On a 2-class Polling Model with Class-dependent Reneging, Switchover Times, and Phase-type Service

Kevin Granville \& Steve Drekic
Department of Statistics \& Actuarial Science
University of Waterloo
MAM $9 \quad$ June 28-30, 2016

On a 2-class

1 Introduction and Preliminaries

2 Determination of the Steady-state Probabilities

3 Determination of the Waiting Time Distribution

4 Numerical Analysis

5 Concluding Remarks

Polling Models

On a 2-class Polling Model...

Kevin

 Granville \& Steve Drekic
Introduction

 and PreliminariesDetermination of the Waiting Time Distribution

- A typical polling model consists of multiple queues attended by a single server in cyclic order.
- Due to its wide use in the areas of public health systems, transportation, and communication and computer networks, polling models have drawn considerable attention over the past fifty years.

Notable References

- M.A.A. Boon, "Polling Models: From Theory to Traffic Intersections". PhD Thesis, Eindhoven: Technische Universiteit Eindhoven, 190 pages, 2011.
■ H. Levy \& M. Sidi, "Polling systems: applications, modeling and optimization". IEEE Transactions on Communications, Vol. COM-38, No. 10, pp. 1750-1760, 1990.
- H. Takagi, "Queueing analysis of polling models". ACM Computing Surveys, Vol. 20, No. 1, pp. 5-28, 1988.
- V.M. Vishnevskii \& O.V. Semenova, "Mathematical methods to study the polling systems". Automation and Remote Control, Vol. 67, No. 2, pp. 173-220, 2006.
- S. Borst, O. Boxma \& H. Levy, "The use of service limits for efficient operation of multistation single-medium communication systems", IEEE/ACM Transactions on Networking, Vol. 3, No. 5, pp. 602-612, 1995.

Proposed Queueing Model

On a 2-class
Polling
Model...

\quad Kevin
Granville \&
Steve Drekic

■ Poisson arrivals with rates λ_{i}

- Continuous phase-type service times
- FCFS, k_{i}-limited service discipline

■ Exponential switchover times with rates v_{i}
■ Exponential reneging times with rates α_{i}

- All distributions are independent
- Finite buffer sizes $b_{i}<\infty$

Proposed Queueing Model

On a 2-class
Polling
Model...

Kevin

 Granville \& Steve Drekic
Introduction

 and Preliminaries■ Service times for class- i customers, $i=1,2$, are assumed to follow a continuous phase-type distribution (of dimension s_{i}), with probability density function of the form

$$
f_{i}(\omega)=\underline{\beta}_{i} \exp \left\{S_{i} \omega\right\} \underline{S}_{0, i}^{\prime}, \omega>0
$$

■ Initial probability row vector is $\underline{\beta}_{i}=\left(\beta_{i, 1}, \beta_{i, 2}, \ldots, \beta_{i, s_{i}}\right), \sum_{j=1}^{s_{i}} \beta_{i, j}=1$.

- S_{i} is an $\mathrm{s}_{i} \times \mathrm{s}_{i}$ rate matrix and $\underline{S}_{0, i}^{\prime}=-S_{i} \underline{e}_{\mathrm{s}_{i}}^{\prime}$, where $\underline{e}_{\mathrm{s}_{i}}^{\prime}$ is a column vector of s_{i} ones.

Steady-state Probabilities

On a 2-class

Polling
Model...
Kevin Granville \& Steve Drekic

Introduction and Preliminaries

- For $i=1,2$, let X_{i} represent the number of class- i customers present in the system, so that $0 \leq X_{i} \leq b_{i}$.
- Our first objective is to determine

$$
\left\{P_{m, n} ; m=0,1, \ldots, b_{1}, n=0,1, \ldots, b_{2}\right\}
$$

where $P_{m, n}$ denotes the steady-state joint probability that $X_{1}=m$ and $X_{2}=n$.

- Define an associated quantity $\pi_{m, n, l, y}$ representing the steady-state joint probability that $X_{1}=m, X_{2}=n$, the server being in position I, and the current phase of service being y (with $y=0$ indicating that the system is in switchover mode).

Steady-state Probabilities

- Dependent on m and n, component $/$ takes on the following values:

$$
\begin{array}{rl}
m=n=0 \Longrightarrow & I= \\
k_{1}+k_{2}+1, k_{1}+k_{2}+2, \\
m \neq 0 \text { and } n=0 \Longrightarrow & \tag{1}\\
m=0 \text { and } n \neq 0 \Longrightarrow & 1,2, \ldots, k_{1}, k_{1}+k_{2}+1, k_{1}+k_{2}+2, \\
m \neq 0 \text { and } n \neq 0 \Longrightarrow & k_{1}+1, k_{1}+2, \ldots, k_{1}+k_{2}, k_{1}+k_{2}+1, \\
& k_{1}+k_{2}+2, \\
m & I=\begin{array}{l}
1,2, \ldots, k_{1}, k_{1}+1, k_{1}+2, \ldots, k_{1}+k_{2}, \\
\\
\\
k_{1}+k_{2}+1, k_{1}+k_{2}+2 .
\end{array}
\end{array}
$$

- When $I=1,2, \ldots, k_{1}$, the server is serving its $I^{t h}$ customer from the class-1 queue.
- When $I=k_{1}+1, k_{1}+2, \ldots, k_{1}+k_{2}$, the server is serving its $\left(I-k_{1}\right)^{t h}$ customer from the class-2 queue.
- When $I=k_{1}+k_{2}+i$, the server is conducting a switchover out of the class- i queue, $i=1,2$.

