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Dependence? Why?

In real life scenarios, there exist data sets that display significant and complex
correlations structures in both the times of consecutive events and in the
size of the consecutive events.

Events ≡ Failures of a system, arrivals of a packet of bytes, claims in an
insurance company, calls in a call center...

The event ocurrence can be understood as a single event or batch event.

The models used in the literature to fit these types of data sets ignore the
dependence.
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Example I: teletraffic data set

Bellcore LAN trace files (named BC-pAug89) found in

http://ita.ee.lbl.gov/html/contrib/BC.html.

The data file consists of the time in seconds of the packet arrival, and the
Ethernet data length in bytes.
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Example II: call center

The data archive of Mandelbaum (2012), collected daily from March 26, 2001 to
October 26, 2003 from an American banking call center.
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Our proposal =⇒ The BMAP

Versatile Markovian point process (Neuts, 1979).

Batch Markovian Arrival process or BMAP (Lucantoni, 1991).

1 Stationary BMAPs are dense in the family of stationary point processes.

2 Tractability of the Poisson process.

3 Dependent interarrival times.

4 Non-exponential interarrival times.

5 Correlated batch sizes.

Special cases:

1 A MAP with i.i.d. batch arrivals.

2 Batch PH-renewal processes.

3 Batch Markov-modulated Poisson process.
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The BMAP as a generalization of the Batch Poisson
proccess

Batch Poisson process:

QB−POISSON =


−λ λp1 λp2 λp3 · · · · · ·
0 −λ λp1 λp2 · · · · · ·
0 0 −λ λp1 · · · · · ·
0 0 0 −λ · · · · · ·
· · · · · · · · · · · · · · · ·

 .

Consider now m ×m matrices for the rates instead of numbers....

QBMAP =


D0 D1 D2 D3 · · ·
0 D0 D1 D2 · · ·
0 0 D0 D1 · · ·
0 0 0 D0 · · ·
· · · · · · · · · · · · ·

 ,
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How does a BMAPm(k) work?

Notation:

{
m ≡ order of the matrix Db, with 1 ≤ b ≤ k,
k ≡ the maximum batch arrival size.

The BMAPm(k) behaves as follows:

The Initial state i0 ∈ S = {1, 2...,m} is given by an initial probability vector
θ= (θ1, ..., θm).

At the end of an exponentially distributed sojourn time in state i , with rate
λi , two possible state transitions can occur:

1 With probability pij0, no arrival occurs and the BMAPm enters in a different
state j 6= i .

2 With probability pijb, with 1 ≤ l ≤ k, a transition to state j with a batch
arrival of size b occurs.
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The BMAP2(k) example
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The rate matrices D0,D1, ...,Dk are defined in terms of the transitions
probabilities as:

(D0)ii = −λi , i ∈ S ,

(D0)ij = λipij0, i , j ∈ S , i 6= j ,

(Dl)ij = λipijb, i , j ∈ S , 1 ≤ b ≤ k.
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The BMAP2(k) example in practice

b0 b1 b2 b3 b4

t1 t2 t3 t4

In practice, the BMAP is used to fit data where both the inter-arrival times and
batch size are observed, but not the state of the embedded Markov renewal
process. (Partially observed).
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Properties related to the time between events

The stationary probability vector φ related to P? ≡ the transition probability

matrix,
(
P? = (−D0)−1

(∑k
b=1 Db

))
is calculated as

φ = (πDe)−1π

(
k∑

b=1

Db

)
,

where π is the stationary probability of D =
∑k

b=0 Db.

T = time between two successive events (stationary case). T ∼ PH {φ,D0}.
Then, the moments of T are given by,

µn = E (T n) = n!φ (−D0)−n e.

The Autocorrelation Function (ACF) related to the times between events in
the stationary version, is given by

ρT (l) = ρ(T1,Tl+1) =

(
π
[
(−D0)−1D

]l
(−D0)−1e− µT

)
2π(−D0)−1e− µT

.

where µT = E [T ].
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Properties related to the batch sizes

Let Bn, denotes the batch size at the time of the n’th event occurrence.

The Bns are distributed according to the random variable B, with probability
mass function,

P(B = b) = φ(−D0)−1Dbe.

The moments of B are obtained as

E [Bn] = φ(−D0)−1D?
ne,

where D?
n =

∑k
b=1 b

nDb.

The ACF, ρ(B1,Bl+1) is given by

ρB(l) =
φ(−D0)−1D?

1

[
(−D0)−1D

]l−1
(−D0)−1D?

1 e− (φ(−D0)−1D?
1 e)2

φ(−D0)−1D?
2 e− (φ(−D0)−1D?

1 e)2 ,

where l ≥ 1 represents the time lag.
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Previous works about dependence

Most works regarding the theoretical aspect of the auto-correlation structure
are focused on special cases of the MAP, specifically, MAP2, see Heindl et al.
(2006), Casale et al. (2008) and Raḿırez-Cobo and Carrizosa (2013). Hervé
and Ledoux (2013) considered the general MAP.

