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Why am I bringing coals to Newcastle??

Infinite-state but finitely-presented (“structured”) Markov chains, and
numerical methods for them, have been studied for a long time in the
MAM community.

In the last decade there has also been a substantial body of
(independent) research in the theoretical computer science and
probabilistic verification community, focused on the computational
complexity of analyzing such stochastic models, as well as
generalizations of them to
Markov decision processes (MDPs) and stochastic games.

In this talk I hope to give you a flavor of this research in TCS.

(I can not be comprehensive: it is by now a rich body of work.)

I hope my talk will help foster more interactions between the MAM
community and those doing related research in TCS and verification.
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Overview of the talk

I will focus mainly on a series of results we have obtained on the
complexity of analyzing the following models (in discrete time):

Multi-type Branching Processes (a.k.a., Markovian Trees),
and their generalization: Branching MDPs.

One-counter Markov Chains (a.k.a., QBDs),
and one-counter MDPs.

Recursive Markov Chains (a.k.a., tree-structured/tree-like-QBDs),
and Recursive MDPs.

A key aspect of our results: new algorithmic bounds for computing
the least fixed point (the least non-negative solution) for
monotone systems of (min/max)-polynomial equations.

Such equations arise for various stochastic models and MDPs
(e.g., as their Bellman optimality equations).



A word about traditional numerical analysis vs.
computational complexity analysis

In numerical analysis it is often typical to establish
“linear/quadratic convergence” for an iterative algorithm.

This provides upper bounds on the number of iterations required to
achieve desired accuracy ε > 0, as a function of ε, but in general it
does not provide any bounds as a function of the encoding size of the
input equations.

By contrast, computational complexity analysis aims to bound the
running time (hopefully polynomially or better) as a function of both
the encoding size of the input system of equations and log(1/ε).

We aim for worst case complexity analysis, in the standard Turing
model of computation, not in the unit-cost arithmetic model (a.k.a.
BSS model), so no hiding of consequences of roundoff errors.
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Branching Markov Decision Processes
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We get nonlinear fixed point equations:
x̄ = P(x̄).

Fact

The extinction probabilities are the least
fixed point, q∗ ∈ [0, 1]3, of x̄ = P(x̄).
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Branching Markov Decision Processes
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xY = max{x2
B , xR}

We get fixed point equations, x̄ = P(x̄).

Theorem [E.-Yannakakis’05]

The maximum extinction probabilities
are the least fixed point, q∗ ∈ [0, 1]3, of
x̄ = P(x̄).
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is a Probabilistic Polynomial: the coefficients are positive and sum to 1.

A Maximum Probabilistic Polynomial System (maxPPS) is a system

xi = max{pi ,j(x) : j = 1, . . . ,mi} i = 1, . . . , n

of n equations in n variables, where each pi ,j(x) is a probabilistic
polynomial. We denote the entire system by:

x = P(x)

Minimum Probabilistic Polynomial Systems (minPPSs) are defined
similarly.

These are Bellman optimality equations for maximizing (minimizing)
extinction probabilities in a BMDP.

We use max/minPPS to refer to either a maxPPS or an minPPS.



(max/min) Monotone Polynomial Systems of Equations

5x2
BxGxR + 2xBxR +

1

6

is a Monotone Polynomial: the coefficients are positive.

A Monotone Polynomial System (MPS), is a system of n equations

x = P(x)

in n variables where each Pi (x) is a monotone polynomial.

We similiarly define max/minMPSs.



Basic properties of (max/min) PPSs & MPSs

A (max/min)PPS, P : [0, 1]n → [0, 1]n defines a monotone map on [0, 1]n.

A (max/min)MPS, P : [0,∞]n → [0,∞]n gives monotone map on [0,∞]n.

Proposition

[Tarski’55] A (max/min)PPS, x = P(x) has a least fixed point (LFP)
solution, q∗ ∈ [0, 1]n. (q∗ can be irrational.)

[Tarski’55] A (max/min)MPS x = P(x) has a LFP, q∗ ∈ [0,∞]n.

(The (max/min)MPS is called feasible if q∗ ∈ Rn
≥0

.
= [0,∞)n.)

q∗ = limk→∞ Pk(0), monotonically, for all (max/min)PPSs/MPSs.

For a (max/min)PPS, q∗ is the vector of (optimal) extinction
probabilities for the corresponding BP (BMDP).

(For a (max/min) MPS, q∗ is, e.g., the partition function of the
corresponding (max/min) Weighted Context-Free Grammar
((max/min)WCFG).)



Key Question

Can we compute the LFP vector q∗ efficiently (in P-time)?

For BPs and their corresponding PPSs, this question was considered
already by Kolmogorov & Sevastyanov (1940s).

