An MAP/PH/K Queue with Constant Impatient Time

Qi-Ming He

Department of Management Sciences
University of Waterloo, Waterloo, Ontario
(J oint work with Qishu Cai and Zhuo Huang)

MAM9, Budapest, Hungary
June 28-30, 2016

Outline

1. Introduction
2. The $M A P / P H / K+\tau$ Queue
3. Existing Solution Approach for $M / P H / K+\tau$
4. Proposed Solution Approach for MAP/PH/K + τ
5. Numerical Examples
6. Current Research

1. Introduction

- Customer abandonment: Customers wait in queue and then leave the system without service
- Call center;
- Supply chain;
- Supermarket, Restaurant, Healthcare, etc.
- Customer impatience
- System congestion control

1. Introduction (contimued)

- Queues with constant impatient/abandonment time
- Constant approximation of abandonment time
- System congestion/performance control
- Choi et al. (2004): MAP/M/K $+\tau \quad(\tau$ is constant)
- Kim and Kim (2014): M/PH/1 + τ
- He, Zhang, and Ye (2015): M/PH/K + τ
- He, Cai, and Huang (2016): MAP/PH/K + τ

1. Introduction (continued)

- Our model, method, and contribution
- Model: $M A P / P H / K+\tau$
- Method: Matrix-analytic methods (Explicit)
- Potential contributions of our research
* Developed a computational procedure for computing distributions and moments of waiting times and queue lengths, for systems with
i) small and moderate K (from 1 to 100),
ii) phase-type service times, and
iii) a Markovian arrival process.

2. The $M A P / P H / K+\tau$ Queue

- Customers arrive according to a Markovian arrival process with matrix representation $\left(D_{0}, D_{1}\right)$.
- There is a underlying (continuous time) Markov chain $\left\{I_{\mathrm{a}}(t), t>0\right\}$ with states $\left\{1, \ldots, m_{\mathrm{a}}\right\}$ associated with the service time.
- All customers join a single queue waiting for service and are served on a first-come-first-served basis. If a customer's waiting time reaches constant time τ, the customer leaves the system immediately without service.
- There are K identical servers.
- The service time of each customer has a phase-type distribution with PH -representation (β, S) of order m_{s}.
- There is a underlying (continuous time) Markov chain $\left\{I_{\mathrm{s}}(t), t>0\right\}$ with states $\left\{0,1, \ldots, m_{\mathrm{s}}\right\}$ associated with the service time.

2. The $M A P / P H / K+\tau$ Queue (continued)

- System state: Track-phase-for-server (TPFS)
- $\quad a(t)$: the age of the first customer waiting in the queue at time t, if the (waiting) queue is not empty; otherwise, $a(t)=-\infty$.
- $\quad I_{k}(t)$: the phase of the server k at time t, for $k=1,2, \ldots, K$.
- $\quad\left\{\left(a(t), I_{\mathrm{a}}(t), I_{1}(t), \ldots, I_{K}(t)\right), t>0\right\}$ is a continuous time Markov chain.
- System state: Count-server-for-phase (CSFP)
- $a(t)$: the age of the first customer waiting in the queue at time t, if the (waiting) queue is not empty; otherwise, $a(t)=-\infty$.
- $\quad n_{i}(t)$: the number of servers whose service phase is i at time t, for $i=1,2, \ldots, m_{s}$.
- $\quad\left\{\left(a(t), I_{\mathrm{a}}(t), n_{1}(t), \ldots, n_{m_{-} s}(t)\right), t>0\right\}$ is a continuous time Markov chain.