Steady-state Probabilities

On a 2-class
Polling
Model...
Kevin
Granville \&
Steve Drekic

Introduction
and
Preliminaries
Determination
of the
Steady-state
Probabilities
Determination
of the
Waiting Time
Distribution
Numerical
Analysis
Concluding
Remarks

- Similarly, component y depends on I in the following way:

$$
\begin{align*}
I=1,2, \ldots, k_{1} & \Longrightarrow y=1,2, \ldots, s_{1}, \\
I=k_{1}+1, k_{1}+2, \ldots, k_{1}+k_{2} & \Longrightarrow y=1,2, \ldots, s_{2}, \tag{2}\\
I=k_{1}+k_{2}+1, k_{1}+k_{2}+2 & \Longrightarrow y=0 .
\end{align*}
$$

Steady-state Probabilities

On a 2-class Polling Model...

Kevin Granville \& Steve Drekic

Introduction and
Preliminaries
Determination of the Steady-state Probabilities

Determination of the Waiting Time Distribution

Numerical Analysis
Concluding Remarks

- When $m=n=0$ (i.e., the queue is empty), the system can only be in one of two kinds of switchover modes (as there are no customers to serve in either queue) and so $P_{0,0}=\pi_{0,0, k_{1}+k_{2}+1,0}+\pi_{0,0, k_{1}+k_{2}+2,0}$.
- It follows that

$$
\begin{aligned}
P_{0, n} & =\sum_{l=k_{1}+1}^{k_{1}+k_{2}} \sum_{y=1}^{s_{2}} \pi_{0, n, l, y}+\sum_{l=k_{1}+k_{2}+1}^{k_{1}+k_{2}+2} \pi_{0, n, l, 0}, n \geq 1, \\
P_{m, 0} & =\sum_{l=1}^{k_{1}} \sum_{y=1}^{s_{1}} \pi_{m, 0, l, y}+\sum_{l=k_{1}+k_{2}+1}^{k_{1}+k_{2}+2} \pi_{m, 0, l, 0}, m \geq 1
\end{aligned}
$$

and

$$
P_{m, n}=\sum_{l=1}^{k_{1}} \sum_{y=1}^{s_{1}} \pi_{m, n, l, y}+\sum_{l=k_{1}+1}^{k_{1}+k_{2}} \sum_{y=1}^{s_{2}} \pi_{m, n, l, y}+\sum_{l=k_{1}+k_{2}+1}^{k_{1}+k_{2}+2} \pi_{m, n, l, 0}, m, n \geq 1
$$

Steady-state Probabilities

On a 2-class

Polling
Model...
Kevin Granville \& Steve Drekic

Introduction and
Preliminaries
Determination of the Steady-state Probabilities

Determination of the Waiting Time Distribution

Numerical Analysis

- Define the $0^{t h}$ steady-state probability row vector to be $\underline{\pi}_{0}=\left(\underline{\pi}_{0,0}, \underline{\pi}_{0,1}, \ldots, \underline{\pi}_{0, b_{2}}\right)$, where $\underline{\pi}_{0,0}=\left(\pi_{0,0, k_{1}+k_{2}+1,0}, \pi_{0,0, k_{2}+k_{2}+2,0}\right)$, and $\underline{\pi}_{0, n}, n=1,2, \ldots, b_{2}$, is a row vector of size $z_{1}=k_{2} s_{2}+2$.
- For $m \geq 1$, the $m^{t h}$ steady-state probability row vector is defined as $\underline{\pi}_{m}=\left(\underline{\pi}_{m, 0}, \underline{\pi}_{m, 1}, \ldots, \underline{\pi}_{m, b_{2}}\right)$, where $\underline{\pi}_{m, 0}$ is a row vector of size $k_{1} s_{1}+2$ and $\underline{\pi}_{m, n}, n=1,2, \ldots, b_{2}$, is a row vector of size $z_{2}=k_{1} s_{1}+z_{1}$.
- Referring to X_{1} as the level of the process, we remark that level 0 is comprised of $n_{1}=b_{2} z_{1}+2$ sub-levels, whereas each non-zero level consists of a total of $n_{2}=b_{2} z_{2}+k_{1} s_{1}+2$ sub-levels.

Steady-state Probabilities

On a 2-class
Polling
Model...
Kevin Granville \& Steve Drekic

Introduction and
Preliminaries
Determination of the Steady-state Probabilities

Determination of the Waiting Time Distribution

Numerical
Analysis
Concluding Remarks

■ Let $\underline{\pi}=\left(\underline{\pi}_{0}, \underline{\pi}_{1}, \ldots, \underline{\pi}_{b_{1}}\right)$ be the concatenated steady-state probability (row) vector having a total of $b_{1}+1$ levels.

- To determine $\underline{\pi}_{m}$ for $m \geq 0$, we need to solve $\underline{\tilde{0}}=\underline{\pi} Q$ where Q is the ($n_{1}+b_{1} n_{2}$)-dimensioned infinitesimal generator of the process and $\underline{\tilde{0}}=\left(\underline{0}_{n_{1}}, \underline{0}_{n_{2}}, \ldots, \underline{0}_{n_{2}}\right)$ is an appropriately partitioned row vector (having a total of $b_{1}+1$ levels) such that $\underline{0}_{n_{i}}$ denotes a $1 \times n_{i}$ row vector of zeros.
■ Q is block-structured as a level-dependent QBD process with blocks $Q_{m, j}$ containing all transitions where X_{1} changes from m to j.

	0	1	2	$b_{1}-2$	$b_{1}-1$	b_{1}
0	$\left(Q_{0,0}\right.$	$Q_{0,1}$	0	0	0	0
1	$Q_{1,0}$	$Q_{1,1}$	$Q_{1,2}$	0	0	0
$Q=2$	0	$Q_{2,1}$	$Q_{2,2}$	0	0	0
$:$:		:
$b_{1}-2$	0	0	0	$Q_{b_{1}-2, b_{1}-2}$	$Q_{b_{1}-2, b_{1}-1}$	0
$b_{1}-1$	0	0	0	$Q_{b_{1}-1, b_{1}-2}$	$Q_{b_{1}-1, b_{1}-1}$	$Q_{b_{1}-1, b_{1}}$
b_{1}	(0	0	0	0	$Q_{b_{1}, b_{1}-1}$	$Q_{b_{1}, b_{1}}$

Building Q

On a 2-class

Polling
Model...
Kevin Granville \& Steve Drekic

Introduction and
Preliminaries
Determination of the Steady-state Probabilities

Determination of the Waiting Time Distribution

Numerical Analysis

■ Note that $Q_{1,2}=Q_{2,3}=\cdots=Q_{b_{1}-1, b_{1}}=\lambda_{1} I_{n_{2}}$ where $I_{n_{2}}$ denotes the $n_{2} \times n_{2}$ identity matrix.

