Dependence patterns related to the BMAP

Rosa E. Lillo, Joanna Rodríguez, Pepa Ramírez-Cobo
Department of Statistics
Universidad Carlos III de Madrid

The Ninth International Conference on Matrix-Analytic Methods in Stochastic Models

Budapest
June 30, 2016

Dependence? Why?

- In real life scenarios, there exist data sets that display significant and complex correlations structures in both the times of consecutive events and in the size of the consecutive events.
- Events \equiv Failures of a system, arrivals of a packet of bytes, claims in an insurance company, calls in a call center...
- The event ocurrence can be understood as a single event or batch event.
- The models used in the literature to fit these types of data sets ignore the dependence.

Example I: teletraffic data set

Bellcore LAN trace files (named BC-pAug89) found in
http://ita.ee.lbl.gov/html/contrib/BC.html.
The data file consists of the time in seconds of the packet arrival, and the Ethernet data length in bytes.

Example II: call center

The data archive of Mandelbaum (2012), collected daily from March 26, 2001 to October 26, 2003 from an American banking call center.

Our proposal \Longrightarrow The BMAP

- Versatile Markovian point process (Neuts, 1979).
- Batch Markovian Arrival process or BMAP (Lucantoni, 1991).
(1) Stationary BMAPs are dense in the family of stationary point processes.
(2) Tractability of the Poisson process.
(3) Dependent interarrival times.
(9) Non-exponential interarrival times.
(5) Correlated batch sizes.
- Special cases:
(1) A $M A P$ with i.i.d. batch arrivals.
(2) Batch PH-renewal processes.
(3) Batch Markov-modulated Poisson process.

The BMAP as a generalization of the Batch Poisson proccess

Batch Poisson process:

$$
Q_{B-\text { POISSON }}=\left(\begin{array}{cccccc}
-\lambda & \lambda p_{1} & \lambda p_{2} & \lambda p_{3} & \cdots & \cdots \\
0 & -\lambda & \lambda p_{1} & \lambda p_{2} & \cdots & \cdots \\
0 & 0 & -\lambda & \lambda p_{1} & \cdots & \cdots \\
0 & 0 & 0 & -\lambda & \cdots & \cdots \\
\cdots & . & \cdots & \cdots & \cdots & \cdots
\end{array}\right) .
$$

Consider now $m \times m$ matrices for the rates instead of numbers....

$$
Q_{\text {BMAP }}=\left(\begin{array}{ccccc}
D_{0} & D_{1} & D_{2} & D_{3} & \cdots \\
0 & D_{0} & D_{1} & D_{2} & \cdots \\
0 & 0 & D_{0} & D_{1} & \cdots \\
0 & 0 & 0 & D_{0} & \cdots \\
\cdots & . & \cdots & \cdots & \cdots
\end{array}\right),
$$

How does a $B M A P_{m}(k)$ work?

Notation: $\left\{\begin{aligned} m & \equiv \text { order of the matrix } D_{b}, \text { with } 1 \leq b \leq k, \\ k & \equiv \text { the maximum batch arrival size. }\end{aligned}\right.$
The $B M A P_{m}(k)$ behaves as follows:

- The Initial state $i_{0} \in \mathcal{S}=\{1,2 \ldots, m\}$ is given by an initial probability vector $\boldsymbol{\theta}=\left(\theta_{1}, \ldots, \theta_{m}\right)$.
- At the end of an exponentially distributed sojourn time in state i, with rate two possible state transitions can occur:
(1) With probability $p_{i j 0}$, no arrival occurs and the $B M A P_{m}$ enters in a different state $j \neq i$.
(a With probability $p_{i j b}$, with $1 \leq 1 \leq k$, a transition to state j with a batch arrival of size b occurs.

How does a $B M A P_{m}(k)$ work?

Notation: $\left\{\begin{aligned} m & \equiv \text { order of the matrix } D_{b}, \text { with } 1 \leq b \leq k, \\ k & \equiv \text { the maximum batch arrival size. }\end{aligned}\right.$
The $B M A P_{m}(k)$ behaves as follows:

- The Initial state $i_{0} \in \mathcal{S}=\{1,2 \ldots, m\}$ is given by an initial probability vector $\boldsymbol{\theta}=\left(\theta_{1}, \ldots, \theta_{m}\right)$.
- At the end of an exponentially distributed sojourn time in state i, with rate λ_{i}, two possible state transitions can occur:
(1) With probability $p_{i j 0}$, no arrival occurs and the $B M A P_{m}$ enters in a different state $j \neq i$.
(a) With probability $p_{i j b}$, with $1 \leq 1 \leq k$, a transition to state j with a batch arrival of size b occurs.