3. Existing Approach for $\mathbf{M} / \mathbf{P H} / K+\boldsymbol{\tau}$

- For states with $a(t)=-\infty$ (no one is waiting)
$-\quad p_{0}=P\{a(t)=-\infty\} ;$
$-\quad$ for $k=1,2, \ldots, K$, and $n_{1}+\ldots n_{m_{-} s}=k$,

$$
\begin{aligned}
& p_{k}\left(n_{1}, \ldots, n_{m_{_} s}\right)=P\left\{a(t)=-\infty, n_{1}(t)=n_{1}, \ldots, n_{m_{-} s}(t)=n_{m_{-} s}\right\} \\
& \mathbf{p}_{k}=\left(p_{k}(\mathbf{n}), \mathbf{n} \in \Omega(k)\right)(\text { probabilities })
\end{aligned}
$$

- For states with $a(t)>0$ (at least one is waiting)

$$
p_{K+1}\left(x, n_{1}, \ldots, n_{m_{s}}\right)=\frac{\mathrm{d}}{\mathrm{~d} x} P\left\{a(t)<x, n_{i}(t)=n_{i}, i=1, \ldots, m_{s}\right\}, \quad \text { for } 0 \leq x<\tau,
$$

- \quad The vector $\mathbf{p}_{K+1}(x)$ (transition rates) is defined in a way similar to \mathbf{p}_{K}.

3. Existing Approach for $\mathbf{M} / \mathbf{P H} / \mathbf{K}+\boldsymbol{\tau}_{\text {(continued) }}$

- Fundamental equations for $\left\{\mathbf{p}_{0}, \mathbf{p}_{1}, \ldots, \mathbf{p}_{K}, \mathbf{p}_{K+1}(x)\right\}$

$$
\begin{aligned}
0 & =\mathbf{p}_{0}(-\lambda I+Q)+\mathbf{p}_{1}\left(M \otimes S^{-}\left(1, m_{s}\right)\right) ; \\
0 & =\mathbf{p}_{k-1}\left(I \otimes S^{+}\left(k-1, m_{s}\right)\right)+\mathbf{p}_{k}\left(-\lambda I+Q \otimes I+M \otimes S\left(k, m_{s}\right)\right)+\mathbf{p}_{k+1}\left(M \otimes S^{-}\left(k+1, m_{s}\right)\right), \\
& \text { for } \quad k=1,2, \ldots, K-1 ;
\end{aligned}
$$

$$
0=\mathbf{p}_{K-1}\left(I \otimes S^{+}\left(K-1, m_{\mathrm{s}}\right)\right)+\mathbf{p}_{K}\left(-\lambda I+Q \otimes I+M \otimes S\left(K, m_{\mathrm{s}}\right)\right)
$$

$$
+\frac{1}{\lambda} \int_{0}^{\tau} \mathbf{p}_{K+1}(y) e^{-\lambda y} \mathrm{~d} y\left(M \otimes\left(S^{-}\left(K, m_{\mathrm{s}}\right) S^{+}\left(K-1, m_{\mathrm{s}}\right)\right)\right)+\mathbf{p}_{K+1}(\tau) e^{-\lambda \tau}
$$

$$
\frac{\mathrm{d}}{\mathrm{~d} x} \mathbf{p}_{K+1}(x)=\mathbf{p}_{K+1}(x)\left(Q \otimes I+M \otimes S\left(K, m_{\mathrm{s}}\right)\right)+\mathbf{p}_{K+1}(\tau) \lambda e^{-\lambda(\tau-x)}
$$

$$
+\int_{x}^{\tau} \mathbf{p}_{K+1}(y) e^{-\lambda(y-x)} \mathrm{d} y\left(M \otimes\left(S^{-}\left(K, m_{s}\right) S^{+}\left(K-1, m_{s}\right)\right)\right), \quad 0 \leq x<\tau
$$

$$
\mathbf{p}_{K+1}(0)=\lambda \mathbf{p}_{K}
$$

3. Existing Approach for $M / \mathbf{P H} / \mathbf{K}+\tau_{\text {(continued) }}$

- Solution approach for $\left\{\mathbf{p}_{0}, \mathbf{p}_{1}, \ldots, \mathbf{p}_{K}, \mathbf{p}_{K+1}(x)\right\}$
- For the $M / P H / K+\tau$ case:

$$
\begin{aligned}
0=\frac{\mathrm{d}^{2} \mathbf{p}_{K+1}(x)}{\mathrm{d} x^{2}} & -\frac{\mathrm{d} \mathbf{p}_{K+1}(x)}{\mathrm{d} x}\left(\lambda I+S\left(K, m_{\mathrm{s}}\right)\right. \\
& +\lambda \mathbf{p}_{K+1}(x)\left(S\left(K, m_{\mathrm{s}}\right)+S^{-}\left(K, m_{\mathrm{s}}\right) S^{+}\left(K, m_{\mathrm{s}}\right) / \lambda\right)
\end{aligned}
$$