- Define $\lambda=\lambda_{1}+\lambda_{2}$.
- Define $\underline{e}_{i, j}$ to be a row vector of length i, with 1 as the $j^{t h}$ entry and zeros everywhere else.
- \otimes denotes the Kronecker product operator, $\delta_{i, j}$ denotes the Kronecker delta function, and the prime symbol, ${ }^{\prime}$, denotes vector transpose.
- Define $\underline{v}=\left(v_{1}, v_{2}\right), V=\operatorname{diag}(\underline{v}), V_{1}=v_{1} \underline{e}_{2,1}^{\prime} \underline{e}_{2,2}, V_{2}=v_{2} \underline{e}_{2,2}^{\prime} \underline{e}_{2,1}$.
- Some select blocks of Q are as follows:

Building Q

On a 2-class
Polling
Model...
Kevin
Granville \&
Steve Drekic

Introduction
and
Preliminaries
Determination
of the
Steady-state
Probabilities
Determination
of the
Waiting Time
Distribution
Numerical
Analysis
Concluding
Remarks

$$
\begin{aligned}
& \Gamma_{j}=\left[\begin{array}{cc}
(j-1) \alpha_{2} I_{k_{2} s_{2}}+U_{2} & \underline{e}_{k_{2}, k_{2}}^{\prime} \frac{e_{2,2}}{j \alpha_{2} I_{2}} \\
\mathbf{0}
\end{array}\right], \quad \underline{S}_{0,2}^{\prime}= \begin{cases}0 & \text { if } k_{i}=1, \\
{\left[\begin{array}{cc}
\underline{0}_{k_{i}-1}^{\prime} & I_{k_{i}-1} \\
0 & \underline{0}_{k_{i}-1}
\end{array}\right] \otimes \underline{s}_{0, i}^{\prime} \underline{\beta}_{i}} & \text { if } k_{i} \geq 2,\end{cases} \\
& \Delta_{j}=\left[\begin{array}{cc}
-I_{k_{2}} \otimes\left(\left(\lambda-\lambda_{2} \delta_{j, b_{2}}+(j-1) \alpha_{2}\right) I_{s_{2}}-S_{2}\right) & 0 \\
\underline{e}_{2,1}^{\prime} \underline{e}_{k_{2}, 1} \otimes v_{1} \underline{\beta}_{2} & -\left(\left(\lambda-\lambda_{2} \delta_{j, b_{2}}+j \alpha_{2}\right) I_{2}+V-v_{2}\right)
\end{array}\right],
\end{aligned}
$$

Building Q

On a 2-class Polling Model...

Kevin Granville \& Steve Drekic

Introduction and
Preliminaries

Determination

 of the Steady-state Probabilities
Determination

of the

Waiting Time Distribution

Numerical

Analysis

Concluding

 Remarks$$
\begin{aligned}
& 0 \begin{array}{llllll}
1 & 2 & b_{2}-1 & b_{2}
\end{array} \\
& {\left[\begin{array}{cc}
{\left[\lambda_{2} I_{k_{1} s_{1}}, \underline{0}_{\left.k_{1} s_{1} \underline{0}_{k_{2} s_{2}}^{\prime}\right]}^{0}\right.} & \mathbf{0} \\
\lambda_{2} I_{2}
\end{array}\right] \quad 0 \quad \cdots \quad 0 \quad 0} \\
& C_{i, 1} \quad \lambda_{2} I_{z} \\
& 0 \quad 0 \\
& C_{i, 2} \\
& 00 \\
& \begin{array}{l}
0 \\
0
\end{array} \\
& \left.\begin{array}{cc}
C_{i, b_{2}-1} & \lambda_{2} I_{z_{2}} \\
B_{b_{2}} & C_{i, b_{2}}
\end{array}\right)
\end{aligned}
$$

$$
B_{j}=\left[\begin{array}{cc}
j \alpha_{2} / l_{k s_{1}} & \mathbf{0} \\
\mathbf{0} & \Gamma_{j}
\end{array}\right],
$$

Building Q

On a 2-class

 Polling Model...
Kevin

Granville \&

 Steve DrekicIntroduction and
Preliminaries

Determination

 of the Steady-state ProbabilitiesDetermination of the Waiting Time Distribution

Numerical

 Analysis
Concluding

 Remarks$$
\begin{aligned}
& \zeta_{x, i, j}=-I_{k_{x}} \otimes\left(\left(\lambda-\lambda_{1} \delta_{i, b_{1}}-\lambda_{2} \delta_{j, b_{2}}+\left(i-\delta_{x, 1}\right) \alpha_{1}+\left(j-\delta_{x, 2}\right) \alpha_{2}\right) I_{s_{x}}-S_{x}\right),
\end{aligned}
$$

Building Q

Calculating $\underline{\pi}$

Kevin Granville \& Steve Drekic

Introduction and
Preliminaries

Determination of the Waiting Time Distribution

■ Level-dependent QBD processes are well-studied in the literature, and it is possible to develop a computational procedure for calculating the steady-state probabilities associated with our model.