How does a $B M A P_{m}(k)$ work?

Notation: $\left\{\begin{aligned} m & \equiv \text { order of the matrix } D_{b}, \text { with } 1 \leq b \leq k, \\ k & \equiv \text { the maximum batch arrival size. }\end{aligned}\right.$
The $B M A P_{m}(k)$ behaves as follows:

- The Initial state $i_{0} \in \mathcal{S}=\{1,2 \ldots, m\}$ is given by an initial probability vector $\boldsymbol{\theta}=\left(\theta_{1}, \ldots, \theta_{m}\right)$.
- At the end of an exponentially distributed sojourn time in state i, with rate λ_{i}, two possible state transitions can occur:
(1) With probability $p_{i j 0}$, no arrival occurs and the $B M A P_{m}$ enters in a different state $j \neq i$.
(3) With probability $p_{i j b}$, with $1 \leq I \leq k$, a transition to state j with a batch arrival of size b occurs.

How does a $B M A P_{m}(k)$ work?

Notation: $\left\{\begin{aligned} m & \equiv \text { order of the matrix } D_{b}, \text { with } 1 \leq b \leq k, \\ k & \equiv \text { the maximum batch arrival size. }\end{aligned}\right.$
The $B M A P_{m}(k)$ behaves as follows:

- The Initial state $i_{0} \in \mathcal{S}=\{1,2 \ldots, m\}$ is given by an initial probability vector $\boldsymbol{\theta}=\left(\theta_{1}, \ldots, \theta_{m}\right)$.
- At the end of an exponentially distributed sojourn time in state i, with rate λ_{i}, two possible state transitions can occur:
(1) With probability $p_{i j 0}$, no arrival occurs and the $B M A P_{m}$ enters in a different state $j \neq i$.
(2) With probability $p_{i j b}$, with $1 \leq I \leq k$, a transition to state j with a batch arrival of size b occurs.

The $B M A P_{2}(k)$ example

The rate matrices $D_{0}, D_{1}, \ldots, D_{k}$ are defined in terms of the transitions probabilities as:

$$
\begin{aligned}
\left(D_{0}\right)_{i i} & =-\lambda_{i}, \quad i \in S \\
\left(D_{0}\right)_{i j} & =\lambda_{i} p_{i j 0}, \quad i, j \in S, i \neq j \\
\left(D_{l}\right)_{i j} & =\lambda_{i} p_{i j b}, \quad i, j \in S, 1 \leq b \leq k
\end{aligned}
$$

The $B M A P_{2}(k)$ example

The rate matrices $D_{0}, D_{1}, \ldots, D_{k}$ are defined in terms of the transitions probabilities as:

$$
\begin{aligned}
\left(D_{0}\right)_{i i} & =-\lambda_{i}, \quad i \in S \\
\left(D_{0}\right)_{i j} & =\lambda_{i} p_{i j 0}, \quad i, j \in S, i \neq j \\
\left(D_{l}\right)_{i j} & =\lambda_{i} p_{i j b}, \quad i, j \in S, 1 \leq b \leq k
\end{aligned}
$$

The $B M A P_{2}(k)$ example

The rate matrices $D_{0}, D_{1}, \ldots, D_{k}$ are defined in terms of the transitions probabilities as:

$$
\begin{aligned}
\left(D_{0}\right)_{i i} & =-\lambda_{i}, \quad i \in S, \\
\left(D_{0}\right)_{i j} & =\lambda_{i} p_{i j 0}, \quad i, j \in S, i \neq j, \\
\left(D_{l}\right)_{i j} & =\lambda_{i} p_{i j b}, \quad i, j \in S, 1 \leq b \leq k .
\end{aligned}
$$

The $B M A P_{2}(k)$ example

The rate matrices $D_{0}, D_{1}, \ldots, D_{k}$ are defined in terms of the transitions probabilities as:

$$
\begin{aligned}
\left(D_{0}\right)_{i i} & =-\lambda_{i}, \quad i \in S, \\
\left(D_{0}\right)_{i j} & =\lambda_{i} p_{i j 0}, \quad i, j \in S, i \neq j, \\
\left(D_{l}\right)_{i j} & =\lambda_{i} p_{i j b}, \quad i, j \in S, 1 \leq b \leq k .
\end{aligned}
$$

