An interaction between queing and change detection

LÁSZLÓ GERENCSÉR¹,

with C. Prosdocimi² and Zs. Vágó³

¹MTA SZTAKI, ²LUISS University, ³PPKE ITK

The Ninth International Conference on Matrix-Analytic Methods in Stochastic Models Budapest, June 28 - 30, 2016

THE DYNAMICS of a QUEUE

Consider a single server queue. Waiting time of the *n*-th customer: W_n . The dynamics of W_n is given by a *non-linear system*:

 $W_n = (W_{n-1} + X_n)_+$ with $W_0 = 0,$ (1)

where $X_n = V_{n-1} - U_n$ = service time minus interarrival time.

A system-theoretic point of view: (8) is not a stable system.

A similar non-linear dynamics arises in the theory of risk processes:

$$W_n^- = (W_{n-1}^- + X_n^-)_-$$
 with $W_0^- = K > 0.$ (2)

.

PROBABILISTIC STABILITY of a QUEUE

A standard assumption: assume i.i.d. inputs (X_n) , with $E(X_n) < 0$.

Markovian techniques: establish geometric ergodicity assuming

$$\mathbb{E}(\exp c' X_1) < 1 \quad \text{for some} \quad c' > 0. \tag{3}$$

Strong LLN follows for functions of W_n . See Meyn & Tweedie.

PROBLEM STATEMENT

Under what conditions for the inputs (X_n) can we ensure:

1. A strong LLN for the empirical tail probabilities:

$$\limsup_{N} \frac{1}{N} \sum_{n=1}^{N} \mathbb{I}_{\{W_n > K\}} \leq \limsup_{n} P(W_n > K) \quad \text{a.s.}$$

2. Exponential decay of tail probabilities:

 $P(W_n > K) < Ce^{-cK}.$

Technical kinship of the two problems.

The problem: detect changes of statistical patterns of signals in real time.

Example: monitoring EEG signals for epileptic patients

See: V.Poor and O.Hadjiliadis (2009): Quickest Detection.

A CLASSIC PROBLEM

Given a sequence of i.i.d. r.v.-s Y_n with prob. density functions

 $f(y, \theta_0)$ for $n < \tau$ and $f(y, \theta_1)$ for $n \ge \tau$.

Estimate

change point : au

using observations (y_n) .

The Cumulative Sum (CUSUM) test or Page-Hinkley detector:

```
E.S. Page, Biometrika, 1954
```

D.V. Hinkley, J.Amer. Statist. Assoc., 1971

STATISTICS and IT

A modern interpretation, following J.Rissanen, 1989: Encode data using the two possible models, following Inf.Thy.: The quasi-optimal code-lengths are

 $-\log f(y_n, \theta_0)$ and $-\log f(y_n, \theta_1)$.

The differences in code-lengths define the score

 $X_n = -\log f(y_n, \theta_0) + \log f(y_n, \theta_1).$

Now the information inequality gives

$$\mathbf{E}X_n < \mathbf{0}$$
 for $n < \tau$ and $\mathbf{E}X_n > \mathbf{0}$ for $n \ge \tau$.

THE CUSUM TEST for I.I.D. DATA

Let $S_0 = 0$ and let

$$S_n = \sum_{k=1}^n X_k$$
 for $n \ge 1$.

Then ES_n has a minimum at $\tau - 1$.

Task: approximate on-line minimization of S_n .

The CUSUM statistics or Page-Hinkley detector: define

$$g_n=S_n-\min_{0\leq k\leq n}S_k.$$

Generate an alarm if $g_n > \delta$, with some fixed threshold $\delta > 0$.

FALSE ALARM RATE

Apply the Page-Hinkley detector to a process with no change at all. A key performance characteristics: false alarm probability

 $\limsup_n P_{\theta_0}(g_n > \delta).$

Practical relevance: false alarm rate (FAR) defined as a.s.

$$\limsup_{N} \frac{1}{N} \sum_{n=1}^{N} \mathbb{I}_{\{g_n > \delta\}}.$$

Problem: find an upper bound for the FAR.

THE DYNAMICS of CUSUM

The dynamics of g_n is easily obtained as follows:

$$g_n = (g_{n-1} + X_n)_+$$
 with $g_0 = 0$.

This establishes the link between queuing, W_n , and change detection, g_n .

Objective: bounding the empirical tail probabilities of g_n .