The auto-correlation function for a sequence of inter-event times in a BMAP
is the same as MAP. However, the structure of the auto-correlation of the
batch arrivals has not been studied in detail in the literature.

Our aim: Obtain information about the possible dependence structures that
the BMAP offers. (Thinking in data fitting)
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A useful and general result for the BMAPm(k)

An alternative characterization of ρT (l) and ρB(l), which helps to understand the
dependence structure for the inter-event times and the batch sizes of the process
is,

ρT (l) =
m∑
i=2

pi (T )qli ,

ρB(l) =
m∑
i=2

pi (B)ql−1
i ,

where {qi}mi=2, are the eigenvalues of P? less than 1 in absolute value and
{pi (T )}mi=2 and {pi (B)}mi=2 are real-value sequences obtained from the
Perron-Frobenious decomposition of P?.

Recall: P? = (−D0)−1
(∑k

b=1 Db

)
.
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ACF for ρT (l) in the BMAP2(k)

The auto-correlation function for the inter-event times, ρT (l), is the same as for a
MAP2 ⇒ the results by Heindl et al. (2006) and Raḿırez-Cobo and Carrizosa
(2013) are also valid for the BMAP2(k).

ρT (l), is upper-bounded by 0.5.

|ρT (l)| ≥ |ρT (l + 1)|, for all l ≥ 1 and liml→∞ ρT (l) = 0 (Decreases
geometrically).

Correlation patterns for ρT (l)l≥1.

Pattern 1. If p(T ) ≥ 0 and q ≥ 0 ⇒ ρT (l) ≥ 0.

Pattern 2. If p(T ) ≤ 0 and q ≥ 0 ⇒ ρT (l) ≤ 0.

Pattern 3. If p(T ) ≥ 0 and q ≤ 0 ⇒ ρT (2l) ≥ 0 and ρT (2l + 1) ≤ 0.

Pattern 4. If p(T ) ≤ 0 and q < 0 ⇒ ρT (2l) ≤ 0 and ρT (2l + 1) ≥ 0.
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ACF for ρB(l) in the BMAP2(k)

For the BMAP2(k), we obtain

|ρB(l)| ≥ |ρB(l + 1)|, for all l ≥ 1 and lim
l→∞

ρB(l) = 0.

(Decreases geometrically)

The expression for the auto-correlation, ρB(l), for the BMAP2(2), is given by

ρB(l) = p(B)ql−1.

It can be checked that P(B) and q can be positive or negative ⇒ Correlation
patterns for ρB(l) in for the BMAP2(2).

Pattern 1. If p(B) ≥ 0 and q ≥ 0⇒ ρB(l) ≥ 0.

Pattern 2. If p(B) ≤ 0 and q ≥ 0⇒ ρB(l) ≤ 0.

Pattern 3. If p(B) ≥ 0 and q ≤ 0⇒ ρB(2l) ≤ 0 and ρB(2l + 1) ≥ 0.

Pattern 4. If p(B) ≤ 0 and q < 0⇒ ρB(2l) ≥ 0 and ρB(2l + 1) ≤ 0.
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Open problem

Is ρB(l) bounded for the BMAP2(k)?

Empirical evidence shows that ρB(l) is unbounded in [−1, 1]

Iterations
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Figure : Values of ρB(1) close to 1, for
a total 10000 simulated BMAP2(2)s.
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Figure : Values of ρB(1) close to −1,
for a total 10000 simulated
BMAP2(2)s.
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Dependence structure of the BMAPm(k), m ≥ 3

The property of both ρT (l) and ρB(l) decreasing geometrically is very
restrictive when you deal with data ⇒

an increase in m leads to new and richer correlation structures for the
BMAPm(k)?

The answer is affirmative although we have not theoretical results for the
evidences given by simulations.

Let’s take a look at some plots!!
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Dependence structure of the BMAPm(k), m ≥ 3

Examples of ρT (l) for m ≥ 3 where ρT (l) does not decrease with the time
lag.
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Example with m = 3 Example with m = 3
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Dependence structure of the BMAPm(k), m ≥ 3

Examples of ρT (l) for m ≥ 3 where the signs of the autocorrelation
coefficients do not alternate or are constant.
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Dependence structure of the BMAPm(k), m ≥ 3

Examples of ρT (l) for m ≥ 3 where the signs of the autocorrelation
coefficients do not alternate or are constant.
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Important remark: We are not able to find any MAPm such that |ρT (1)| > 0.5.
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Dependence structure of the BMAPm(2), m ≥ 3

Examples of ρB(l) for m ≥ 3 where ρB(l) is not a decreasing function in
absolute value, richer pattern that for m = 2 are observed and ρB(l) is
unbounded.
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...But what is it interesting in applications?

The counting process {N(t), t ≥ 0}

The probability of n event occurrences at time t is given by,

P (N(t) = n | N(0) = 0) = φP(n, t)e,

where the probability of n event occurrences in the interval (0, t] is given by
the matrix P(n, t), (cannot be computed in closed-form).
Their numerical computation is based on the uniformization method (Neuts
and Li. (1997)).

