = \sum_{j=0}^{b_{2}} P_{b_{1},j}$$
$$P_{\bullet,b_{2}} = \sum_{m=0}^{b_{1}} P_{m,b_{2}}$$

- These correspond to the probabilities of a class-1 or class-2 customer being turned away at entry (and subsequently lost) due to their class queue being full.
- These values are particularly useful in selecting buffer sizes *b*₁ and *b*₂ so as to ensure negligible blocking probabilities are obtained for both queues.

Kevin Granville & Steve Drekic

On a 2-class Polling Model...

On a 2-class Polling Model...

Kevin Granville & Steve Drekic

Introduction and Preliminaries

Determination of the Steady-state Probabilities

Determination of the Waiting Time Distribution

Numerical Analysis

Concluding Remarks

- For i = 1, 2, let W_i represent the duration of time from the (successful) arrival of an arbitrary class-*i* customer to the system until the server is reached, referred to as the *nominal* class-*i* waiting time.
- Without loss of generality, we focus our analysis only on *W*₁ as the characteristics of the two queues are essentially indifferent.
- Define the modified steady-state probabilities

$$\phi_{0,0,l,0} = \frac{\pi_{0,0,l,0}}{1 - P_{b_1,\bullet}} \text{ and } \phi_{m,n,l,y} = \frac{\pi_{m,n,l,y}}{1 - P_{b_1,\bullet}},$$

where $m = 1, 2, ..., b_1 - 1$, $n = 1, 2, ..., b_2$, and the components I and y are as defined in equations (1) and (2), respectively.

Kevin Granville & Steve Drekic

On a 2-class Polling Model...

On a 2-class Polling Model...

Kevin Granville & Steve Drekic

Introduction and Preliminaries

Determination of the Steady-state Probabilities

Determination of the Waiting Time Distribution

Numerical Analysis

Concluding Remarks Several row vectors are required in the subsequent analysis such as:

$$\underline{\phi}_{0,n} = \frac{\underline{\pi}_{0,n}}{1 - P_{b_1,\bullet}}, \ 1 \le n \le b_2 \,,$$

$$\underline{\phi}_{m,0} = \frac{\underline{\pi}_{m,0}}{1 - P_{b_1,\bullet}}, \ 1 \le m \le b_1 - 1,$$

$$\underline{\phi}_{m,n} = \frac{\underline{\pi}_{m,n}}{1 - P_{b_1,\bullet}}, \ 1 \le m \le b_1 - 1, 1 \le n \le b_2.$$

■ Furthermore, let

$$\underline{\phi}_{0} = (\phi_{0,0,k_{1}+k_{2}+1,0},\phi_{0,0,k_{1}+k_{2}+2,0},\underline{\phi}_{0,1},\underline{\phi}_{0,2},\ldots,\underline{\phi}_{0,b_{2}})$$

and

$$\underline{\phi}_m = (\underline{\phi}_{m,0}, \underline{\phi}_{m,1}, \dots, \underline{\phi}_{m,b_2}), \ m = 1, 2, \dots, b_1 - 1.$$

Kevin Granville & Steve Drekic

On a 2-class Polling Model...

On a 2-class Polling Model...

Kevin Granville & Steve Drekic

Introduction and Preliminaries

Determination of the Steady-state Probabilities

Determination of the Waiting Time Distribution

Numerical Analysis

Concluding Remarks By constructing

$$\underline{\Phi} = (\underline{\phi}_{b_1-1}, \underline{\phi}_{b_1-2}, \dots, \underline{\phi}_1, \underline{\phi}_0)$$
(11)

to be the concatenated row vector of dimension

$$\ell = (b_1 - 1)n_2 + n_1, \tag{12}$$

990

we note that $\underline{\Phi} \underline{e}'_{\ell} = 1$.

- Upon successful entry into one of the ℓ possible busy states, the *PASTA* property ensures that our Poisson-arriving class-1 customer finds the system in state (m, n, l, y) with probability $\phi_{m,n,l,y}$.
- For now, we assume that the target class-1 customer is not subject to reneging.
- While waiting in the class-1 queue, the number of customers in the class-2 queue potentially changes, as well as the indicator on the server which identifies how many customers have completed service in the active serving queue.

Kevin Granville & Steve Drekic

On a 2-class Polling Model...

