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Introduction



Model Description

The model studied:

• Continuous (fluid) queue

• Multiple fluid types, priority service

• Fluid arrival process:

• Common CTMC generator: Q

• Fluid rates of class k: R(k)

• Fluid service process

• Constant service rate d

Results:

• Waiting time

• LST, moments, distribution function (approx.)

• Queue length

• LST, moments, distribution function (approx.)

• We can’t obtain (by this approach):

• Properties of the joint distribution of the queues
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Concept of the Solution

• Based on the tagged customer approach

• For a class k fluid drop:

• < k priority classes can be omitted
• Before it can leave:

• The server has to accomplish the class k+ workload present at arrival

• ...plus the higher pr. workload arrived while waiting

• Performance measures:

• Waiting time: this duration

• Queue length at fluid drop departures: The amount of class k fluid

arriving over this duration

• Ingredients of the solution:

• Construction of special fluid flows for the perf. measures

• Waiting time & queue length at dep. → related to a reward

accumulation problem during a busy period of this fluid model

• Queue length at arbitrary time → from the one at departures
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The Busy Period of Markovian

Fluid Models



Stationary Solution of Markovian Fluid Models

• Parameters:

F =

F++ F+− F+0

F−+ F−− F−0

F0+ F0− F00

 , C =

C+

C−
0

 ,
• Differential equation:

d

dx
π(x)C = π(x)F, π(0)C = p F, pi = 0, ∀i : ci > 0.

• Matrix-analytic solution:

π(x) = κ eKx
[
I Ψ

] [C+

|C−|

][
I 0 F+0(F00)−1

0 I F−0(F00)−1

]
,

• Two important matrices:

• Ψ: phase transition probs. over the busy period

• K: eKx is the expected number of crossings of level x
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The properties of the busy period

• Matrix Ψ: the solution of a Riccati equation

Ψ|C−|−1F•−+Ψ + Ψ|C−|−1F•−− + C+
−1F•++Ψ + C+

−1F•+− = 0,

• Matrix Ψ∗(s): LST of the busy period distribution + phase

transition probs. → solution of a Riccati equation

• Moments of the busy period duration: from the derivatives of Ψ∗(s)

(solution of 1 Riccati and n Sylvester type equations)

• Approximation for Ψ(t): based on Erlangization:

Ψn(t) =

∫ ∞
0

fE(n,n/t)(u) ·Ψ(u) du

• Interpretation: Ψn(t) = P(the busy period is shorter than an Erlang)

• Solution: count the number of Erlang phases during the busy period

→ recursions for Ψn(t) (Riccati+Sylvester equations)
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The busy period with non-zero initial fluid

• If the initial fluid level is x , the LST of the busy period duration is:

G∗+−(s, x) = Ψ∗(s)G∗−−(s, x),

G∗−−(s, x) = eH∗
G (s)x ,

G∗0−(s, x) = (sI− F00)−1F0+G∗+−(s, x) + (sI− F00)−1F0−G∗−−(s, x)

• Important point: matrix-exponential in x!
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Accumulated reward during the busy period

• Besides F,C we now have (diagonal) D as well

• Dii : reward accumulation rate in i

• We are interested in the distribution of the reward accumulated

during the busy period Φ(y)

• LST: Φ∗(v), from Riccati equation, very similar to Ψ∗(s)

• Moments: from the derivatives of Φ∗(v) (1 Riccati, n Sylvester)

• Approximation for Φ(t): Erlangization can be adapted

• Non-zero initial fluid x → B(y , x)

• The LST B∗(v , x) is

B∗+−(v , x) = Φ∗(v)B∗−−(v , x),

B∗−−(v , x) = eH∗
B (v)x ,

B∗0−(v , x) = (vD0 − F00)−1F0+B∗+−(v , x) + (vD0 − F00)−1F0−B∗−−(v , x)

• Again, matrix-exponential in x
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Analysis of the Priority Queue



Workload at fluid drop arrival

Question: how much class k+ workload is present in the system when a

fluid drop arrives?

Workload process analysis:

• Workload process 6= queue length process

• In state i , over ∆ amount of time the service requirement brought

into the system is: ∆rk+
i /d

• The workload decreases with slope 1

• Resulting diff. equations:

∂

∂t
v(t, x) +

∂

∂x
v(t, x)(R(k+)/d − I) = v(t, x)Q

• → Markovian fluid flow model!