Two related technical problems:

- Exponential bounds for the tail probabilities of g_n.
- Mixing properties of g_n.

MOTIVATION for MIXING

Let (ν_n) be an \mathbb{R}^s -valued i.i.d. sequence of r.v.-s such that

$$\sup_{n\geq 0} \mathbb{E} |\nu_n|^q < +\infty \quad \text{ for all } \quad 1\leq q<\infty.$$

Let the $s \times s$ matrix A be stable, and define the filtered process

$$X_n = AX_{n-1} + \nu_n \quad \text{with} \quad X_0 = 0.$$

Decompose (X_n) as

$$X_n = A^{\tau} X_{n-\tau} + \sum_{k=0}^{\tau-1} A^k \nu_{n-k}.$$

L-MIXING, I.

Definition

Let $X = (X_n)$ be a stochastic process on $(\Omega, \mathcal{F}, \mathbb{P})$. X is *M*-bounded if for all $1 \leq q < +\infty$

$$M_q(X) := \sup_{n\geq 0} \|X_n\|_q < +\infty.$$

Let $\nu = (\nu_n)$ be an i.i.d. sequence, and define its past and future as

 $\mathfrak{F}_n = \sigma(\nu_k : k \leq n) \text{ and } \mathfrak{F}_n^+ = \sigma(\nu_k : k \geq n+1).$

Let $\tau > 0$ be an integer, a fixed memory length, and defined for $1 \le q < +\infty$ the error of approximation by the near past as

$$\gamma_q(\tau, X) = \gamma_q(\tau) := \sup_{n \ge \tau} \| X_n - \operatorname{E}(X_n | \mathcal{F}_{n-\tau}^+) \|_q.$$

L-MIXING, II.

Definition

A stochastic process $X = (X_n)$ is *L*-mixing w.r.t. $(\mathcal{F}_n, \mathcal{F}_n^+)$ if it is adapted i.e. X_n is \mathcal{F}_n -measurable for all $n \ge 1$, X is *M*-bounded, and

$$\Gamma_q(X) := \sum_{\tau=0}^{+\infty} \gamma_q(\tau) < +\infty \quad \text{for all} \quad 1 \le q < +\infty.$$

Remark: we can also have $q = \infty$.

References:

Ljung, L.: Math. Programming, 1976.

LG: Stochastics, 1989.

THM: for I.I.D. SCORES g_n is L-MIXING

Assume $\mathbb{E}(X_1) < 0$, and also $\mathbb{E}(\exp cX_1) < \infty$ for some c > 0. Then

 $\mu := \mathbb{E}(\exp c' X_1) < 1 \quad \text{for some} \quad c' > 0. \tag{4}$

Let $\mathfrak{F}_n := \sigma(X_i \mid i \leq n)$ and $\mathfrak{F}_n^+ := \sigma(X_i \mid i \geq n+1)$.

Theorem

Let (X_n) be a sequence of i.i.d. random variables such that (4) holds. Then the Page-Hinkley detector (g_n) is L-mixing with respect to $(\mathcal{F}_n, \mathcal{F}_n^+)$.

LG and Prosdocimi, C. Systems & Control Letters, 2011.

EMPIRICAL TAIL PROBABILITIES

A known result in risk theory: for any c'' such that 0 < c'' < c', we have

$$\sup_{n} \mathbb{E}\left(\exp c'' g_{n}\right) < \infty.$$
(5)

Hence $P(g_n > \delta) \le Ce^{-c''\delta}$ with some $0 < C < \infty$. Equivalently,

 $\mathbb{E} \mathbb{I}_{\{g_n > \delta\}} \leq C e^{-c''\delta}.$

Since (g_n) is *L*-mixing, by a strong LLN it follows that

$$\limsup_{N} \frac{1}{N} \sum_{n=1}^{N} \mathbb{I}_{\{g_n > \delta\}} \leq C' e^{-c'' \delta}.$$

DEPENDENT SCORES

The key technical condition to be established above: for any c' > 0

$$\mathbb{E}\exp\sum_{k=1}^n c' X_k \leq C e^{-c'' n}$$

with some C, c'' > 0. Writing the l.h.s. as

$$\mathbb{E}\exp\left(\sum_{k=1}^n c'(X_k - \mathbb{E}X_k)\right) \cdot \exp\left(\sum_{k=1}^n c' \mathbb{E}X_k\right),$$

assuming $\mathbb{E}X_k \leq -\varepsilon$, it is sufficient to show that for small c'-s and all n:

$$\mathbb{E}\exp\left(\sum_{k=1}^n c'(X_k - \mathbb{E}X_k)\right) \le e^{\kappa(c')^2 n},$$

with some $\kappa > 0$.