Kevin Granville & Steve Drekic

Introduction and Preliminaries

Determination of the Steady-state Probabilities

Determination of the Waiting Time Distribution

Numerical Analysis

Concluding Remarks

- As the number of customers in the class-1 queue changes, the ones arriving later have no impact on the waiting time of the target class-1 customer.
- If we effectively think of the arrival rate for the class-1 queue to be equal to 0, the distribution of W_1 can be modelled as the distribution of the time to absorption in a Markov chain with infinitesimal generator of the form

$$\left[\begin{array}{cc} \mathcal{R} & -\mathcal{R}\underline{e}'_{\ell} \\ \underline{0}_{\ell} & 0 \end{array}\right],$$

where

Kevin Granville & Steve Drekic

On a 2-class Polling Model...

Kevin Granville & Steve Drekic

Introduction and Preliminaries

Determination of the Steady-state Probabilities

Determination of the Waiting Time Distribution

Numerical Analysis

Concluding Remarks In equation (13), Q_{2,1}, Q_{3,2},..., Q_{b1-1,b1-2} are the same matrices defined earlier and Q̃_{m,m} = Q_{m,m} + λ₁I_{n2}, m = 1, 2, ..., b₁ − 1.
 In addition,

On a 2-class Polling Model...

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● □ ● ○○○

Numerical Analysis

Concluding Remarks

0 2 ... $b_2 - 1$ b_2 $\begin{bmatrix} -(\lambda_2 l_2 + V - V_1) & \begin{bmatrix} \mathbf{0} \\ \underline{e}'_{k_2} \underline{e}_{2,2} \otimes \underline{S}'_{0,2} \\ \alpha_2 l_2 \end{bmatrix} \quad \tilde{\Delta}$ 0 ... 0 $\lambda_2 I_2$ 0 0 $\lambda_2 I_{z_1}$ $\tilde{\Delta}_1$ 1 0 0 $ilde{\Delta}_2$. 2 Γ2 0 • 0 $\begin{array}{cccc} \mathbf{0} & \dots & \tilde{\Delta}_{b_2-1} \\ \mathbf{0} & \dots & \Gamma_{b_2} \end{array}$ $b_2 - 1$ $\lambda_2 I_{z_1}$ 0 b_2

where $\tilde{\Delta}_i = \Delta_i + \text{diag}(\lambda_1 I_{k_2 s_2}, \lambda_1 I_2 - V_2).$

Kevin Granville & Steve Drekic

Actual Delay Distribution

On a 2-class Polling Model...

Kevin Granville & Steve Drekic

Introduction and Preliminaries

Determination of the Steady-state Probabilities

Determination of the Waiting Time Distribution

Numerical Analysis

Concluding Remarks • The time to absorption distribution of such a Markov chain has received extensive attention in the literature, and it is well-known that the cumulative distribution function of W_1 , denoted by $F_1(\omega)$, is given by

$$F_1(\omega) = 1 - \underline{\Phi} \exp{\{\mathcal{R}\omega\}} \underline{e}'_{\ell}, \ \omega \ge 0,$$

which is of phase-type form.

- To incorporate the reneging behaviour of our target class-1 customer, define W_1^* to be the *actual* class-1 delay (i.e., the arriving class-1 customer's total time spent in the system prior to *successfully* entering service).
- Clearly, $G_1(\omega) = \Pr(W_1^* \le \omega) = \Pr(W_1 \le \omega \mid W_1 \le R_1)$, where R_1 denotes an exponentially distributed random variable, independent of W_1 , with rate α_1 .
- Making use of fundamental matrix algebraic techniques, the following expressions for $G_1(\omega)$ and the moments of W_1^* are obtained:

Kevin Granville & Steve Drekic

On a 2-class Polling Model...

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□

Actual Delay Distribution

On a 2-class Polling Model...

Kevin Granville & Steve Drekic

Introduction and Preliminaries

Determination of the Steady-state Probabilities

Determination of the Waiting Time Distribution

Numerical Analysis

Concluding Remarks

$$\begin{split} G_1(\omega) &= 1 - \Pr(W_1 > \omega \mid W_1 \leq R_1) \\ &= 1 - \frac{\Pr(\omega < W_1 \leq R_1)}{\Pr(W_1 \leq R_1)} \\ &= 1 - \frac{\int_{\omega}^{\infty} \Pr(W_1 > \omega) \alpha_1 e^{-\alpha_1 x} dx - \int_{\omega}^{\infty} \Pr(W_1 > x) \alpha_1 e^{-\alpha_1 x} dx}{1 - \int_{0}^{\infty} \Pr(W_1 > x) \alpha_1 e^{-\alpha_1 x} dx} \\ &= 1 - \frac{\Phi \left[I_{\ell} - \alpha_1 (\alpha_1 I_{\ell} - \mathcal{R})^{-1} \right] \exp \left\{ \mathcal{R} \omega \right\} \underline{e}_{\ell}^{\prime} e^{-\alpha_1 \omega}}{1 - \alpha_1 \underline{\Phi} (\alpha_1 I_{\ell} - \mathcal{R})^{-1} \underline{e}_{\ell}^{\prime}}, \ \omega \ge 0, \end{split}$$