Analogous questions have been considered for many other stochastic
models and their corrrsponding monotone equations (in particular, in
the MAM community).

Nevertheless, the computational complexity of these basic questions
(are they solvable in P-time?) remained open until recently.



Newton’s method

Newton’s method

Seeking a solution to F (x) = 0, we start at a guess x(0), and iterate:

x(k+1) := x(k) − (F ′(x(k)))−1F (x(k))

Here F ′(x), is the Jacobian matrix:

F ′(x) =




∂F1
∂x1

. . . ∂F1
∂xn

...
...

...
∂Fn
∂x1

. . . ∂Fn
∂xn




For MPSs, F (x) ≡ (P(x)− x); Newton iteration looks like this:

x(k+1) := x(k) + (I − P ′(x(k)))−1(P(x(k))− x(k))

where P ′(x) is the Jacobian of P(x).



Newton’s method on PPSs and feasible MPSs

To enable monotone Newton methods ([Ortega-Rheinboldt,1970]) to apply
to all PPSs and all feasible MPSs, we must first do some simple (P-time)
preprocessing of the equations:

We can decompose x = P(x) into its strongly connected components
(SCCs), based on variable dependencies, and eliminate “0” variables, all
(easily) in P-time.

Proposition [E.-Yannakakis’05]

Decomposed Newton’s method converges monotonically to the LFP q∗,
starting from x(0) := 0, for all feasible MPSs.

But this does not imply P-time for feasible MPSs

Theorem ([E.-Yannakakis’05,JACM’09]): any nontrivial approximation of
the LFP q∗ ∈ [0, 1]n of a family of feasible MPSs corresponding to
Recursive Markov Chains is PosSLP-hard (thus even doing it in NP would
be a breakthrough).



What is Newton’s worst case behavior for PPSs and MPSs?

There are bad examples of PPSs. Here’s a simple example
([Stewart-E.-Yannakakis,’13, JACM’15]):

x0 =
1

2
x2
0 +

1

2
; xi =

1

2
x2
i +

1

2
x2
i−1; i = 1, . . . , n

Fact: q∗ = 1, but ‖q∗ − x (2n−1)‖∞ > 1
2 , starting from x (0) := 0.

This slightly simplifies an earlier exponential example by
[Esparza,Kiefer,Luttenberger’10], who also gave exponential upper
bounds on the restricted class of strongly-connected MPSs.

But they gave no upper bounds for general feasible PPSs or MPSs.

In [Stewart-E.-Yannakakis,’13, JACM’15] we established (essentially
optimal) exponential upper bounds for ] of Newton iterations required
(in worst case) starting from x (0) = 0, in terms of both |P| and
log(1/ε) to compute the LFP q∗ with error < ε, for all feasible MPSs.



P-time approximation for PPSs

Theorem ([E.-Stewart-Yannakakis, STOC’2012])

Given a PPS, x = P(x), with LFP q∗ ∈ [0, 1]n, we can compute a rational
vector v ∈ [0, 1]n such that

‖v − q∗‖∞ ≤ 2−j

in time polynomial in both the encoding size |P| of the equations
and in j (the number of “bits of precision”).

We use Newton’s method..... but how?



Qualitative decision problems for PPSs are in P-time

Theorem ([Kolmogorov-Sevastyanov’47,Harris’63])

For certain classes of strongly-connected PPSs, q∗i = 1 for all i iff the
spectral radius %(P ′(1)) for the moment matrix P ′(1) is ≤ 1,
and otherwise q∗i < 1 for all i .

Theorem ([E.-Yannakakis’05])

Given any PPS, x = P(x), deciding whether q∗i = 1 is in P-time.

(It is even in strongly-P-time ([Esparza-Gaiser-Kiefer’10]).)

Deciding whether q∗i = 0 is also easily in (strongly) P-time.
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Algorithm for approximating the LFP q∗ for PPSs

1 Find and remove all variables xi such that q∗i = 0 or q∗i = 1.

2 On the resulting system of equations, run Newton’s method starting
from 0.

Theorem ([E.-Stewart-Yannakakis,STOC’12])

Given a PPS x = P(x) with LFP 0 < q∗ < 1, if we apply Newton starting
at x(0) = 0, then

‖q∗ − x(4|P|+j)‖∞ ≤ 2−j

and

‖q∗ − x(18|P|+j+2)‖∞ ≤ 2−2
j
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Algorithm with rounding

1 Find and remove all variables xi such that q∗i = 0 or q∗i = 1.

2 On the resulting system of equations, run Newton’s method starting
from 0.

3 After each iteration, round down to a multiple of 2−h

Theorem ([ESY’12])

If, after each Newton iteration, we round down to a multiple of 2−h where
h := 4|P|+ j + 2, then after h iterations ‖q∗ − x(h)‖∞ ≤ 2−j .