3. Existing Approach for $\mathbf{M} / \mathbf{P H} / \mathbf{K}+\tau_{\text {(continued) }}$

1. Use a routine method for QBD process

$$
\mathbf{p}_{k}=\mathbf{p}_{K} D_{K} \cdots D_{k+1}, \quad \text { for } k=0,1,2, \ldots, K-1
$$

2. Following the approach in Choi et al. (2004) or Kim and Kim (2014)

$$
\begin{aligned}
\mathbf{p}_{K+1}(x)= & \mathbf{u}_{1} \exp \{\lambda(R-I)(\tau-x)\} \\
& +\mathbf{u}_{2} \exp \left\{\left(\lambda G+Q \otimes I+M \otimes S\left(K, m_{\mathrm{s}}\right)\right) x\right\}
\end{aligned}
$$

where $\mathbf{u}_{1}, \mathbf{u}_{2}, R$, and G are constant vectors/matrices.
3. Boundary queue length distribution:

$$
\mathbf{p}_{K}=\frac{1}{\lambda} \mathbf{p}_{K+1}(0)=\frac{1}{\lambda}\left(\mathbf{u}_{1} \exp \{\lambda(R-I) \tau\}+\mathbf{u}_{2}\right) .
$$

3. Existing Approach for $M / \mathbf{P H} / \mathbf{K}+\tau_{\text {(continued) }}$

- Computation procedure for stationary distribution $\left\{\mathbf{p}_{0}, \mathbf{p}_{1}, \ldots, \mathbf{p}_{K}, \mathbf{p}_{K+1}(x)\right\}$:
- Computing $\{R, G\}$ (e.g., Logarithmic reduction)
- Construct ϕ, and compute ξ or ζ
- Computing $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$
- Compute $\mathbf{p}_{K+1}(x)$
- Compute $\mathbf{p}_{K}=\mathbf{p}_{K+1}(0) / \lambda$
- Compute $\left\{D_{k}, k=1,2, \ldots, K\right\}$
- Compute $\left\{\mathbf{p}_{0}, \mathbf{p}_{1}, \ldots, \mathbf{p}_{K-1}\right\}$
- Performance measures (loss probability, waiting time, queue length, etc.)

4. Proposed Approach for $M A P / P H / K+\tau$

- Fundamental equations for $\left\{\mathbf{p}_{0}, \mathbf{p}_{1}, \ldots, \mathbf{p}_{K}, \mathbf{p}_{\mathrm{K}+1}(\mathbf{x})\right\}$

$$
\begin{aligned}
& 0=\mathbf{p}_{0} A_{0,0}+\mathbf{p}_{1} A_{1,0} ; \\
& 0=\mathbf{p}_{k-1} A_{k-1, k}+\mathbf{p}_{k} A_{k, k}+\mathbf{p}_{k+1} A_{k+1, k} \text {, for } k=1,2, \ldots, K-1 \text {; } \\
& 0=\mathbf{p}_{K-1} A_{K-1, K}+\mathbf{p}_{K} A_{K, K} \\
& +\int_{0}^{\tau} \mathbf{p}_{K+1}(\psi)\left(e^{D_{0} y} \otimes\left(Q^{-}\left(K, m_{\mathrm{s}}\right) P^{+}\left(K-1, m_{\mathrm{s}}\right)\right)\right) \mathrm{d} y+\mathbf{p}_{K+1}(\tau)\left(e^{D_{0} \tau} \otimes I\right) ; \\
& \frac{\mathrm{d}}{\mathrm{~d} x} \mathbf{p}_{K+1}(x)=\mathbf{p}_{K+1}(x)\left(I \otimes Q\left(K, m_{\mathrm{s}}\right)\right)+\mathbf{p}_{K+1}(\tau)\left(e^{D_{0}(\tau-x)} D_{1} \otimes I\right) \\
& +\int_{x}^{\tau} \mathbf{p}_{K+1}(y)\left(e^{D_{0}(y-x)} D_{1} \otimes\left(R^{-}\left(K, m_{s}\right) P^{+}\left(K-1, m_{s}\right)\right)\right) \mathrm{d} y, \quad 0 \leq x<\tau ; \\
& \mathbf{p}_{K+1}(0)=\mathbf{p}_{K}\left(D_{1} \otimes I\right),
\end{aligned}
$$