and

$$\mathsf{E}[W_1^{*r}] = \frac{r!\underline{\Phi}\left[I_\ell - \alpha_1(\alpha_1I_\ell - \mathcal{R})^{-1}\right](\alpha_1I_\ell - \mathcal{R})^{-r}\underline{e}'_\ell}{1 - \alpha_1\underline{\Phi}(\alpha_1I_\ell - \mathcal{R})^{-1}\underline{e}'_\ell}, \ r = 1, 2, \dots$$

Kevin Granville & Steve Drekic

On a 2-class Polling Model...

Total Time Spent Waiting In The System

On a 2-class Polling Model...

Kevin Granville & Steve Drekic

Introduction and Preliminaries

Determination of the Steady-state Probabilities

Determination of the Waiting Time Distribution

Numerical Analysis

Concluding Remarks

- We investigate the selection of parameters *k*₁ and *k*₂ in order to optimize the overall system, by way of minimizing a specific cost function.
 - The total time a class-1 customer actually spends waiting in the system is

$$W_1^{\#} = \min\{W_1, R_1\} \sim PH(\underline{\Phi}_1, \mathcal{R}_1 - \alpha_1 I_{\ell_1}),$$

where $\underline{\Phi}_1$, ℓ_1 , and \mathcal{R}_1 are given by equations (11), (12), and (13), respectively.

■ Parameters <u>Φ</u>₂, *ℓ*₂, and *R*₂ can be obtained in an analogous fashion to be used in the characterization of the distribution of *W*₂[#] = min{*W*₂, *R*₂}.

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ 目 - つへぐ

Kevin Granville & Steve Drekic On

The Cost Function

On a 2-class Polling Model...

Kevin Granville & Steve Drekic

Introduction and Preliminaries

Determination of the Steady-state Probabilities

Determination of the Waiting Time Distribution

Numerical Analysis

Concluding Remarks ■ We generalize the cost function of Borst, Boxma & Levy (1995) to get

$$Cost = Cost_1 + Cost_2$$
,

where

$$\mathsf{Cost}_i = c_i \lambda_i \mathsf{E}[W_i^{\#}] + r_i \lambda_i \mathsf{Pr}(R_i < W_i),$$

and cost parameters c_i and r_i are non-negative constants.
It is straightforward to obtain:

$$\mathsf{E}[W_1^{\#}] = \underline{\Phi}(\alpha_1 I_{\ell_1} - \mathcal{R}_1)^{-1} \underline{e}'_{\ell_1},$$

$$\mathsf{Pr}(R_1 < W_1) = \alpha_1 \underline{\Phi}(\alpha_1 I_{\ell_1} - \mathcal{R}_1)^{-1} \underline{e}'_{\ell_1} = \alpha_1 \mathsf{E}[W_1^{\#}].$$

Kevin Granville & Steve Drekic

Optimization Problem

On a 2-class Polling Model...

Kevin Granville & Steve Drekic

Introduction and Preliminaries

Determination of the Steady-state Probabilities

Determination of the Waiting Time Distribution

Numerical Analysis

Concluding Remarks

- We consider a constraint on the total number of services in a cycle namely, $k_1 + k_2 \le 12$.
- Three possible reneging rates were used for both classes:

 $\alpha_i \in \{0.025, 0.05, 0.25\}.$

- Three service time distributions were considered: Exponential [Exp], Hyperexponential [H₂], and Erlang [E₃].
- Each distribution has the same mean, but the H₂ distribution has 1000 times the variance of the Exp distribution, which has 3 times the variance of the E₃ distribution.
- Case 1: arrival rates $\lambda_1 = \lambda_2 = 0.75$, switchover rates $v_1 = v_2 = 1/0.1$, and mean service times of 0.9 for class 1 and 0.1 for class 2.
- Case 2: arrival rates $\lambda_1 = 0.5$, $\lambda_2 = 0.25$, switchover rates $v_1 = 1/0.1$, $v_2 = 1/0.2$, and mean service times of 1 for both classes.
- In both cases, we set buffer sizes of $b_1 = b_2 = 20$.

Kevin Granville & Steve Drekic On a 2-class Polling Model...

▲□▶▲□▶▲□▶▲□▶ ▲□▶ ▲□

On a 2-class Polling Model...