- From $\underline{\tilde{0}}=\underline{\pi} Q$, the equilibrium equations in block form are obtained:

$$
\begin{align*}
& \underline{0}_{n_{1}}=\underline{\pi}_{0} Q_{0,0}+\underline{\pi}_{1} Q_{1,0} \tag{3}\\
& \underline{0}_{n_{2}}=\underline{\pi}_{0} Q_{0,1}+\underline{\pi}_{1} Q_{1,1}+\underline{\pi}_{2} Q_{2,1}, \tag{4}\\
& \underline{0}_{n_{2}}=\lambda_{1} \underline{\pi}_{m-1}+\underline{\pi}_{m} Q_{m, m}+\underline{\pi}_{m+1} Q_{m+1, m}, m=2,3, \ldots, b_{1}-1, \tag{5}\\
& \underline{0}_{n_{2}}=\lambda_{1} \underline{\pi}_{b_{1}-1}+\underline{\pi}_{b_{1}} Q_{b_{1}, b_{1}} . \tag{6}
\end{align*}
$$

Calculating $\underline{\pi}$

- Solving equations (4) through (6) inductively yields

$$
\begin{equation*}
\underline{\pi}_{m}=\underline{\pi}_{0} \prod_{j=1}^{m} \mathcal{S}_{j}, m=1,2, \ldots, b_{1} \tag{7}
\end{equation*}
$$

where the set of matrices $\left\{\mathcal{S}_{j} ; j=1,2, \ldots, b_{1}\right\}$ satisfy the recursive relation

$$
\mathcal{S}_{j}=-\lambda_{1}\left(Q_{j, j}+\mathcal{S}_{j+1} Q_{j+1, j}\right)^{-1}, j=2,3, \ldots, b_{1}-1
$$

with

$$
\mathcal{S}_{b_{1}}=-\lambda_{1} Q_{b_{1}, b_{1}}^{-1} \quad \text { and } \quad \mathcal{S}_{1}=-Q_{0,1}\left(Q_{1,1}+\mathcal{S}_{2} Q_{2,1}\right)^{-1}
$$

- Defining $\mathcal{S}_{0}=Q_{0,0}+\mathcal{S}_{1} Q_{1,0}$, equation (3) becomes

$$
\begin{equation*}
\underline{\pi}_{0} \mathcal{S}_{0}=\underline{0}_{n_{1}} . \tag{8}
\end{equation*}
$$

Calculating $\underline{\pi}$

On a 2-class
Polling
Model...
Kevin Granville \& Steve Drekic

Introduction and
Preliminaries

Determination of the Waiting Time Distribution

■ Since all probabilities sum to 1 , we must have that

$$
\begin{equation*}
\underline{\pi}_{0} \underline{e}_{n_{1}}^{\prime}+\underline{\pi}_{0} \mathcal{S}_{1} \underline{e}_{n_{2}}^{\prime}+\underline{\pi}_{0} \mathcal{S}_{1} \mathcal{S}_{2} \underline{e}_{n_{2}}^{\prime}+\cdots+\underline{\pi}_{0} \mathcal{S}_{1} \mathcal{S}_{2} \cdots \mathcal{S}_{b_{1}} \underline{e}_{n_{2}}^{\prime}=1 \tag{9}
\end{equation*}
$$

- Factoring out $\underline{\pi}_{0}$ and defining the column vector

$$
\underline{u}^{\prime}=\underline{e}_{n_{1}}^{\prime}+\sum_{m=1}^{b_{1}} \prod_{j=1}^{m} \mathcal{S}_{j} \underline{e}_{n_{2}}^{\prime}
$$

equations (8) and (9) give rise to the following system of linear equations which must be solved to determine $\underline{\pi}_{0}$:

$$
\underline{\pi}_{0}\left[\begin{array}{ll}
\mathcal{S}_{0} & \underline{u}^{\prime} \tag{10}
\end{array}\right]=\left(\underline{0}_{n_{1}}, 1\right)
$$

■ In equation (10), ($\left.\underline{0}_{n_{1}}, 1\right)$ represents the concatenated row vector of size $n_{1}+1$.

Calculating $\underline{\pi}$

On a 2-class
Polling
Model...
Kevin Granville \& Steve Drekic

Introduction and
Preliminaries
Determination of the Steady-state Probabilities

Determination of the Waiting Time Distribution

Numerical Analysis

- Once $\underline{\pi}_{0}$ is determined, $\underline{\pi}_{m}, m \geq 1$, is obtained via equation (7).
- Having calculated the steady-state probabilities, the blocking probabilities for each class can be defined:

$$
\begin{aligned}
& P_{b_{1}, \bullet}=\sum_{j=0}^{b_{2}} P_{b_{1}, j} \\
& P_{\bullet, b_{2}}=\sum_{m=0}^{b_{1}} P_{m, b_{2}}
\end{aligned}
$$

- These correspond to the probabilities of a class-1 or class-2 customer being turned away at entry (and subsequently lost) due to their class queue being full.
- These values are particularly useful in selecting buffer sizes b_{1} and b_{2} so as to ensure negligible blocking probabilities are obtained for both queues.

Nominal Waiting Time

On a 2-class
Polling
Model...
Kevin Granville \& Steve Drekic

Introduction and
Preliminaries
Determination of the Steady-state Probabilities

Determination of the Waiting Time Distribution Remarks

■ For $i=1,2$, let W_{i} represent the duration of time from the (successful) arrival of an arbitrary class- i customer to the system until the server is reached, referred to as the nominal class- i waiting time.

- Without loss of generality, we focus our analysis only on W_{1} as the characteristics of the two queues are essentially indifferent.
- Define the modified steady-state probabilities

$$
\phi_{0,0, l, 0}=\frac{\pi_{0,0, l, 0}}{1-P_{b_{1}, \bullet}} \text { and } \phi_{m, n, l, y}=\frac{\pi_{m, n, l, y}}{1-P_{b_{1}, \bullet}}
$$

where $m=1,2, \ldots, b_{1}-1, n=1,2, \ldots, b_{2}$, and the components I and y are as defined in equations (1) and (2), respectively.