Thus, we obtain a P-time algorithm (in the standard Turing model) for
approximating q∗.



High level picture of proof

For a PPS, x = P(x), with LFP 0 < q∗ < 1, P ′(q∗) is a non-negative
square matrix, and (we show)

%(P ′(q∗)) < 1

So, (I −P ′(q∗)) is non-singular, and (I −P ′(q∗))−1 =
∑∞

i=0(P ′(q∗))i .

We can show the # of Newton iterations needed to get within ε > 0 is

≈≈ log ‖(I − P ′(q∗))−1‖∞ + log
1

ε

‖(I − P ′(q∗))−1‖∞ is tied to the distance |1− %(P ′(q∗))|,
which in turn is related to mini (1− q∗i ), which we can lower bound.

Uses lots of Perron-Frobenius theory, among other things...



P-time approximation for BMDPs and max/minPPSs

Theorem ([E.-Stewart-Yannakakis,ICALP’12])

Given a max/minPPS, x = P(x), with LFP q∗ ∈ [0, 1]n, we can compute a
rational vector v ∈ [0, 1]n such that

‖v − q∗||∞ ≤ 2−j

in time polynomial in the encoding size |P| of the equations, and in j.

We established this via a new Generalized Newton’s Method that uses
linear programming in each iteration.



Towards Generalized Newton’s Method:
Newton iteration as a first-order (Taylor) approximation

An iteration of Newton’s method on a PPS, applied on current vector
y ∈ Rn, solves the equation

Py(x) = x

where
Py(x) ≡ P(y) + P ′(y)(x− y)

is the linear (first-order Taylor) approximation of P(x) at the point y.



Generalized Newton’s method

Linearization of max/minPPSs

Given a maxPPS

(P(x))i = max{pi ,j(x) : j = 1, . . . ,mi} i = 1, . . . , n

We define the linearization, Py (x), by:

(Py(x))i = max{pi ,j(y) +∇pi ,j(y).(x− y) : j = 1, . . . ,mi} i = 1, . . . , n

Generalised Newton’s method: iteration applied at vector y

Solve Py(x) = x. Specifically:

For a maxPPS, minimize
∑

i xi subject to Py(x) ≤ x;

For a minPPS, maximize
∑

i xi subject to Py(x) ≥ x;

These can both be phrased as linear programming problems. Their optimal
solution solves Py(x) = x , and yields one GNM iteration.
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Algorithm for max/minPPSs

1 Find and remove all variables xi such that q∗i = 0 or q∗i = 1.

Deciding q∗i
?
= 0 is again easily in P-time.

Theorem ([E.-Yannakakis’06]): q∗i
?
= 1 is decidable in P-time.

(Reduces to a spectral radius optimization problem for non-negative
square matrices, which we can solve using linear programming. )

2 On the resulting system of equations, run Generalized Newton’s
Method, starting from 0. After each iteration, round down to a
multiple of 2−h.
Each iteration of GNM can be computed in P-time by solving an LP.

Theorem [E.-Stewart-Yannakakis’12]

Given a max/minPPS x = P(x) with LFP 0 < q∗ < 1, if we apply rounded
GNM starting at x(0) = 0, using h := 4|P|+ j + 1 bits of precision, then

‖q∗ − x(4|P|+j+1)‖∞ ≤ 2−j .
Thus, algorithm runs in time polynomial in |P| and j .
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Proof outline: some key lemmas

(1− q∗) is the vector of pessimal survival probabilities.

Lemma

If q∗ − x(k) ≤ λ(1− q∗) for some λ > 0, then q∗ − x(k+1) ≤ λ
2 (1− q∗).

Lemma

For any Max(Min) PPS with LFP q∗, such that 0 < q∗ < 1, for any i ,
q∗i ≤ 1− 2−4|P|.



one-counter Markov chain ( discrete-time QBD)

s1

s2

s3

s4
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3
5 ,+1

2
5 ,−1

2
7 ,−1

4
7 ,+1

1
7 ,+0
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4 ,+1

3
4 ,−1

Question: What is the probability of
termination (reaching counter value = 0
for the first time) in state s2, starting
with counter value = 1 in state s1?

x1,2 =
1

3
+

2

3

∑

j

x4,jxj ,2

x4,3 =
3

4
+

1

4

∑

j

x4,kxk,2

· · · = · · ·
In matrix notation, the familiar G-matrix
monotone fixed point equations for a
QBD: X = A−1 + A0X + A1X 2.