Kevin Granville & Steve Drekic

Introduction and Preliminaries

Determination of the Steady-state Probabilities

Determination of the Waiting Time Distribution

Numerical Analysis

Concluding Remarks

Rene	Reneging		Service Time Distributions								
Ra	ites	(Exp, Exp)		(Exp, H_2)		(Exp, E ₃)		(Exp, Exp)			
α_1	α_2	(k_1, k_2)	Cost	(k_1, k_2)	Cost	(k_1, k_2)	Cost	(k_1, k_2)	Cost		
0.025	0.025	(3, 9)	4.3398	(3, 9)	6.2866	(3, 9)	4.3281	(3, 9)	6.9361		
	0.05	(4, 8)	4.2581	(3, 9)	5.9977	(4, 8)	4.2468	(2, 10)	7.7429		
	0.25	(7, 5)	3.7352	(9, 3)	4.8325	(7, 5)	3.7269	(2, 10)	11.9875		
0.05	0.025	(3, 9)	3.6482	(3, 9)	5.2460	(3, 9)	3.6386	(3, 9)	7.1422		
	0.05	(3, 9)	3.5947	(3, 9)	4.9824	(3, 9)	3.5855	(2, 10)	7.8847		
	0.25	(6, 6)	3.2543	(6, 6)	4.0882	(6, 6)	3.2470	(1, 11)	11.9519		
0.25	0.025	(2, 10)	2.1520	(2, 10)	3.0167	(2, 10)	2.1464	(3, 9)	9.0264		
	0.05	(2, 10)	2.1334	(2, 10)	2.8169	(2, 10)	2.1279	(3, 9)	9.7272		
	0.25	(2, 10)	2.0230	(2, 10)	2.2667	(2, 10)	2.0183	(1, 11)	13.3357		
		(H ₂ ,	Exp)	(H ₂ ,	H ₂)	(H ₂ ,	E ₃)	(H ₂ ,	H ₂)		
α1	α_2	$(H_2, (k_1, k_2))$	Exp) Cost	$(H_2, (k_1, k_2))$	H ₂) Cost	$(H_2, (k_1, k_2))$	E ₃) Cost	$(H_2, (k_1, k_2))$	H ₂) Cost		
α ₁ 0.025	α ₂ 0.025	$(H_2, (k_1, k_2))$ (4, 8)	Exp) Cost 20.3486	$(H_2, (k_1, k_2))$ (3, 9)	H ₂) Cost 21.7547	$(H_2, (k_1, k_2))$ (4, 8)	E ₃) Cost 20.3441	$(H_2, (k_1, k_2)) \\ (3, 9)$	H ₂) Cost 35.8657		
α ₁ 0.025	α ₂ 0.025 0.05	$(H_2, (k_1, k_2)) \\ (4, 8) \\ (5, 7)$	Exp) Cost 20.3486 18.2711	$(H_2, (k_1, k_2))$ (3, 9) (4, 8)	H ₂) Cost 21.7547 19.5065	$(H_2, (k_1, k_2))$ (4, 8) (5, 7)	E ₃) Cost 20.3441 18.2666	$(H_2, (k_1, k_2)) \\ (3, 9) \\ (3, 9) \\ (3, 9)$	H ₂) Cost 35.8657 36.3322		
α ₁ 0.025	α ₂ 0.025 0.05 0.25	$(H_2, (k_1, k_2))$ (4, 8) (5, 7) (8, 4)	Exp) Cost 20.3486 18.2711 14.6158	$(H_2, (k_1, k_2))$ (3, 9) (4, 8) (9, 3)	H ₂) Cost 21.7547 19.5065 15.5758	$(H_2, (k_1, k_2))$ $(4, 8)$ $(5, 7)$ $(8, 4)$	E ₃) Cost 20.3441 18.2666 14.6114	$(H_2, (k_1, k_2))$ (3, 9) (3, 9) (2, 10)	H ₂) Cost 35.8657 36.3322 33.8738		
α ₁ 0.025 0.05	$lpha_2$ 0.025 0.05 0.25 0.025	$(H_2, (k_1, k_2))$ $(4, 8)$ $(5, 7)$ $(8, 4)$ $(3, 9)$	Exp) Cost 20.3486 18.2711 14.6158 16.4205	$(H_2, (k_1, k_2))$ (3, 9) (4, 8) (9, 3) (2, 10)	H ₂) Cost 21.7547 19.5065 15.5758 17.4343	$(H_2, (k_1, k_2))$ $(4, 8)$ $(5, 7)$ $(8, 4)$ $(3, 9)$	E ₃) Cost 20.3441 18.2666 14.6114 16.4171	$(H_2, (k_1, k_2))$ (3, 9) (3, 9) (2, 10) (2, 10)	H ₂) Cost 35.8657 36.3322 33.8738 34.1935		