Nominal Waiting Time

- Several row vectors are required in the subsequent analysis such as:

Kevin Granville \& Steve Drekic

Introduction and
Preliminaries
Determination of the Steady-state Probabilities

Determination of the Waiting Time Distribution

Numerical Analysis
Concluding Remarks

$$
\begin{gathered}
\underline{\phi}_{0, n}=\frac{\underline{\underline{I}}_{0, n}}{1-P_{b_{1}, \bullet}}, 1 \leq n \leq b_{2}, \\
\underline{\phi}_{m, 0}=\frac{\underline{\pi}_{m, 0}}{1-P_{b_{1}, \bullet}}, 1 \leq m \leq b_{1}-1, \\
\underline{\phi}_{m, n}=\frac{\underline{\pi}_{m, n}}{1-P_{b_{1}, \bullet}}, 1 \leq m \leq b_{1}-1,1 \leq n \leq b_{2}
\end{gathered}
$$

- Furthermore, let

$$
\underline{\phi}_{0}=\left(\phi_{0,0, k_{1}+k_{2}+1,0}, \phi_{0,0, k_{1}+k_{2}+2,0}, \underline{\phi}_{0,1}, \underline{\phi}_{0,2}, \ldots, \underline{\phi}_{0, b_{2}}\right)
$$

and

$$
\underline{\phi}_{m}=\left(\underline{\phi}_{m, 0}, \underline{\phi}_{m, 1}, \ldots, \underline{\phi}_{m, b_{2}}\right), m=1,2, \ldots, b_{1}-1 .
$$

Nominal Waiting Time

On a 2-class
Polling
Model...
Kevin Granville \& Steve Drekic

Introduction and
Preliminaries
Determination of the Steady-state Probabilities

Determination of the Waiting Time Distribution

Numerical Analysis

Concluding Remarks

- By constructing

$$
\begin{equation*}
\underline{\Phi}=\left(\underline{\phi}_{b_{1}-1}, \underline{\phi}_{b_{1}-2}, \ldots, \underline{\phi}_{1}, \underline{\phi}_{0}\right) \tag{11}
\end{equation*}
$$

to be the concatenated row vector of dimension

$$
\begin{equation*}
\ell=\left(b_{1}-1\right) n_{2}+n_{1} \tag{12}
\end{equation*}
$$

we note that $\underline{\Phi} \underline{e}_{\ell}^{\prime}=1$.

- Upon successful entry into one of the ℓ possible busy states, the PASTA property ensures that our Poisson-arriving class-1 customer finds the system in state (m, n, l, y) with probability $\phi_{m, n, l, y}$.
- For now, we assume that the target class-1 customer is not subject to reneging.
- While waiting in the class-1 queue, the number of customers in the class-2 queue potentially changes, as well as the indicator on the server which identifies how many customers have completed service in the active serving queue.

Nominal Waiting Time

On a 2-class
Polling Model...

Kevin Granville \& Steve Drekic

Introduction and Preliminaries

Determination of the Steady-state Probabilities
Determination of the Waiting Time Distribution

Numerical Analysis

Concluding Remarks

- As the number of customers in the class-1 queue changes, the ones arriving later have no impact on the waiting time of the target class-1 customer.
- If we effectively think of the arrival rate for the class- 1 queue to be equal to 0 , the distribution of W_{1} can be modelled as the distribution of the time to absorption in a Markov chain with infinitesimal generator of the form

$$
\left[\begin{array}{cc}
\mathcal{R} & -\mathcal{R} \underline{e}_{\ell}^{\prime} \\
\underline{0}_{\ell} & 0
\end{array}\right],
$$

where

	$b_{1}-1$	$b_{1}-2$	$b_{1}-3$	2	1	0
$b_{1}-1$	$\widetilde{Q}^{\widetilde{Q}_{b_{1}-1, b_{1}-1}}$	$Q_{b_{1}-1, b_{1}-2}$	0	0	0	0
$b_{1}-2$	0	$\widetilde{Q}_{b_{1}-2, b_{1}-2}$	$Q_{b_{1}-2, b_{1}-3}$	0	0	0
$\mathcal{R}={ }^{\text {b }}$ (-3	0	0	$\widetilde{Q}_{b_{1}-3, b_{1}-3}$	0	0	0
:	:			.	.	\vdots
2	0	0	0	$\widetilde{Q}_{2,2}$	$Q_{2,1}$	0
1	0	0	0	0	$\widetilde{Q}_{1,1}$	$\widetilde{Q}_{1,0}$
0	(0	0	0	0	0	$\widetilde{Q}_{0,0}$

Nominal Waiting Time

On a 2-class Polling Model...

Kevin Granville \& Steve Drekic

Introduction and
Preliminaries
Determination
of the
Steady-state Probabilities

Determination

 of the Waiting Time Distribution■ In equation (13), $Q_{2,1}, Q_{3,2}, \ldots, Q_{b_{1}-1, b_{1}-2}$ are the same matrices defined earlier and $\widetilde{Q}_{m, m}=Q_{m, m}+\lambda_{1} I_{n_{2}}, m=1,2, \ldots, b_{1}-1$.

- In addition,

	0	1	2	.	b_{2}
0	$\left(\left[\begin{array}{c}\underline{e}_{k_{1}, k_{1}}^{\prime} \underline{e}_{2,1} \otimes \underline{S}_{0,1}^{\prime} \\ \alpha_{1} I_{2}\end{array}\right]\right.$	0	0	.	0
1	0		0	.	0
$\tilde{Q}_{1,0}=2$	0	0	$\left[\begin{array}{l}\underline{e}_{k_{1}, k_{1}}^{\prime} e_{\underline{z}_{1}, z_{1}-1} \otimes \underline{S}_{0,1}^{\prime} \\ \alpha_{1} I_{z_{1}}\end{array}\right]$	\ldots	0
:		:	-	\because	
b_{2}	0	0	0	\ldots	

Nominal Waiting Time

On a 2-class Polling
 Model...