The $B M A P_{2}(k)$ example

The rate matrices $D_{0}, D_{1}, \ldots, D_{k}$ are defined in terms of the transitions probabilities as:

$$
\begin{aligned}
\left(D_{0}\right)_{i i} & =-\lambda_{i}, \quad i \in S \\
\left(D_{0}\right)_{i j} & =\lambda_{i} p_{i j 0}, \quad i, j \in S, i \neq j \\
\left(D_{l}\right)_{i j} & =\lambda_{i} p_{i j b}, \quad i, j \in S, 1 \leq b \leq k
\end{aligned}
$$

The $B M A P_{2}(k)$ example

The rate matrices $D_{0}, D_{1}, \ldots, D_{k}$ are defined in terms of the transitions probabilities as:

$$
\begin{aligned}
\left(D_{0}\right)_{i i} & =-\lambda_{i}, \quad i \in S \\
\left(D_{0}\right)_{i j} & =\lambda_{i} p_{i j 0}, \quad i, j \in S, i \neq j, \\
\left(D_{l}\right)_{i j} & =\lambda_{i} p_{i j b}, \quad i, j \in S, 1 \leq b \leq k
\end{aligned}
$$

The $B M A P_{2}(k)$ example

The rate matrices $D_{0}, D_{1}, \ldots, D_{k}$ are defined in terms of the transitions probabilities as:

$$
\begin{aligned}
\left(D_{0}\right)_{i i} & =-\lambda_{i}, \quad i \in S, \\
\left(D_{0}\right)_{i j} & =\lambda_{i} p_{i j}, \quad i, j \in S, i \neq j, \\
\left(D_{l}\right)_{i j} & =\lambda_{i} p_{i j b}, \quad i, j \in S, 1 \leq b \leq k .
\end{aligned}
$$

The $B M A P_{2}(k)$ example

The rate matrices $D_{0}, D_{1}, \ldots, D_{k}$ are defined in terms of the transitions probabilities as:

$$
\begin{aligned}
\left(D_{0}\right)_{i i} & =-\lambda_{i}, \quad i \in S \\
\left(D_{0}\right)_{i j} & =\lambda_{i} p_{i j 0}, \quad i, j \in S, i \neq j, \\
\left(D_{l}\right)_{i j} & =\lambda_{i} p_{i j b}, \quad i, j \in S, 1 \leq b \leq k
\end{aligned}
$$

The $B M A P_{2}(k)$ example

The rate matrices $D_{0}, D_{1}, \ldots, D_{k}$ are defined in terms of the transitions probabilities as:

$$
\begin{aligned}
\left(D_{0}\right)_{i i} & =-\lambda_{i}, \quad i \in S \\
\left(D_{0}\right)_{i j} & =\lambda_{i} p_{i j 0}, \quad i, j \in S, i \neq j, \\
\left(D_{l}\right)_{i j} & =\lambda_{i} p_{i j b}, \quad i, j \in S, 1 \leq b \leq k
\end{aligned}
$$

The $B M A P_{2}(k)$ example in practice

In practice, the BMAP is used to fit data where both the inter-arrival times and batch size are observed, but not the state of the embedded Markov renewal process. (Partially observed).

Properties related to the time between events

- The stationary probability vector ϕ related to $P^{\star} \equiv$ the transition probability matrix, $\left(P^{\star}=\left(-D_{0}\right)^{-1}\left(\sum_{b=1}^{k} D_{b}\right)\right)$ is calculated as

$$
\phi=(\boldsymbol{\pi} D \mathbf{e})^{-1} \boldsymbol{\pi}\left(\sum_{b=1}^{k} D_{b}\right),
$$

where π is the stationary probability of $D=\sum_{b=0}^{k} D_{b}$.