α_1 0.025 0.05	$\begin{array}{c} \alpha_2 \\ 0.025 \\ 0.05 \\ 0.25 \\ 0.025 \\ 0.025 \\ 0.05 \end{array}$	$(H_2, (k_1, k_2))$ $(4, 8)$ $(5, 7)$ $(8, 4)$ $(3, 9)$ $(4, 8)$	Exp) Cost 20.3486 18.2711 14.6158 16.4205 14.3710	$(H_2, (k_1, k_2)) \\ (k_1, k_2) \\ (3, 9) \\ (4, 8) \\ (9, 3) \\ (2, 10) \\ (3, 9) \\ (2, 10) \\ (3, 9) \\ (3, 10$	H ₂) Cost 21.7547 19.5065 15.5758 17.4343 15.2235	$(H_2, (k_1, k_2))$ $(4, 8)$ $(5, 7)$ $(8, 4)$ $(3, 9)$ $(4, 8)$	E ₃) Cost 20.3441 18.2666 14.6114 16.4171 14.3676	$\begin{array}{c c} (H_2, \\ \hline (k_1, k_2) \\ (3, 9) \\ (3, 9) \\ (2, 10) \\ (2, 10) \\ (3, 9) \end{array}$	H ₂) Cost 35.8657 36.3322 33.8738 34.1935 34.6786		
	$\begin{array}{c} \alpha_2 \\ 0.025 \\ 0.05 \\ 0.25 \\ 0.025 \\ 0.025 \\ 0.05 \\ 0.25 \end{array}$	$\begin{array}{c} (H_2, \\ (k_1, k_2) \\ (4, 8) \\ (5, 7) \\ (8, 4) \\ (3, 9) \\ (4, 8) \\ (7, 5) \end{array}$	Exp) Cost 20.3486 18.2711 14.6158 16.4205 14.3710 10.7526	$(H_2, (k_1, k_2)) \\ (3, 9) \\ (4, 8) \\ (9, 3) \\ (2, 10) \\ (3, 9) \\ (8, 4) \\ (12)$	H ₂) Cost 21.7547 19.5065 15.5758 17.4343 15.2235 11.3615	$(H_2, (k_1, k_2)) \\ (k_1, k_2) \\ (4, 8) \\ (5, 7) \\ (8, 4) \\ (3, 9) \\ (4, 8) \\ (7, 5) \\ (7, $	E ₃) Cost 20.3441 18.2666 14.6114 16.4171 14.3676 10.7490	$(H_2, (k_1, k_2)) \\ (k_1, k_2) \\ (3, 9) \\ (2, 10) \\ (2, 10) \\ (2, 10) \\ (3, 9) \\ (2, 10) \\ (2, 10) \\ (3,$	H ₂) Cost 35.8657 36.3322 33.8738 34.1935 34.6786 32.2619		
$\begin{array}{c} \alpha_1 \\ 0.025 \\ 0.05 \\ 0.25 \end{array}$	$\begin{array}{c} \alpha_2 \\ 0.025 \\ 0.05 \\ 0.25 \\ 0.025 \\ 0.05 \\ 0.25 \\ 0.25 \\ 0.025 \\ \end{array}$	$\begin{array}{c} (H_2, \\ (k_1, k_2) \\ (4, 8) \\ (5, 7) \\ (8, 4) \\ (3, 9) \\ (4, 8) \\ (7, 5) \\ (1, 11) \end{array}$	Exp) Cost 20.3486 18.2711 14.6158 16.4205 14.3710 10.7526 8.8681	$(H_2, (k_1, k_2)) \\ (k_1, k_2) \\ (k_1, k_2) \\ (k_1, k_2) \\ (k_1, k_2) \\ (k_2, k_3) \\ (k_1, k_2) \\ (k_2, k_3) \\ (k_3, k_4) \\ (k_1, k_2) \\ (k_1, k_2) \\ (k_2, k_3) \\ (k_3, k_3) \\ (k_1, k_2) \\ (k_1, k_2) \\ (k_2, k_3) \\ (k_3, k_3) \\ (k_1, k_2) \\ (k_3, k_3) \\ (k_1, k_2) \\ (k_1, k_2) \\ (k_2, k_3) \\ (k_3, k_3) \\ (k_1, k_2) \\ (k_1, k_2) \\ (k_1, k_2) \\ (k_2, k_3) \\ (k_1, k_2) \\ (k_1, k_2$	H ₂) Cost 21.7547 19.5065 15.5758 17.4343 15.2235 11.3615 9.4376	$\begin{array}{c c} (H_2, \\ (k_1, k_2) \\ (4, 8) \\ (5, 7) \\ (8, 4) \\ (3, 9) \\ (4, 8) \\ (7, 5) \\ (1, 11) \end{array}$	E ₃) Cost 20.3441 18.2666 14.6114 16.4171 14.3676 10.7490 8.8681	$(H_2, (k_1, k_2)) \\ (k_1, k_2) \\ (3, 9) \\ (2, 10) \\ (2, 10) \\ (2, 10) \\ (3, 9) \\ (2, 10) \\ (3, 9) \\ $	H ₂) Cost 35.8657 36.3322 33.8738 34.1935 34.6786 32.2619 27.1216		