Fact (cf., [Neuts,1970s])

The G-matrix of termination
probabilities is the LFP, q∗ ∈ [0, 1]4×4.
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Lemma [E.-Wojtczak-Yannakakis’08]

The minimum positive G-matrix entry for an n-state QBD is ≥ (pmin)n
3
,

where pmin > 0 is the minimum positive transition probability (minimum
positive entry of A−1, A0, or A1) for the QBD.

(Proof uses a basic pumping argument for one-counter automata.)

Lemma [E.-Wojtczak-Yannakakis’08]

The DAG of strongly connected components (SCCs) of the equations for a
QBD can only contain a single non-linear SCC on each directed path.

Using these Lemmas, and the bounds for Newton’s method on monotone
feasible MPSs, we obtain:

Theorem [E.-Wojtczak-Yannakakis’08], [Stewart-E.-Yannakakis,’13]

The G-matrix of a QBD, Q, can be approximated to desired accuracy
ε > 0 in time polynomial in both the encoding size |Q| and log(1/ε) (in
the standard Turing model of computation).



one-counter Markov Decision Processes

s1

s2

s3

s4

1
3 ,−1

2
3 ,+1

3
5 ,+1

2
5 ,−1

2
7 ,−1

4
7 ,+1

1
7 ,+0

+1

−1

Question: What is the optimal (supremum
or infimum) probability of termination
(reaching counter value = 0) in any state,
starting with counter value = 1 in state s1?

We do not know any min/max-monotone
polynomial equations that capture these
optimal probabilities.

But we do have algorithms to compute
them.....
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Theorem [Brazdil-Brózek-E.-Kucera,2011]

Given a OC-MDP, M, we can compute the optimal (supremum/infimum)
termination probabilities to accuracy ε > 0 in time polynomial in log(1/ε),
but unfortunately exponential in |M|.

Algorithm involves (exponentially large) finite-state (mean-payoff) MDPs.
Proof uses an intriguing martingale derived from LPs associated with
optimizing mean-payoff MDPs, and the Azuma inequality.

Theorem [Brazdil-Brózek-E.-Kucera-Wojtzak,SODA’2010]

We can decide whether the optimal termination probabilities for a given
OC-MDP are = 1 in P-time.

Proof uses LPs, and limit theorems for sums of i.i.d. random variables.

Theorem [Brazdil-Brózek-E.-Kucera-Wojtzak,SODA’2010]

Given a OC-MDP, deciding whether the maximum achievable probability
of terminating in a specific state, si , is = 1, is NP-hard (and even
PSPACE-hard), and is decidable in EXPTIME.



Recursive Markov Chains (≈ tree-like-QBDs)

entry

exit1

exit2

A A A
3
4

1
4

1 1

1
3

2
3

1

What is the probability of terminating at exit2, starting at entry?

x2 =



Recursive Markov Chains (≈ tree-like-QBDs)

entry

exit1

exit2

A A A
3
4

1
4

1 1

1
3

2
3

1

What is the probability of terminating at exit2, starting at entry?

x2 =
1

4
+

1

2
x22 +

1

2
x1x2 (Note: coefficients sum to > 1)

x1 =
3

4
x21 +

3

4
x2x1 +

1

4
x1x2 +

1

4
x22

Fact: ([E.-Yannakakis’05]) The Least Fixed Point, q∗ ∈ [0, 1]n, gives the
termination probabilities.



approximation for Recursive Markov chains is “hard”

Theorem [E.-Yannakakis’05,JACM’09]

Any non-trivial approximation of the termination probabilities q∗ of an
RMC is PosSLP-hard.

In fact, deciding whether (a.) q∗1 = 1 or (b.) q∗1 < ǫ, given the promise
that one of the two is the case, is PosSLP-hard.

(Thus, even approximation in NP would yield a major breakthrough on the
complexity of the BSS model and exact numerical computation; and
P-time approximation is very unlikely.)

Note: this is despite the fact that Newton’s method converges
monotonically, starting from 0, to the LFP q∗, for all feasible MPSs.

Theorem [E.-Yannakakis’05b,JACM’15a]

For Recursive Markov Decision Processes, any non-trivial apporoximation
of the optimal termination probabilities is not computable at all.



Conclusion

We have established P-time algorithms for a number of
fundamental analysis problems for various important classes of
infinite-state (“structured”) Markov chains and MDPs.
(All of which are effectively subclasses of RMCs and RMDPs.)

These are also key building blocks for efficient probabilistic model
checking algorithms for these stochastic models.

On the other hand, we have shown some complexity-theoretic
“hardness” results relative to long-standing open problems (and
even undecidability results) for approximating fundamental
quantities for general RMCs (and RMDPs, respectively).

Many, many, open questions remain.
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