Kevin Granville \& Steve Drekic

Introduction and
Preliminaries
Determination
of the
Steady-state Probabilities
Determination of the Waiting Time Distribution

Numerical Analysis

Concluding Remarks

- Also,

$$
\text { where } \tilde{\Delta}_{i}=\Delta_{i}+\operatorname{diag}\left(\lambda_{1} I_{k_{2} s_{2}}, \lambda_{1} I_{2}-V_{2}\right)
$$

$$
\begin{aligned}
& 0 \begin{array}{ccccc}
1 & 2 & \ldots & b_{2}-1 & b_{2}
\end{array}
\end{aligned}
$$

Actual Delay Distribution

On a 2-class
Polling
Model...
Kevin Granville \& Steve Drekic

Introduction and
Preliminaries
Determination of the Steady-state Probabilities

Determination of the Waiting Time Distribution

Numerical Analysis

Concluding Remarks

- The time to absorption distribution of such a Markov chain has received extensive attention in the literature, and it is well-known that the cumulative distribution function of W_{1}, denoted by $F_{1}(\omega)$, is given by

$$
F_{1}(\omega)=1-\Phi \exp \{\mathcal{R} \omega\} \underline{e}_{\ell}^{\prime}, \omega \geq 0
$$

which is of phase-type form.

- To incorporate the reneging behaviour of our target class-1 customer, define W_{1}^{*} to be the actual class-1 delay (i.e., the arriving class- 1 customer's total time spent in the system prior to successfully entering service).
■ Clearly, $G_{1}(\omega)=\operatorname{Pr}\left(W_{1}^{*} \leq \omega\right)=\operatorname{Pr}\left(W_{1} \leq \omega \mid W_{1} \leq R_{1}\right)$, where R_{1} denotes an exponentially distributed random variable, independent of W_{1}, with rate α_{1}.
- Making use of fundamental matrix algebraic techniques, the following expressions for $G_{1}(\omega)$ and the moments of W_{1}^{*} are obtained:

Actual Delay Distribution

Introduction and
Preliminaries
Determination of the Steady-state Probabilities

Determination

 of the Waiting Time Distribution$$
\begin{aligned}
G_{1}(\omega) & =1-\operatorname{Pr}\left(W_{1}>\omega \mid W_{1} \leq R_{1}\right) \\
& =1-\frac{\operatorname{Pr}\left(\omega<W_{1} \leq R_{1}\right)}{\operatorname{Pr}\left(W_{1} \leq R_{1}\right)} \\
& =1-\frac{\int_{\omega}^{\infty} \operatorname{Pr}\left(W_{1}>\omega\right) \alpha_{1} e^{-\alpha_{1} x} d x-\int_{\omega}^{\infty} \operatorname{Pr}\left(W_{1}>x\right) \alpha_{1} e^{-\alpha_{1} x} d x}{1-\int_{0}^{\infty} \operatorname{Pr}\left(W_{1}>x\right) \alpha_{1} e^{-\alpha_{1} x} d x} \\
& =1-\frac{\Phi\left[I_{\ell}-\alpha_{1}\left(\alpha_{1} I_{\ell}-\mathcal{R}\right)^{-1}\right] \exp \{\mathcal{R} \omega\} \underline{e}_{\ell}^{\prime} e^{-\alpha_{1} \omega}}{1-\alpha_{1} \Phi\left(\alpha_{1} I_{\ell}-\mathcal{R}\right)^{-1} \underline{e}_{\ell}^{\prime}}, \omega \geq 0,
\end{aligned}
$$

and

$$
\mathrm{E}\left[W_{1}^{* r}\right]=\frac{r!\Phi\left[I_{\ell}-\alpha_{1}\left(\alpha_{1} I_{\ell}-\mathcal{R}\right)^{-1}\right]\left(\alpha_{1} I_{\ell}-\mathcal{R}\right)^{-r} \underline{e}_{\ell}^{\prime}}{1-\alpha_{1} \Phi\left(\alpha_{1} I_{\ell}-\mathcal{R}\right)^{-1} \underline{e}_{\ell}^{\prime}}, r=1,2, \ldots
$$

Total Time Spent Waiting In The System

Kevin Granville \& Steve Drekic

Introduction and
Preliminaries
Determination

- We investigate the selection of parameters k_{1} and k_{2} in order to optimize the overall system, by way of minimizing a specific cost function.
- The total time a class- 1 customer actually spends waiting in the system is

$$
W_{1}^{\#}=\min \left\{W_{1}, R_{1}\right\} \sim P H\left(\Phi_{1}, \mathcal{R}_{1}-\alpha_{1} I_{\ell_{1}}\right),
$$

where Φ_{1}, ℓ_{1}, and \mathcal{R}_{1} are given by equations (11), (12), and (13), respectively.

- Parameters Φ_{2}, ℓ_{2}, and \mathcal{R}_{2} can be obtained in an analogous fashion to be used in the characterization of the distribution of $W_{2}^{\#}=\min \left\{W_{2}, R_{2}\right\}$.

The Cost Function

■ We generalize the cost function of Borst, Boxma \& Levy (1995) to get

$$
\text { Cost }=\text { Cost }_{1}+\text { Cost }_{2},
$$

where

$$
\operatorname{Cost}_{i}=c_{i} \lambda_{i} \mathrm{E}\left[W_{i}^{\#}\right]+r_{i} \lambda_{i} \operatorname{Pr}\left(R_{i}<W_{i}\right)
$$

and cost parameters c_{i} and r_{i} are non-negative constants.