$ \begin{array}{c} \alpha_1 \\ 0.025 \\ 0.05 \\ 0.25 \\ \end{array} $	$\begin{array}{c} \alpha_2 \\ 0.025 \\ 0.05 \\ 0.25 \\ 0.025 \\ 0.05 \\ 0.25 \\ 0.025 \\ 0.025 \\ 0.005 \\ \end{array}$	$\begin{array}{r} ({\sf H}_2,\\ (k_1,k_2)\\ (4,8)\\ (5,7)\\ (8,4)\\ (3,9)\\ (4,8)\\ (7,5)\\ (1,11)\\ (1,11)\end{array}$	Exp) Cost 20.3486 18.2711 14.6158 16.4205 14.3710 10.7526 8.8681 6.9769	$\begin{array}{c} (H_2,\\ (k_1, k_2)\\ (3, 9)\\ (4, 8)\\ (9, 3)\\ (2, 10)\\ (3, 9)\\ (8, 4)\\ (1, 11)\\ (1, 11)\end{array}$	H ₂) Cost 21.7547 19.5065 15.5758 17.4343 15.2235 11.3615 9.4376 7.3890	$\begin{array}{c} (H_{2},\\ (k_{1}, k_{2})\\ (4, 8)\\ (5, 7)\\ (8, 4)\\ (3, 9)\\ (4, 8)\\ (7, 5)\\ (1, 11)\\ (1, 11)\end{array}$	E ₃) Cost 20.3441 18.2666 14.6114 16.4171 14.3676 10.7490 8.8681 6.9756	$\begin{array}{c} (H_2,\\ (k_1, k_2)\\ (3, 9)\\ (2, 10)\\ (2, 10)\\ (2, 10)\\ (3, 9)\\ (2, 10)\\ (3, 9)\\ (3, 9)\\ (3, 9)\end{array}$	H ₂) Cost 35.8657 36.3322 33.8738 34.1935 34.6786 32.2619 27.1216 27.6632		
$ \begin{array}{c} $	$\begin{array}{c} \alpha_2 \\ 0.025 \\ 0.05 \\ 0.25 \\ 0.025 \\ 0.05 \\ 0.25 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.05 \\ 0.25 \end{array}$	$\begin{array}{c} ({\rm H}_2,\\ (k_1,k_2)\\ \hline (4,8)\\ (5,7)\\ (8,4)\\ \hline (3,9)\\ (4,8)\\ (7,5)\\ \hline (1,11)\\ (1,11)\\ (6,6) \end{array}$	Exp) Cost 20.3486 18.2711 14.6158 16.4205 14.3710 10.7526 8.8681 6.9769 3.5293	$\begin{array}{c} (H_2,\\ (k_1,k_2)\\ (3,9)\\ (4,8)\\ (9,3)\\ (2,10)\\ (3,9)\\ (8,4)\\ (1,11)\\ (1,11)\\ (5,7) \end{array}$	H ₂) Cost 21.7547 19.5065 15.5758 17.4343 15.2235 11.3615 9.4376 7.3890 3.7245	$\begin{array}{c} ({\sf H}_2,\\ (k_1,k_2)\\ (4,8)\\ (5,7)\\ (8,4)\\ (3,9)\\ (4,8)\\ (7,5)\\ (1,11)\\ (1,11)\\ (6,6) \end{array}$	$\begin{array}{c} {\sf E}_3 \\ \hline \\ 20.3441 \\ 18.2666 \\ 14.6114 \\ 16.4171 \\ 14.3676 \\ 10.7490 \\ 8.8681 \\ 6.9756 \\ 3.5263 \end{array}$	$\begin{array}{c} ({\rm H}_2,\\ (k_1,k_2)\\ (3,9)\\ (3,9)\\ (2,10)\\ (2,10)\\ (2,10)\\ (3,9)\\ (2,10)\\ (3,9)\\ (3,9)\\ (2,10)\\ \end{array}$	H ₂) Cost 35.8657 36.3322 33.8738 34.1935 34.6786 32.2619 27.1216 27.6632 25.4136		