4. Proposed Approach for $M A P / P H / K+\tau_{\text {(continued) }}$

- Solution approach for $\left\{\mathbf{p}_{0}, \mathbf{p}_{1}, \ldots, \mathbf{p}_{K}, \mathbf{p}_{K+1}(\mathbf{x})\right\}$
- \quad For the $M / P H / K+\tau$ case:

$$
\begin{aligned}
0=\frac{\mathrm{d}^{2} \mathbf{p}_{K+1}(x)}{\mathrm{d} x^{2}} & -\frac{\mathrm{d} \mathbf{p}_{K+1}(x)}{\mathrm{d} x}\left(\lambda I+S\left(K, m_{\mathrm{s}}\right)\right. \\
& +\lambda \mathbf{p}_{K+1}(x)\left(S\left(K, m_{\mathrm{s}}\right)+S^{-}\left(K, m_{\mathrm{s}}\right) S^{+}\left(K, m_{\mathrm{s}}\right) / \lambda\right) .
\end{aligned}
$$

- For the $M A P / P H / K+\tau$ case, the above second order (vector) differential equation cannot be obtained (due to the commutability of matrices).
- Our proposed approach: Laplace-Stieltjes Transform (LST) of the vector function $\mathbf{p}_{K+1}(x)$.

4. Proposed Approach for $M A P / P H / K+\tau_{\text {(coninued) }}$

- LST of $\mathbf{p}_{K+1}(x)$
$-\quad$ Definition: $\quad \mathbf{f}_{K+1}^{*}(s)=\int_{0}^{\tau} \mathbf{p}_{K+1}(x) \exp \{-s x\} \mathrm{d} x$
- The fundamental equation of $\mathbf{p}_{K+1}(x)$ becomes

$$
\mathbf{f}_{K+1}^{*}(s) A^{*}(s)=C^{*}(s)
$$

where

$$
\begin{aligned}
& A^{*}(s)=\left(\left(s I+D_{0}\right)^{-1} \otimes\right) B^{*}(s) ; \\
& B^{*}(s)=\left(s I+D_{0}\right) \otimes\left(s I-Q\left(K, m_{s}\right)\right)+D_{1} \otimes\left(Q^{-}\left(K, m_{s}\right) P^{+}\left(K-1, m_{s}\right)\right) ; \\
& C^{*}(s)=\mathbf{p}_{K+1}(0)+\mathbf{f}_{K+1}^{*}\left(-D_{0}\right)\left(\left(\left(s I+D_{0}\right)^{-1} D_{1}\right) \otimes\left(Q^{-}\left(K, m_{s}\right) P^{+}\left(K-1, m_{s}\right)\right)\right) \\
& +\mathbf{p}_{K+1}(\tau)\left(\left(\left(s I+D_{0}\right)^{-1}\left(e^{D_{0} \tau} D_{1}-e^{-s \tau}(s I+D)\right) \otimes I\right) ;\right. \\
& \mathbf{f}_{K+1}\left(-D_{0}\right)=\int_{0}^{\tau} \mathbf{p}_{K+1}(y)\left(e^{D_{0} y} \otimes I\right) \mathrm{d} y,
\end{aligned}
$$

4. Proposed Approach for $M A P / P H / K+\tau_{\text {(continued) }}$

- Characterization of the roots of $\operatorname{det}\left(B^{*}(s)\right)$ (conjecture to be shown)
- Half of the roots with positive real part;
- Half with negative real part.
- Linear system for constant vectors (validity depending on independence of some vectors, which is not guaranteed.)