- $T=$ time between two successive events (stationary case). $T \sim P H\left\{\phi, D_{0}\right\}$. Then, the moments of T are given by,

$$
\mu_{n}=E\left(T^{n}\right)=n!\phi\left(-D_{0}\right)^{-n} \mathbf{e} .
$$

- The Autocorrelation Function (ACF) related to the times between events in the stationary version, is given by

$$
\rho_{T}(I)=\rho\left(T_{1}, T_{l+1}\right)=\frac{\left(\pi\left[\left(-D_{0}\right)^{-1} D\right]^{\prime}\left(-D_{0}\right)^{-1} \mathbf{e}-\mu_{T}\right)}{2 \pi\left(-D_{0}\right)^{-1} \mathbf{e}-\mu_{T}} .
$$

where $\mu_{T}=E[T]$.

Properties related to the batch sizes

Let B_{n}, denotes the batch size at the time of the n 'th event occurrence.

- The $B_{n} \mathrm{~s}$ are distributed according to the random variable B, with probability mass function,

$$
P(B=b)=\phi\left(-D_{0}\right)^{-1} D_{b} \mathbf{e} .
$$

- The moments of B are obtained as

$$
E\left[B^{n}\right]=\phi\left(-D_{0}\right)^{-1} D_{n}^{\star} \mathbf{e},
$$

where $D_{n}^{\star}=\sum_{b=1}^{k} b^{n} D_{b}$.

- The ACF, $\rho\left(B_{1}, B_{1+1}\right)$ is given by

$$
\rho_{B}(I)=\frac{\phi\left(-D_{0}\right)^{-1} D_{1}^{\star}\left[\left(-D_{0}\right)^{-1} D\right]^{I-1}\left(-D_{0}\right)^{-1} D_{1}^{\star} \mathbf{e}-\left(\phi\left(-D_{0}\right)^{-1} D_{1}^{\star} \mathbf{e}\right)^{2}}{\phi\left(-D_{0}\right)^{-1} D_{2}^{\star} \mathbf{e}-\left(\phi\left(-D_{0}\right)^{-1} D_{1}^{\star} \mathbf{e}\right)^{2}},
$$

where $I \geq 1$ represents the time lag.

Previous works about dependence

- Most works regarding the theoretical aspect of the auto-correlation structure are focused on special cases of the $M A P$, specifically, $M A P_{2}$, see Heindl et al. (2006), Casale et al. (2008) and Ramírez-Cobo and Carrizosa (2013). Hervé and Ledoux (2013) considered the general MAP.
- The auto-correlation function for a sequence of inter-event times in a BMAP is the same as MAP. However, the structure of the auto-correlation of the batch arrivals has not been studied in detail in the literature.
- Our aim: Obtain information about the possible dependence structures that the $B M A P$ offers. (Thinking in data fitting)

A useful and general result for the $B M A P_{m}(k)$

An alternative characterization of $\rho_{T}(I)$ and $\rho_{B}(I)$, which helps to understand the dependence structure for the inter-event times and the batch sizes of the process is,

$$
\begin{aligned}
& \rho_{T}(I)=\sum_{i=2}^{m} p_{i}(T) q_{i}^{\prime} \\
& \rho_{B}(I)=\sum_{i=2}^{m} p_{i}(B) q_{i}^{I-1}
\end{aligned}
$$

where $\left\{q_{i}\right\}_{i=2}^{m}$, are the eigenvalues of P^{\star} less than 1 in absolute value and $\left\{p_{i}(T)\right\}_{i=2}^{m}$ and $\left\{p_{i}(B)\right\}_{i=2}^{m}$ are real-value sequences obtained from the Perron-Frobenious decomposition of P^{\star}.
Recall: $P^{\star}=\left(-D_{0}\right)^{-1}\left(\sum_{b=1}^{k} D_{b}\right)$.

ACF for $\rho_{T}(l)$ in the $B M A P_{2}(k)$

The auto-correlation function for the inter-event times, $\rho_{T}(I)$, is the same as for a $M A P_{2} \Rightarrow$ the results by Heindl et al. (2006) and Ramírez-Cobo and Carrizosa (2013) are also valid for the $B M A P_{2}(k)$.

