

Markov-modulated fluid priority queues

Waiting time and queue length analysis

Gábor Horváth

June 27, 2016

Budapest University of Technology and Economics Dept. of Networked Systems and Services

- 1. Introduction
- 2. The Busy Period of Markovian Fluid Models
- 3. Analysis of the Priority Queue
- 4. Numerical Example
- 5. Conclusion

Introduction

Model Description

The model studied:

- Continuous (fluid) queue
- Multiple fluid types, priority service
- Fluid arrival process:
 - Common CTMC generator: **Q**
 - Fluid rates of class k: $\mathbf{R}^{(k)}$
- Fluid service process
 - Constant service rate d

Results:

- Waiting time
 - LST, moments, distribution function (approx.)
- Queue length
 - LST, moments, distribution function (approx.)
- We can't obtain (by this approach):
 - Properties of the joint distribution of the queues

Concept of the Solution

- Based on the tagged customer approach
- For a class k fluid drop:
 - < k priority classes can be omitted
 - Before it can leave:
 - The server has to accomplish the class k+ workload present at arrival
 - ...plus the higher pr. workload arrived while waiting
 - Performance measures:
 - Waiting time: this duration
 - Queue length at fluid drop departures: The amount of class k fluid arriving over this duration
- Ingredients of the solution:
 - Construction of special fluid flows for the perf. measures
 - Waiting time & queue length at dep. \rightarrow related to a reward accumulation problem during a busy period of this fluid model
 - Queue length at arbitrary time \rightarrow from the one at departures

The Busy Period of Markovian Fluid Models

Stationary Solution of Markovian Fluid Models

• Parameters:

$$\label{eq:F} \textbf{F} = \begin{bmatrix} \textbf{F}_{++} & \textbf{F}_{+-} & \textbf{F}_{+0} \\ \textbf{F}_{-+} & \textbf{F}_{--} & \textbf{F}_{-0} \\ \textbf{F}_{0+} & \textbf{F}_{0-} & \textbf{F}_{00} \end{bmatrix}, \quad \textbf{C} = \begin{bmatrix} \textbf{C}_{+} & & \\ & \textbf{C}_{-} & \\ & & \textbf{0} \end{bmatrix}$$

• Differential equation:

$$rac{d}{dx}\pi(x)\mathbf{C}=\pi(x)\mathbf{F},\qquad \pi(0)\mathbf{C}=p\,\mathbf{F},\qquad p_i=0,\quad \forall i:c_i>0.$$

• Matrix-analytic solution:

$$\pi(x) = \kappa e^{\mathsf{K}x} \begin{bmatrix} \mathsf{I} & \mathsf{\Psi} \end{bmatrix} \begin{bmatrix} \mathsf{C}_+ & \\ & |\mathsf{C}_-| \end{bmatrix} \begin{bmatrix} \mathsf{I} & \mathsf{0} & \mathsf{F}_{+0}(\mathsf{F}_{00})^{-1} \\ \mathsf{0} & \mathsf{I} & \mathsf{F}_{-0}(\mathsf{F}_{00})^{-1} \end{bmatrix},$$

- Two important matrices:
 - Ψ : phase transition probs. over the busy period
 - K: e^{Kx} is the expected number of crossings of level x

The properties of the busy period

• Matrix Ψ : the solution of a Riccati equation

 $\Psi|\mathsf{C}_{-}|^{-1}\mathsf{F}^{\bullet}_{-+}\Psi+\Psi|\mathsf{C}_{-}|^{-1}\mathsf{F}^{\bullet}_{--}+\mathsf{C}_{+}^{-1}\mathsf{F}^{\bullet}_{++}\Psi+\mathsf{C}_{+}^{-1}\mathsf{F}^{\bullet}_{+-}=\mathbf{0},$

- Matrix Ψ*(s): LST of the busy period distribution + phase transition probs. → solution of a Riccati equation
- Moments of the busy period duration: from the derivatives of Ψ^{*}(s) (solution of 1 Riccati and n Sylvester type equations)
- Approximation for $\Psi(t)$: based on Erlangization:

$$\Psi_n(t) = \int_0^\infty f_{\mathcal{E}(n,n/t)}(u) \cdot \Psi(u) \, du$$

- Interpretation: $\Psi_n(t) = P(\text{the busy period is shorter than an Erlang})$
- Solution: count the number of Erlang phases during the busy period
 → recursions for Ψ_n(t) (Riccati+Sylvester equations)

The busy period with non-zero initial fluid

• If the initial fluid level is x, the LST of the busy period duration is:

$$\begin{aligned} \mathbf{G}^*_{+-}(s,x) &= \mathbf{\Psi}^*(s)\mathbf{G}^*_{--}(s,x), \\ \mathbf{G}^*_{--}(s,x) &= e^{\mathbf{H}^*_{\mathcal{G}}(s)x}, \\ \mathbf{G}^*_{0-}(s,x) &= (s\mathbf{I} - \mathbf{F}_{00})^{-1}\mathbf{F}_{0+}\mathbf{G}^*_{+-}(s,x) + (s\mathbf{I} - \mathbf{F}_{00})^{-1}\mathbf{F}_{0-}\mathbf{G}^*_{--}(s,x) \end{aligned}$$

• Important point: matrix-exponential in x!