AN EXPONENTIAL MOMENT CONDITION

Let $X = (X_n)$ be a sequence of real-valued random variables.

Condition E. There exist c > 0 and $\kappa > 0$ such that for $0 \le c' < c$ and all $1 \le m \le n$ we have

$$\mathbb{E} \exp\left(c'\sum_{k=m}^{n}(X_k-\mathbb{E}X_k)\right) \leq \exp\left(\kappa \ (c')^2(n-m+1)\right).$$

Objective: find useful conditions for the above inequality to hold.

I.I.D. REVISITED

Lemma

Let (X_n) be a zero-mean, i.i.d. sequence such that $\mathbb{E} e^{c|X_n|} < \infty$. Then Condition E is satisfied.

The proof is trivial, noting:

 $\mathbb{E}e^{c'X} \leq e^{\kappa(c')^2}.$

for $|c'| \leq c$ with some $\kappa > 0$.

We get even more.

ANOTHER EXPONENTIAL MOMENT INEQUALITY

Let X be a two-sided i.i.d. sequence as above. Let $h = (h_k), k = 0, 1, ...$ be an l_1 - sequence and define

$$Y_n = \sum_{k=0}^{\infty} h_k X_{n-k}$$
 in short $Y = h \star X$.

Write
$$|| h ||_2^2 = \sum_{k=0}^{\infty} h_k^2$$
.

Theorem

Let $Y = (Y_n)$ be a as above. Then for $||h||_2 \le c$

 $\mathbb{E}\exp\left(h\star X\right) \leq \exp\left(\kappa \parallel h \parallel_2^2\right).$

A SECOND EXPONENTIAL MOMENT CONDITION

Let $X = (X_n)$ be a two-sided sequence of real-valued r.v.-s, $\mathbb{E}X_n = 0$.

Condition SE. There exist c > 0 and $\kappa > 0$ such that for any $h \in I_1$ with $\|h\|_2 \le c$ we have

$$\mathbb{E}\exp\left(\sum_{k=0}^{\infty}h_{k}X_{n-k}\right)\leq\exp\left(\kappa\parallel h\parallel_{2}^{2}\right).$$
(6)

Note: if $X = (X_n)$ satisfies Condition SE and $g \in I_1$ then

 $Y = g \star X$

also satisfies Condition SE. (Trivial). Example: $|X_n| \leq K$.

L. Gerencsér

A NON-CONSTRUCTIVE EXAMPLE

Theorem

Let (X_n) be a zero-mean L-mixing process such that we have

 $M_{\infty}(X) < +\infty$ and $\Gamma_{\infty}(X) < +\infty$.

(7)

Then for any deterministic sequence f_n

$$\mathbb{E}\exp\left(\sum_{k=1}^n f_n X_n - 2M_{\infty}(X)\Gamma_{\infty}(X)\sum_{k=1}^n f_n^2\right) \leq 1.$$

It follows that Condition SE is satisfied.

LG: Stochastics and Stochastic Reports, 1991.

AN OPEN PROBLEM: SERIAL INTERCONNECTION

Let $X = (X_n)$ be a two-sided sequence of real-valued r.v.-s, satisfying $\mathbb{E}X_n \leq -\epsilon < 0$ and in addition Condition SE.

Consider a single server queue with waiting time denoted by W_n .

Let the dynamics of W_n is given by the non-linear system:

$$W_n = (W_{n-1} + X_n)_+$$
 with $W_0 = 0.$ (8)

Under what conditions does (W_n) satisfy Condition SE?

RECREATIONAL MATH

Establish stability properties of the Page-Hinkley-detector for *deterministic inputs*: assume that (X_n) is a deterministic sequence satisfying

$$\limsup_{N \longrightarrow +\infty} \frac{1}{N} \sum_{n=1}^{N} X_n < 0.$$
(9)

Let (g_n) be the response of the Page-Hinkley-detector driven by (X_n) . Does it follow that

$$\limsup_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} g_n < \infty?$$
 (10)

THANK YOU for YOUR ATTENTION !