• Stationary solution: v(x) = κeKxA

• Solution at drop arrival instants: vA(x) = 1
λ(k)κe

KxAR(k)
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Waiting Time of Fluid Drops

• We create a special fluid flow model

• Goal: the accumulated reward over the busy period (initiated at

level 0) = waiting time of fluid drops

• Parameters of the special system:

F =

[
K AR(k)/λ(k)

Q

]
, C =

[
I

R((k+1)+)/d − I

]
, D =

[
0

I

]
• Purpose of the first state group:

• To set the workload seen by an arriving drop

(recall: vA(x) = 1

λ(k) κe
KxAR(k))

• Purpose of the second state group:

• Fluid drop joined the queue, server is processing the workload

• Time spent here is measured by the reward rate

• Properties of the waiting time: from Φ∗(v), its derivatives, and its

Erlangization based approximation
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Queue Length at Departure Instants

• An other similar special fluid model with reward is created:

F =

[
K AR(k)/λ(k)

Q

]
, C =

[
I

R((k+1)+)/d − I

]
, D =

[
0

R(k)

]

• Purpose of the first state group:

• To set the workload seen by an arriving drop

• Purpose of the second state group:

• Fluid drop joined the queue, server is processing the workload

• The amount of arriving class k fluid is measured by the reward rate

• Properties of the queue length at departures: from Φ∗(v), its

derivatives, and its Erlangization based approximation
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Queue Length at Random Point in Time

• Known: queue length at departures X ,

Question: at random point in time Y
• Relation is well known for discrete queues, but not for fluid

• Relation (f : pdf, F : cdf, p mass at 0):

fY(u)R(k) − FY(u)Q = λ(k)fX (u), λ(k)pX = pYR(k)

• Proof: by simple balance equations

• the rate at which state (Y(t) = x ,J (t) = j) is left (for x > 0):

λ(k)/δ · fX j
(x − δ) + fY j

(x)r
(k)
j /δ + fY j

(x)(−qjj)

• the rate at which the system enters state (Y(t) = x ,J (t) = j) is

λ(k)/δ · fX j
(x) + fY j

(x − δ)r
(k)
j /δ +

∑
i 6=j

fY i
(x)qij

• Equating the two and δ → 0 provides the theorem

• The relation in LST domain is: f ∗Y (s)(s R(k) −Q) = λ(k) s f ∗X (s)

• From the moments of X → the moments of Y: easy

• From the Erlangization of X → the one of Y: less easy 11



Numerical Example



Example 1

• MATLAB implementation

• Solving Riccati: ADDA, solving Sylvester: lyap (Hessenberg-Schur)

Q =


−8 5 0 3

3 −4 0 1

4 6 −10 0

2 3 10 −15

 , R(1) =


1

0

2

1

 ,

R(2) =


2

0

4

1

 , R(3) =


4.5

1

0

2

 ,
• d = 4 → utilization = 0.875

• Computing 3 moments of the waiting time and queue length

• Prompt response
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Example 1

• Accuracy of the Erlangization based approximation:
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• Computation times of class 1 waiting time distribution in 50 points:

r
(2)
3 = 4 r

(2)
3 = 4.1

n = 10 0.523 s 0.189 s

n = 25 4.771 s 0.543 s

n = 50 33.255 s 1.427 s

n = 100 249.72 s 4.616 s
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Example 2

• N determines the size of the model

QN=



• Nν

γ • (N−1)ν

2γ • (N−2)ν
. . .

. . .
. . .

(N−1)γ • ν

Nγ •


,RN=


0

ρ/N

2ρ/N
. . .

ρ

 ,

• Per-class fluid rates:

R
(1)
N = 0.1 · RN ,R

(2)
N = 0.3 · RN and R

(3)
N = 0.6 · RN

• 5 moments are computed, N varies, utilization varies
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Example 1

• Execution time vs. model size:
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• Size 1000 models in 10−−100 seconds!
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Conclusion



Conclusion

• Some new results are presented on fluid queues

• They are glued together with existing ones to enable the efficient

analysis of fluid priority queues

• Priority queues with huge background process can be analyzed

• Using standard math frameworks (MATLAB)

• Without any numerical difficulties

• With reasonable computation times
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