The expected number of event occurrences at time t, E (N(t) | N(0) = 0), is
computed from,

E (N(t) | N(0) = 0) = λ∗t,

where λ∗ = πD?
1 e, D?

1 =
∑k

b=1 bDb and π the stationary probability of

D =
∑k

b=0 Db.

Remark: Similar to a Poisson process. (E (N(t)) = λt)
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...But what is it interesting in applications?

The variance of N(t) for a BMAPm(k) is given by,(
πD?

2 e− 2 (λ∗)2 + 2cD?
1 e
)
t − 2c(I − eDt)(eπ − D)−1D?

1 e

where c = πD?
1 (eπ − D)−1 and D?

2 =
∑k

b=1 b
2Db.

The variance of N(t) for a MAPm is given by,

(1 + 2λ∗)E [N(t)]− 2πD1(eπ + D)−1D1et − 2πD1

(
I − eDt

)
(eπ + D)−2D1e

Remark: Very different to a Poisson process. (V (N(t)) = λt)
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Exploring the influence of the dependence in the counting
process

Objective: Identify the influence of the dependence pattern of ρT (l) and
ρB(l) in E (N(t)), V (N(t)) or P(n, t).

First scenario: Compare MAP2 with the same CDF of T but with different
dependence patterns of ρT (l).

In this case, the MAP2s have the same E (N(t)) and the same P(n, t),...but
different V (N(t))?
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First scenario: MAP2 with the same CDF of T but with
different dependence patterns of ρT (l)
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Poisson V [N (t)]

Pattern 1: p(T ) ≥ 0 and q ≥ 0

Pattern 3: p(T ) ≥ 0 and q ≤ 0
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Poisson V [N (t)]

Pattern 2: p(T ) ≤ 0 and q ≥ 0

Pattern 4: p(T ) ≤ 0 and q ≤ 0
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Pattern 1: p(T ) ≥ 0 and q ≥ 0
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Second scenario: MAP2 with the same λ∗ but with
different dependence patterns of ρT (l)

In this case, the MAP2s have the same E (N(t)),...but different V (N(t)) and
P(n, t)?
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V [N (t)] Poisson

Pattern 1: p(T ) ≥ 0 and q ≥ 0

Pattern 2: p(T ) ≤ 0 and q ≥ 0

Pattern 3: p(T ) ≥ 0 and q ≤ 0

Pattern 4: p(T ) ≤ 0 and q < 0

Rosa E. Lillo Dependence patterns related to the BMAP



Second scenario: MAP2 with the same λ∗ but with
different dependence patterns of ρT (l)
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Pattern 1: p(T ) ≥ 0 and q ≥ 0

Pattern 2: p(T ) ≤ 0 and q ≥ 0

Pattern 3: p(T ) ≥ 0 and q ≤ 0

Pattern 4: p(T ) ≤ 0 and q < 0
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Third scenario: BMAP2(2) with the same CDF of T but
with different dependence patterns of ρB(l)

In this case, the BMAP2(2)s have different E (N(t)), V (N(t)) and P(n, t)?
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E[N(t)] (dashed) and V [N (t)] (solid) for BMAP2(2) with same CDF

 

 

Pattern 1: p(B) ≥ 0 and q ≥ 0

Pattern 2: p(B) ≤ 0 and q ≥ 0

Pattern 3: p(B) ≥ 0 and q ≤ 0

Pattern 4: p(B) ≤ 0 and q < 0
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Third scenario: BMAP2(2) with the same CDF of T but
with different dependence patterns of ρB(l)
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Pattern 1: p(B) ≥ 0 and q ≥ 0
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Third scenario:BMAP2(2) with the same CDF of T but
with different dependence patterns of ρB(l)
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Pattern 3: p(B) ≥ 0 and q ≤ 0

Pattern 4: p(B) ≤ 0 and q < 0
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Conclusions

We provide a characterization of both ACFs in terms of the eigenvalues of P?

for the general BMAPm(k).

We prove that the auto-correlation function for the batch event sizes for the
BMAP2(k), for k ≥ 2, decreases geometrically as the time lag increases.

We identify four behavior patterns for ACF for the batch event sizes for the
BMAP2(2).

Richer dependence structure for the inter-event times and batch sizes are
captured with higher order BMAPs.

There are evidences that the dependence patterns have influence in the
counting process related to these models.
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Work in progress

Perform a theoretical analysis of the correlation bounds for the inter-event
times for m ≥ 3 and the batch sizes for m ≥ 2.

Develop estimation methods to fit properly the correlation pattern of the
data to a BMAPm?(k).

Understand how the autocorrelation functions modify the behavior of the
counting process.

The results showed in this talk have been recently accepted for publication in:

Rodŕıguez, J., Lillo, R.E. and Raḿırez-Cobo, P. (2016). Dependence patterns for
modeling simultaneous events, Reliability Engineering and System Safety, 154,
19-30.
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