Accumulated reward during the busy period

- Besides F, C we now have (diagonal) D as well
- **D**_{ii}: reward accumulation rate in i
- We are interested in the distribution of the reward accumulated during the busy period Φ(y)
- LST: $\Phi^*(v)$, from Riccati equation, very similar to $\Psi^*(s)$
- Moments: from the derivatives of $\Phi^*(v)$ (1 Riccati, *n* Sylvester)
- Approximation for $\Phi(t)$: Erlangization can be adapted
- Non-zero initial fluid $x \to \mathbf{B}(y, x)$
- The LST B*(v, x) is

$$\begin{aligned} \mathbf{B}^*_{+-}(v,x) &= \mathbf{\Phi}^*(v)\mathbf{B}^*_{--}(v,x), \\ \mathbf{B}^*_{--}(v,x) &= e^{\mathbf{H}^*_{\mathcal{B}}(v)x}, \\ \mathbf{B}^*_{0-}(v,x) &= (v\mathbf{D}_0 - \mathbf{F}_{00})^{-1}\mathbf{F}_{0+}\mathbf{B}^*_{+-}(v,x) + (v\mathbf{D}_0 - \mathbf{F}_{00})^{-1}\mathbf{F}_{0-}\mathbf{B}^*_{--}(v,x). \end{aligned}$$

• Again, matrix-exponential in x

Analysis of the Priority Queue

Question: how much class k+ workload is present in the system when a fluid drop arrives?

Workload process analysis:

- Workload process \neq queue length process
- In state *i*, over Δ amount of time the service requirement brought into the system is: Δr^{k+}_i/d
- The workload decreases with slope 1
- Resulting diff. equations:

$$rac{\partial}{\partial t}v(t,x)+rac{\partial}{\partial x}v(t,x)(\mathbf{R}^{(k+)}/d-\mathbf{I})=v(t,x)\mathbf{Q}$$

- $\bullet \ \rightarrow \mathsf{Markovian} \ \mathsf{fluid} \ \mathsf{flow} \ \mathsf{model!}$
- Stationary solution: $v(x) = \kappa e^{\mathbf{K}x} \mathbf{A}$
- Solution at drop arrival instants: $v_A(x) = \frac{1}{\lambda^{(k)}} \kappa e^{\mathbf{K} x} \mathbf{A} \mathbf{R}^{(k)}$

Waiting Time of Fluid Drops

- We create a special fluid flow model
- Goal: the accumulated reward over the busy period (initiated at level 0) = waiting time of fluid drops
- Parameters of the special system:

$$\mathbf{F} = \begin{bmatrix} \mathbf{K} & \mathbf{A}\mathbf{R}^{(k)}/\lambda^{(k)} \\ \mathbf{Q} \end{bmatrix}, \quad \mathbf{C} = \begin{bmatrix} \mathbf{I} & \\ & \mathbf{R}^{((k+1)+)}/d - \mathbf{I} \end{bmatrix}, \quad \mathbf{D} = \begin{bmatrix} \mathbf{0} & \\ & \mathbf{I} \end{bmatrix}$$

- Purpose of the first state group:
 - To set the workload seen by an arriving drop (recall: v_A(x) = ¹/_{λ(k)}κe^{Kx}AR^(k))
- Purpose of the second state group:
 - Fluid drop joined the queue, server is processing the workload
 - Time spent here is measured by the reward rate
- Properties of the waiting time: from Φ*(v), its derivatives, and its Erlangization based approximation

Queue Length at Departure Instants

• An other similar special fluid model with reward is created:

$$\mathbf{F} = \begin{bmatrix} \mathbf{K} & \mathbf{A}\mathbf{R}^{(k)}/\lambda^{(k)} \\ \mathbf{Q} \end{bmatrix}, \ \mathbf{C} = \begin{bmatrix} \mathbf{I} & \\ & \mathbf{R}^{((k+1)+)}/d - \mathbf{I} \end{bmatrix}, \ \mathbf{D} = \begin{bmatrix} \mathbf{0} & \\ & \mathbf{R}^{(k)} \end{bmatrix}$$

• Purpose of the first state group:

- To set the workload seen by an arriving drop
- Purpose of the second state group:
 - · Fluid drop joined the queue, server is processing the workload
 - The amount of arriving class k fluid is measured by the reward rate
- Properties of the queue length at departures: from Φ^{*}(ν), its derivatives, and its Erlangization based approximation

Queue Length at Random Point in Time

- Known: queue length at departures \mathcal{X} , Question: at random point in time \mathcal{Y}
- Relation is well known for discrete queues, but not for fluid
- Relation (f: pdf, F: cdf, p mass at 0):

$$\underline{f_{\mathcal{Y}}}(u)\mathbf{R}^{(k)} - \underline{F_{\mathcal{Y}}}(u)\mathbf{Q} = \lambda^{(k)}\underline{f_{\mathcal{X}}}(u), \quad \lambda^{(k)}\underline{p_{\mathcal{X}}} = \underline{p_{\mathcal{Y}}}\mathbf{R}^{(k)}$$

- Proof: by simple balance equations
- the rate at which state $(\mathcal{Y}(t) = x, \mathcal{J}(t) = j)$ is left (for x > 0): $\lambda^{(k)}/\delta \cdot \underline{f}_{\mathcal{X}_{j}}(x - \delta) + \underline{f}_{\mathcal{Y}_{j}}(x)r_{j}^{(k)}/\delta + \underline{f}_{\mathcal{Y}_{j}}(x)(-q_{jj})$
- the rate at which the system enters state $(\mathcal{Y}(t) = x, \mathcal{J}(t) = j)$ is

$$\lambda^{(k)}/\delta \cdot \underline{f_{\mathcal{X}_j}}(x) + \underline{f_{\mathcal{Y}_j}}(x-\delta)r_j^{(k)}/\delta + \sum_{i\neq j}\underline{f_{\mathcal{Y}_i}}(x)q_{ij}$$

- Equating the two and $\delta \rightarrow 0$ provides the theorem
- The relation in LST domain is: $f_{\mathcal{Y}}^*(s)(s \mathbf{R}^{(k)} \mathbf{Q}) = \lambda^{(k)} s f_{\mathcal{X}}^*(s)$
- From the moments of $\mathcal{X} \to$ the moments of $\mathcal{Y}:$ easy
- From the Erlangization of $\mathcal{X} \to$ the one of $\mathcal{Y}:$ less easy

Numerical Example

- MATLAB implementation
- Solving Riccati: ADDA, solving Sylvester: lyap (Hessenberg-Schur)

$$\mathbf{Q} = \begin{bmatrix} -8 & 5 & 0 & 3\\ 3 & -4 & 0 & 1\\ 4 & 6 & -10 & 0\\ 2 & 3 & 10 & -15 \end{bmatrix}, \qquad \mathbf{R}^{(1)} = \begin{bmatrix} 1 & & \\ 0 & & \\ & 2 & \\ & & 1 \end{bmatrix},$$
$$\mathbf{R}^{(2)} = \begin{bmatrix} 2 & & \\ 0 & & \\ & 4 & \\ & & 1 \end{bmatrix}, \qquad \mathbf{R}^{(3)} = \begin{bmatrix} 4.5 & & \\ & 1 & \\ & 0 & \\ & & 2 \end{bmatrix},$$

- $d = 4 \rightarrow$ utilization = 0.875
- Computing 3 moments of the waiting time and queue length
 - Prompt response

• Accuracy of the Erlangization based approximation:

• Computation times of class 1 waiting time distribution in 50 points:

	$r_3^{(2)} = 4$	$r_3^{(2)} = 4.1$
n = 10	0.523 <i>s</i>	0.189 <i>s</i>
<i>n</i> = 25	4.771 <i>s</i>	0.543 <i>s</i>
<i>n</i> = 50	33.255 <i>s</i>	1.427 <i>s</i>
n = 100	249.72 <i>s</i>	4.616 <i>s</i>

• *N* determines the size of the model

- Per-class fluid rates: $\mathbf{R}_N^{(1)} = 0.1 \cdot \mathbf{R}_N, \mathbf{R}_N^{(2)} = 0.3 \cdot \mathbf{R}_N$ and $\mathbf{R}_N^{(3)} = 0.6 \cdot \mathbf{R}_N$
- 5 moments are computed, N varies, utilization varies

• Execution time vs. model size:

• Size 1000 models in 10 - -100 seconds!

Conclusion

Conclusion

- Some new results are presented on fluid queues
- They are glued together with existing ones to enable the efficient analysis of fluid priority queues
- Priority queues with huge background process can be analyzed
 - Using standard math frameworks (MATLAB)
 - Without any numerical difficulties
 - With reasonable computation times