- $\rho_{T}(I)$, is upper-bounded by 0.5 .
- $\left|\rho_{T}(I)\right| \geq\left|\rho_{T}(I+1)\right|$, for all $I \geq 1$ and $\lim _{I \rightarrow \infty} \rho_{T}(I)=0$ (Decreases geometrically).
- Correlation patterns for $\rho_{T}(I)_{l \geq 1}$.
- Pattern 1. If $p(T) \geq 0$ and $q \geq 0 \Rightarrow \rho_{T}(I) \geq 0$.
- Pattern 2. If $p(T) \leq 0$ and $q \geq 0 \Rightarrow \rho_{T}(I) \leq 0$.
- Pattern 3. If $p(T) \geq 0$ and $q \leq 0 \Rightarrow \rho_{T}(2 I) \geq 0$ and $\rho_{T}(2 I+1) \leq 0$.
- Pattern 4. If $p(T) \leq 0$ and $q<0 \Rightarrow \rho_{T}(2 /) \leq 0$ and $\rho_{T}(2 I+1) \geq 0$.

ACF for $\rho_{B}(l)$ in the $B M A P_{2}(k)$

- For the $B M A P_{2}(k)$, we obtain

$$
\left|\rho_{B}(I)\right| \geq\left|\rho_{B}(I+1)\right|, \quad \text { for all } I \geq 1 \text { and } \lim _{I \rightarrow \infty} \rho_{B}(I)=0 .
$$

(Decreases geometrically)

- The expression for the auto-correlation, $\rho_{B}(I)$, for the $B M A P_{2}(2)$, is given by

$$
\rho_{B}(I)=p(B) q^{I-1} .
$$

It can be checked that $P(B)$ and q can be positive or negative \Rightarrow Correlation patterns for $\rho_{B}(I)$ in for the $B M A P_{2}(2)$.

- Pattern 1. If $p(B) \geq 0$ and $q \geq 0 \Rightarrow \rho_{B}(I) \geq 0$.
- Pattern 2. If $p(B) \leq 0$ and $q \geq 0 \Rightarrow \rho_{B}(I) \leq 0$.
- Pattern 3. If $p(B) \geq 0$ and $q \leq 0 \Rightarrow \rho_{B}(2 /) \leq 0$ and $\rho_{B}(2 I+1) \geq 0$.
- Pattern 4. If $p(B) \leq 0$ and $q<0 \Rightarrow \rho_{B}(2 I) \geq 0$ and $\rho_{B}(2 I+1) \leq 0$.

Open problem

Is $\rho_{B}(/)$ bounded for the $B M A P_{2}(k)$?

Empirical evidence shows that $\rho_{B}(I)$ is unbounded in $[-1,1]$

Figure: Values of $\rho_{B}(1)$ close to 1 , for a total 10000 simulated $B M A P_{2}(2) s$.

Figure: Values of $\rho_{B}(1)$ close to -1 , for a total 10000 simulated $B M A P_{2}(2) s$.

Dependence structure of the $B M A P_{m}(k), m \geq 3$

- The property of both $\rho_{T}(I)$ and $\rho_{B}(I)$ decreasing geometrically is very restrictive when you deal with data \Rightarrow
an increase in m leads to new and richer correlation structures for the $B M A P_{m}(k)$?
- The answer is affirmative although we have not theoretical results for the evidences given by simulations.
- Let's take a look at some plots!!

Dependence structure of the $B M A P_{m}(k), m \geq 3$

Examples of $\rho_{T}(I)$ for $m \geq 3$ where $\rho_{T}(I)$ does not decrease with the time lag.

Example with $m=3$

Example with $m=3$

Example with $m=4$

Dependence structure of the $B M A P_{m}(k), m \geq 3$

Examples of $\rho_{T}(/)$ for $m \geq 3$ where the signs of the autocorrelation coefficients do not alternate or are constant.

Example with $m=3$

Example with $m=3$

Example with $m=3$

Example with $m=3$

Dependence structure of the $B M A P_{m}(k), m \geq 3$

Examples of $\rho_{T}(/)$ for $m \geq 3$ where the signs of the autocorrelation coefficients do not alternate or are constant.

Example with $m=4$

Example with $m=4$

Example with $m=4$
Important remark: We are not able to find any $M A P_{m}$ such that $\left|\rho_{T}(1)\right|>0.5$.

Dependence structure of the $B M A P_{m}(2), m \geq 3$

Examples of $\rho_{B}(I)$ for $m \geq 3$ where $\rho_{B}(/)$ is not a decreasing function in absolute value, richer pattern that for $m=2$ are observed and $\rho_{B}(/)$ is unbounded.

Examples with $m=3$ and $k=2$

Rosa E. Lillo

Examples with $m=3$ and $k=2$

...But what is it interesting in applications?