- It is straightforward to obtain:

$$
\begin{aligned}
\mathrm{E}\left[W_{1}^{\#}\right] & =\underline{\Phi}\left(\alpha_{1} I_{\ell_{1}}-\mathcal{R}_{1}\right)^{-1} \underline{e}_{\ell_{1}}^{\prime} \\
\operatorname{Pr}\left(R_{1}<W_{1}\right) & =\alpha_{1} \Phi\left(\alpha_{1} I_{\ell_{1}}-\mathcal{R}_{1}\right)^{-1} \underline{e}_{\ell_{1}}^{\prime}=\alpha_{1} \mathrm{E}\left[W_{1}^{\#}\right] .
\end{aligned}
$$

Optimization Problem

On a 2-class
Polling
Model...
Kevin
Granville \& Steve Drekic

Introduction and
Preliminaries
Determination of the Steady-state Probabilities

Determination of the Waiting Time Distribution

Numerical Analysis
Concluding Remarks

- We consider a constraint on the total number of services in a cycle - namely, $k_{1}+k_{2} \leq 12$.
- Three possible reneging rates were used for both classes:

$$
\alpha_{i} \in\{0.025,0.05,0.25\} .
$$

- Three service time distributions were considered: Exponential [Exp], Hyperexponential $\left[\mathrm{H}_{2}\right]$, and Erlang [E_{3}].
- Each distribution has the same mean, but the H_{2} distribution has 1000 times the variance of the Exp distribution, which has 3 times the variance of the E_{3} distribution.
■ Case 1: arrival rates $\lambda_{1}=\lambda_{2}=0.75$, switchover rates $v_{1}=v_{2}=1 / 0.1$, and mean service times of 0.9 for class 1 and 0.1 for class 2 .
■ Case 2: arrival rates $\lambda_{1}=0.5, \lambda_{2}=0.25$, switchover rates $v_{1}=1 / 0.1$, $v_{2}=1 / 0.2$, and mean service times of 1 for both classes.
■ In both cases, we set buffer sizes of $b_{1}=b_{2}=20$.

Numerical Analysis

Reneging Rates		(Exp, Exp)		Service Time Distributions				(Exp, Exp)	
α_{1}	α_{2}	$\left(k_{1}, k_{2}\right)$	Cost						
0.025	0.025	$(3,9)$	4.3398	$(3,9)$	6.2866	$(3,9)$	4.3281	$(3,9)$	6.9361
	0.05	$(4,8)$	4.2581	$(3,9)$	5.9977	$(4,8)$	4.2468	$(2,10)$	7.7429
	0.25	$(7,5)$	3.7352	$(9,3)$	4.8325	$(7,5)$	3.7269	$(2,10)$	11.9875
0.05	0.025	$(3,9)$	3.6482	$(3,9)$	5.2460	$(3,9)$	3.6386	$(3,9)$	7.1422
	0.05	$(3,9)$	3.5947	$(3,9)$	4.9824	$(3,9)$	3.5855	$(2,10)$	7.8847
	0.25	$(6,6)$	3.2543	$(6,6)$	4.0882	$(6,6)$	3.2470	$(1,11)$	11.9519
0.25	0.025	$(2,10)$	2.1520	$(2,10)$	3.0167	$(2,10)$	2.1464	$(3,9)$	9.0264
	0.05	$(2,10)$	2.1334	$(2,10)$	2.8169	$(2,10)$	2.1279	$(3,9)$	9.7272
	0.25	$(2,10)$	2.0230	$(2,10)$	2.2667	$(2,10)$	2.0183	$(1,11)$	13.3357
		$\left(\mathrm{H}_{2}, \mathrm{Exp}\right)$		$\left(\mathrm{H}_{2}, \mathrm{H}_{2}\right)$		$\left(\mathrm{H}_{2}, \mathrm{E}_{3}\right)$		$\left(\mathrm{H}_{2}, \mathrm{H}_{2}\right)$	
α_{1}	α_{2}	$\left(k_{1}, k_{2}\right)$	Cost	(k_{1}, k_{2})	Cost	$\left(k_{1}, k_{2}\right)$	Cost	$\left(k_{1}, k_{2}\right)$	Cost
0.025	0.025	$(4,8)$	20.3486	$(3,9)$	21.7547	$(4,8)$	20.3441	$(3,9)$	35.8657
	0.05	$(5,7)$	18.2711	$(4,8)$	19.5065	$(5,7)$	18.2666	$(3,9)$	36.3322
	0.25	$(8,4)$	14.6158	$(9,3)$	15.5758	$(8,4)$	14.6114	$(2,10)$	33.8738
0.05	0.025	$(3,9)$	16.4205	$(2,10)$	17.4343	$(3,9)$	16.4171	$(2,10)$	34.1935
	0.05	$(4,8)$	14.3710	$(3,9)$	15.2235	$(4,8)$	14.3676	$(3,9)$	34.6786
	0.25	$(7,5)$	10.7526	$(8,4)$	11.3615	$(7,5)$	10.7490	$(2,10)$	32.2619
0.25	0.025	$(1,11)$	8.8681	$(1,11)$	9.4376	$(1,11)$	8.8681	$(3,9)$	27.1216
	0.05	$(1,11)$	6.9769	$(1,11)$	7.3890	$(1,11)$	6.9756	$(3,9)$	27.6632
	0.25	$(6,6)$	3.5293	$(5,7)$	3.7245	$(6,6)$	3.5263	$(2,10)$	25.4136
r_{i}		$r_{1}=1, r_{2}=0.5$						$r_{1}=r_{2}=40$	

Table 1: Optimal $\left(k_{1}, k_{2}\right)$ and minimum cost under Case 1 with $c_{1}=2, c_{2}=1$, and $r_{1}=1$, $r_{2}=0.5$ or $r_{1}=r_{2}=40 .\left[\lambda_{1}=\lambda_{2}=0.75, v_{1}=v_{2}=1 / 0.1\right.$, service times of $\left.0.9 \& 0.1\right]$