Table 1: Optimal (k_1, k_2) and minimum cost under Case 1 with $c_1 = 2$, $c_2 = 1$, and $r_1 = 1$, $r_2 = 0.5$ or $r_1 = r_2 = 40$. [$\lambda_1 = \lambda_2 = 0.75$, $v_1 = v_2 = 1/0.1$, service times of 0.9 & 0.1]

Kevin Granville & Steve Drekic

On a 2-class Polling Model...

イロト イロト イヨト イヨト 三日

On a 2-class Polling Model...

Kevin Granville & Steve Drekic

Introduction and Preliminaries

Determination of the Steady-state Probabilities

Determination of the Waiting Time Distribution

Numerical Analysis

Concluding Remarks

Reneging		Service Time Distributions								
Ra	tes	(Exp, Exp)		(Exp, H_2)		(Exp, E ₃)		(Exp, Exp)		
α_1	α_2	(k_1, k_2)	Cost	(k_1, k_2)	Cost	(k_1, k_2)	Cost	(k_1, k_2)	Cost	
0.025	0.025	(10, 2)	2.6649	(10, 2)	7.8090	(10, 2)	2.4761	(10, 2)	4.3972	
	0.05	(11, 1)	2.4083	(11, 1)	6.8184	(11, 1)	2.2577	(9, 3)	4.6890	
	0.25	(11, 1)	1.8357	(11, 1)	5.1854	(11, 1)	1.7432	(8, 4)	5.9054	
0.05	0.025	(10, 2)	2.3812	(9, 3)	5.6575	(10, 2)	2.2247	(10, 2)	4.6660	
	0.05	(10, 2)	2.2030	(10, 2)	4.8100	(10, 2)	2.0669	(10, 2)	4.9625	
	0.25	(11, 1)	1.6934	(11, 1)	3.5890	(11, 1)	1.6127	(8, 4)	6.1953	
0.25	0.025	(6, 6)	1.5047	(5, 7)	2.9877	(6, 6)	1.4353	(11, 1)	6.4562	
	0.05	(7, 5)	1.4550	(6, 6)	2.2615	(7, 5)	1.3907	(10, 2)	6.7245	
	0.25	(11, 1)	1.2323	(10, 2)	1.5454	(11, 1)	1.1879	(8, 4)	7.8861	
		(H ₂ ,	Exp)	(H ₂ ,	H ₂)	(H ₂ ,	E ₃)	(H ₂ ,	H ₂)	
α_1	α_2	(k_1, k_2)	Cost	(k_1, k_2)	Cost	(k_1, k_2)	Cost	(k_1, k_2)	Cost	
0.025	0.025	(11, 1)	11.9085	(10, 2)	15.6149	(11, 1)	11.8306	(10, 2)	24.8349	
	0.05	(11, 1)	10.6576	(11, 1)	13.9119	(11, 1)	10.5843	(10, 2)	23.2350	
	0.25	(11, 1)	9.5631	(11, 1)	12.3096	(11, 1)	9.5085	(9, 3)	21.9772	
0.05	0.025	(10, 2)	8.2620	(9, 3)	10.5575	(10, 2)	8.1927	(9, 3)	20.6821	
	0.05	(11, 1)	7.0367	(10, 2)	8.9056	(11, 1)	6.9730	(9, 3)	19.1262	
	0.25	(11, 1)	5.9644	(11, 1)	7.4260	(11, 1)	5.9166	(8, 4)	17.9732	
0.25	0.025	(4, 8)	3.9129	(4, 8)	5.0239	(4, 8)	3.8846	(8, 4)	15.7298	
	0.05	(9, 3)	2.8207	(6, 6)	3.4547	(9, 3)	2.7818	(8, 4)	14.2528	
	0.25	(11 1)	1 0522	(0 3)	2 1 2 3 7	(11 1)	1 8108	(7 5)	13 2301	
	0.25	(11, 1)	1.0000	(3, 3)	2.1251	(11, 1)	1.0190	(1, 3)	15.2501	

Table 2: Optimal (k_1, k_2) and minimum cost under Case 2 with $c_1 = 2$, $c_2 = 1$, and $r_1 = 1$, $r_2 = 0.5$ or $r_1 = r_2 = 40$. [$\lambda_1 = 0.5, \lambda_2 = 0.25, v_1 = 1/0.1, v_2 = 1/0.2$, service times of 1]

Kevin Granville & Steve Drekic

On a 2-class Polling Model...