$$
\begin{aligned}
& \mathbf{p}_{K+1}(0) U^{+}+\mathbf{p}_{K+1}(\tau) V^{+}+\mathbf{f}_{K+1}^{*}\left(-D_{0}\right) W^{+}=0 \\
& \mathbf{p}_{K+1}(0) U^{-}+\mathbf{p}_{K+1}(\tau) V^{-}+\mathbf{f}_{K+1}^{*}\left(-D_{0}\right) W^{-}=0
\end{aligned}
$$

$-\quad\left\{U^{+}, V^{+}, W^{+}\right\}$are associated with roots with positive real part;

- $\quad\left\{U^{-}, V^{-}, W^{-}\right\}$are associated with roots with positive real part;

4. Proposed Approach for $M A P / P H / K+\tau_{\text {(continued) }}$

- A solution

$$
\begin{aligned}
& \left(M_{\mathbf{p}_{K+1}(0)}, M_{\mathbf{p}_{K+1}(\tau)}\right)=-\left(W^{+}, W^{-}\right)\left(\begin{array}{ll}
U^{+} & U^{-} \\
V^{+} & V^{-}
\end{array}\right) \begin{array}{l}
\text { not guaranteed in general, and the } \\
\text { matrix is invertible only for } m_{s} \leq 2 . \\
-Q^{-}\left(K, m_{\mathrm{s}}\right) P^{+}\left(K-1, m_{\mathrm{s}}\right) \text { is singular!!! }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \cdot\left(M_{k}\left(D_{1} \otimes P^{+}\left(K-1, m_{j}\right)\right)+D_{0} \otimes I+I \otimes Q\left(K, m_{3}\right)\right)^{\prime} . \\
& \mathbf{p}_{K+1}(0)=\mathbf{f}_{K+1}^{*}\left(-D_{0}\right) M_{\mathbf{p}_{K}}\left(D_{1} \otimes I\right), \\
& \mathbf{p}_{K+1}(\tau)=\mathbf{f}_{K+1}^{*}\left(-D_{0}\right) M_{\mathbf{p}_{K+1}(\tau)}, \\
& \mathbf{f}_{K+1}^{*}\left(-D_{0}\right) Q_{\mathrm{f}_{K+1}\left(-D_{0}\right)}=0 \quad Q_{\mathrm{f}_{\mathrm{k}+1}\left(-D_{0}\right)}=M_{\mathrm{p}_{\mathrm{k} \times 1}(0)}-M_{\mathrm{p}_{k}}\left(D_{1} \otimes I\right) .
\end{aligned}
$$

5. Numerical Examples

- Consider an MAP/PH/K+ τ queue with $\tau=1$,

$$
\begin{aligned}
& m_{\mathrm{a}}=2, \quad D_{0}=\left(\begin{array}{cc}
-4 & 2 \\
3 & -9
\end{array}\right), \quad D_{1}=\left(\begin{array}{ll}
1 & 1 \\
1 & 5
\end{array}\right) ; \\
& m_{\mathrm{s}}=2, \quad \boldsymbol{\beta}=(0.8,0.2), \quad S=\left(\begin{array}{cc}
-3 & 2 \\
0.5 & -2
\end{array}\right)
\end{aligned}
$$

K	1	2	3	4	5	6	7
$E\left[W_{\mathrm{a}}\right]$	0.8742	0.6759	0.4258	0.2097	0.0847	0.0303	0.0101
$E\left[N_{\text {all }}\right]$	4.2154	4.3456	4.0425	3.5505	3.1854	3.0055	2.9341

6. Current Research

- The $M A P / P H / K+\tau$ queue (undergoing)
- \quad Characterization of the roots of $\operatorname{det}\left(B^{*}(s)\right)$;
- Find new independent vectors to form a linear system for constant vectors;
- Try probabilistic approaches for some constant vectors;

Thank you very much!

Any question and suggestion?