Numerical Analysis

Reneging Rates		(Exp, Exp)		Service Time Distributions$\left(\operatorname{Exp}, \mathrm{H}_{2}\right)$$\left(\operatorname{Exp}, \mathrm{E}_{3}\right)$				(Exp, Exp)	
α_{1}	α_{2}	$\left(k_{1}, k_{2}\right)$	Cost						
0.025	0.025	$(10,2)$	2.6649	$(10,2)$	7.8090	$(10,2)$	2.4761	$(10,2)$	4.3972
	0.05	$(11,1)$	2.4083	$(11,1)$	6.8184	$(11,1)$	2.2577	$(9,3)$	4.6890
	0.25	$(11,1)$	1.8357	$(11,1)$	5.1854	$(11,1)$	1.7432	$(8,4)$	5.9054
0.05	0.025	$(10,2)$	2.3812	$(9,3)$	5.6575	$(10,2)$	2.2247	$(10,2)$	4.6660
	0.05	$(10,2)$	2.2030	$(10,2)$	4.8100	$(10,2)$	2.0669	$(10,2)$	4.9625
	0.25	$(11,1)$	1.6934	$(11,1)$	3.5890	$(11,1)$	1.6127	$(8,4)$	6.1953
0.25	0.025	$(6,6)$	1.5047	$(5,7)$	2.9877	$(6,6)$	1.4353	$(11,1)$	6.4562
	0.05	$(7,5)$	1.4550	$(6,6)$	2.2615	$(7,5)$	1.3907	$(10,2)$	6.7245
	0.25	$(11,1)$	1.2323	$(10,2)$	1.5454	$(11,1)$	1.1879	$(8,4)$	7.8861
		$\left(\mathrm{H}_{2}, \mathrm{Exp}\right)$		$\left(\mathrm{H}_{2}, \mathrm{H}_{2}\right)$		$\left(\mathrm{H}_{2}, \mathrm{E}_{3}\right)$		$\left(\mathrm{H}_{2}, \mathrm{H}_{2}\right)$	
α_{1}	α_{2}	$\left(k_{1}, k_{2}\right)$	Cost						
0.025	0.025	$(11,1)$	11.9085	$(10,2)$	15.6149	$(11,1)$	11.8306	$(10,2)$	24.8349
	0.05	$(11,1)$	10.6576	$(11,1)$	13.9119	$(11,1)$	10.5843	$(10,2)$	23.2350
	0.25	$(11,1)$	9.5631	$(11,1)$	12.3096	$(11,1)$	9.5085	$(9,3)$	21.9772
0.05	0.025	$(10,2)$	8.2620	$(9,3)$	10.5575	$(10,2)$	8.1927	$(9,3)$	20.6821
	0.05	$(11,1)$	7.0367	$(10,2)$	8.9056	$(11,1)$	6.9730	$(9,3)$	19.1262
	0.25	$(11,1)$	5.9644	$(11,1)$	7.4260	$(11,1)$	5.9166	$(8,4)$	17.9732
0.25	0.025	$(4,8)$	3.9129	$(4,8)$	5.0239	$(4,8)$	3.8846	$(8,4)$	15.7298
	0.05	$(9,3)$	2.8207	$(6,6)$	3.4547	$(9,3)$	2.7818	$(8,4)$	14.2528
	0.25	$(11,1)$	1.8533	$(9,3)$	2.1237	$(11,1)$	1.8198	$(7,5)$	13.2301
r_{i}		$r_{1}=1, r_{2}=0.5$						$r_{1}=r_{2}=40$	

Table 2: Optimal $\left(k_{1}, k_{2}\right)$ and minimum cost under Case 2 with $c_{1}=2, c_{2}=1$, and $r_{1}=1$, $r_{2}=0.5$ or $r_{1}=r_{2}=40 .\left[\lambda_{1}=0.5, \lambda_{2}=0.25, v_{1}=1 / 0.1, v_{2}=1 / 0.2\right.$, service times of 1$]$

Numerical Analysis

Determination
of the
Steady-state
Probabilities

On a 2-class Polling Model...

Kevin Granville \& Steve Drekic

Introduction and

```
Preliminaries
```

```
Preliminaries
```


Determination

of the

Waiting Time Distribution

Numerical

 Analysis
Concluding

 RemarksCase 1

Case 2

Figure 1: Plots of k_{1} vs. c_{1} under both cases with Exp service times, $c_{2}=2, r_{1}=r_{2}=1$, and four combinations of reneging rates.

Numerical Analysis

On a 2-class Polling Model...

Kevin Granville \& Steve Drekic

Introduction and
Preliminaries
Determination
of the
Steady-state Probabilities

Determination

of the

Waiting Time Distribution

Numerical

 Analysis
Concluding

 RemarksClass 1

Class 2

Figure 2: Plots of $G_{i}(\omega)$ vs. ω for both classes under Case 1 with $\alpha_{1}=0.025, \alpha_{2}=0.25$, and either Exp or H_{2} service time distributions, at optimal k_{i} 's from Table 1.

Concluding Remarks

On a 2-class
Polling
Model...
Kevin Granville \& Steve Drekic

Introduction and Preliminaries

Determination of the Steady-state Probabilities
Determination of the Waiting Time Distribution
Numerical Analysis
Concluding Remarks

■ We modelled an $M / P H / 1$-type polling model with 2 classes and exponential switchover/reneging times operating under a k_{-}-limited service discipline.

- We were able to obtain the steady-state probabilities as well as the nominal waiting time and actual delay distributions for each class.
■ Under a variety of scenarios, we found optimal $\left(k_{1}, k_{2}\right)$ values that minimize (subject to a particular constraint) a defined cost function depending on the expected time waiting in the system and the probability of reneging.

Future Extensions

On a 2-class Polling Model...

Kevin

 Granville \& Steve Drekic- Queue length dependent reneging rates.
- Phase-type renewal process for arrivals.
- (2-dimensional) phase-type reneging time distributions.
- Different service disciplines.
- Multiple servers.
- A third class of customers.
On a 2-class

Kevin

Granville \&
Steve Drekic

anc

Preliminaries

Determination

of the
Steady-state
Probabilities
Determination
of the
Waiting Time
Distribution
Numerical
Analysis

Building Q

On a 2-class
Polling
Model...
Kevin
Granville \&
Steve Drekic

Introduction
and
Preliminaries
Determination
of the
Steady-state
Probabilities
Determination
of the
Waiting Time
Distribution
Numerical
Analysis
Concluding
Remarks

$$
\begin{aligned}
& 1 \quad 2 \\
& 2 \quad \cdots \quad b_{2}
\end{aligned}
$$