イロト イヨト イヨト イヨト 三日

Figure 1: Plots of k_1 vs. c_1 under both cases with Exp service times, $c_2 = 2$, $r_1 = r_2 = 1$, and four combinations of reneging rates.

Kevin Granville & Steve Drekic

On a 2-class Polling Model...

イロト イヨト イヨト イヨト

Ξ

Figure 2: Plots of $G_i(\omega)$ vs. ω for both classes under Case 1 with $\alpha_1 = 0.025$, $\alpha_2 = 0.25$, and either Exp or H₂ service time distributions, at optimal k_i 's from Table 1.

Kevin Granville & Steve Drekic

On a 2-class Polling Model...

イロト イロト イヨト イヨト

Ξ

Concluding Remarks

On a 2-class Polling Model...

Kevin Granville & Steve Drekic

Introduction and Preliminaries

Determination of the Steady-state Probabilities

Determination of the Waiting Time Distribution

Numerical Analysis

Concluding Remarks

- We modelled an *M*/*PH*/1-type polling model with 2 classes and exponential switchover/reneging times operating under a *k_i*-limited service discipline.
- We were able to obtain the steady-state probabilities as well as the nominal waiting time and actual delay distributions for each class.
- Under a variety of scenarios, we found optimal (k₁, k₂) values that minimize (subject to a particular constraint) a defined cost function depending on the expected time waiting in the system and the probability of reneging.

《ㅁ》《圊》《돋》《돋》 듣 '오�?

Kevin Granville & Steve Drekic On a 2-class Polling Model...

Future Extensions

On a 2-class Polling Model...

Kevin Granville & Steve Drekic

Introduction and Preliminaries

Determination of the Steady-state Probabilities

Determination of the Waiting Time Distribution

Numerical Analysis

Concluding Remarks ■ Queue length dependent reneging rates.

- Phase-type renewal process for arrivals.
- (2-dimensional) phase-type reneging time distributions.
- Different service disciplines.
- Multiple servers.
- A third class of customers.

<ロ> < 団> < 団> < 三> < 三> < 三</p>

Kevin Granville & Steve Drekic On a

On a 2-class Polling Model...

Kevin Granville & Steve Drekic

Introduction and Preliminaries

Determination of the Steady-state Probabilities

Determination of the Waiting Time Distribution

Numerical Analysis

Concluding Remarks

Questions?

Kevin Granville & Steve Drekic On a 2-class Polling Model...

<□> <@> < ≥> < ≥> < ≥</p>

On a 2-class Polling Model Kevin Granville & Steve Drekic Introduction and Preliminaries Determination of the Steady-state Probabilities	0 1 $Q_{1,0} = 2$ \vdots b_2	$ \begin{pmatrix} 0 \\ $	$ \begin{bmatrix} 1 \\ 0 \\ \begin{bmatrix} \underline{e}'_{k_1} \underline{e}_{z_1, z_1 - 1} \otimes \underline{S}'_{0, 1} \\ \alpha_1 / z_1 \end{bmatrix} $ $ 0 \\ \vdots \\ 0 \\ 0 $	$\begin{array}{c} 2\\ 0\\ 0\\ \begin{bmatrix} \underline{e}'_{k_1}\underline{e}_{z_1,z_1-1}\otimes \underline{S}'_{0,1}\\ & \ddots\\ & \ddots\\ & 0 \end{bmatrix}$	···· ···· ··· ··· ···	b_2 0 0 \vdots $e'_{k_1}e_{z_1,z_1-1}\otimes \underline{S}'_{0,1}$])
Determination of the Waiting Time Distribution Numerical Analysis Concluding Remarks	Q _{0,1} =	$ \begin{array}{c} 0\\ 0\\ 1\\ =2\\ \vdots\\ b_2 \end{array} $ $ \begin{array}{c} 0\\ 0\\ 0\\ \vdots\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	$ \begin{array}{c} 1 \\ \lambda_1 l_2 \end{array} \right] \begin{array}{c} 0 \\ \left[\begin{array}{c} 0'_{z_1} 0_{k_1 s_1} \\ \end{array} \right. \\ \lambda_1 l_{z_1} \\ 0 \\ \vdots \\ 0 \end{array} \right] $	$\begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} \underline{0}'_{z_1} \underline{0}_{k_1 s_1} & \lambda_1 I_{z_1} \\ & \ddots \\ 0 \end{bmatrix}$] [*] . [b_{2} 0 0 \vdots $0'_{z_{1}} 0_{k_{1}s_{1}} \lambda_{1}l_{z_{1}}$ 0) ج ٩٩.0

Kevin Granville & Steve Drekic