The counting process $\{N(t), t \geq 0\}$

- The probability of n event occurrences at time t is given by,

$$
P(N(t)=n \mid N(0)=0)=\phi P(n, t) \mathbf{e},
$$

where the probability of n event occurrences in the interval ($0, t$] is given by the matrix $P(n, t)$, (cannot be computed in closed-form).
Their numerical computation is based on the uniformization method (Neuts and Li. (1997)).

- The expected number of event occurrences at time $t, E(N(t) \mid N(0)=0)$, is computed from,

$$
E(N(t) \mid N(0)=0)=\lambda^{*} t,
$$

where $\lambda^{*}=\pi D_{1}^{\star} \mathbf{e}, D_{1}^{\star}=\sum_{b=1}^{k} b D_{b}$ and $\boldsymbol{\pi}$ the stationary probability of $D=\sum_{b=0}^{k} D_{b}$.
Remark: Similar to a Poisson process. $(E(N(t))=\lambda t)$

...But what is it interesting in applications?

- The variance of $N(t)$ for a $B M A P_{m}(k)$ is given by,

$$
\left(\boldsymbol{\pi} D_{2}^{\star} \mathbf{e}-2\left(\lambda^{*}\right)^{2}+2 \mathbf{c} D_{1}^{\star} \mathbf{e}\right) t-2 \mathbf{c}\left(I-e^{D t}\right)(\mathbf{e} \boldsymbol{\pi}-D)^{-1} D_{1}^{\star} \mathbf{e}
$$

where $\mathbf{c}=\pi D_{1}^{\star}(\mathbf{e} \pi-D)^{-1}$ and $D_{2}^{\star}=\sum_{b=1}^{k} b^{2} D_{b}$.

- The variance of $N(t)$ for a $M A P_{m}$ is given by,

$$
\left(1+2 \lambda^{*}\right) E[N(t)]-2 \pi D_{1}(\mathbf{e} \pi+D)^{-1} D_{1} \mathbf{e} t-2 \pi D_{1}\left(I-e^{D t}\right)(\mathbf{e} \pi+D)^{-2} D_{1} \mathbf{e}
$$

Remark: Very different to a Poisson process. $(V(N(t))=\lambda t)$

Exploring the influence of the dependence in the counting process

- Objective: Identify the influence of the dependence pattern of $\rho_{T}(I)$ and $\rho_{B}(I)$ in $E(N(t)), V(N(t))$ or $P(n, t)$.
- First scenario: Compare $M A P_{2}$ with the same CDF of T but with different dependence patterns of $\rho_{T}(I)$.

In this case, the $M A P_{2}$ s have the same $E(N(t))$ and the same $P(n, t), \ldots$ but different $V(N(t))$?

First scenario: $M A P_{2}$ with the same CDF of T but with different dependence patterns of $\rho_{T}(I)$

Second scenario: $M A P_{2}$ with the same λ^{*} but with different dependence patterns of $\rho_{T}(I)$

- In this case, the $M A P_{2}$ s have the same $E(N(t))$,...but different $V(N(t))$ and $P(n, t)$?

Second scenario: $M A P_{2}$ with the same λ^{*} but with different dependence patterns of $\rho_{T}(I)$

Third scenario: $B M A P_{2}(2)$ with the same CDF of T but

 with different dependence patterns of $\rho_{B}(I)$- In this case, the $B M A P_{2}(2)$ s have different $E(N(t)), V(N(t))$ and $P(n, t)$?

Third scenario: $B M A P_{2}(2)$ with the same CDF of T but with different dependence patterns of $\rho_{B}(I)$

Third scenario: $B M A P_{2}(2)$ with the same CDF of T but

 with different dependence patterns of $\rho_{B}(I)$

Conclusions

- We provide a characterization of both ACFs in terms of the eigenvalues of P^{\star} for the general $B M A P_{m}(k)$.
- We prove that the auto-correlation function for the batch event sizes for the $B M A P_{2}(k)$, for $k \geq 2$, decreases geometrically as the time lag increases.
- We identify four behavior patterns for ACF for the batch event sizes for the $B M A P_{2}(2)$.
- Richer dependence structure for the inter-event times and batch sizes are captured with higher order BMAPs.
- There are evidences that the dependence patterns have influence in the counting process related to these models.

Work in progress

- Perform a theoretical analysis of the correlation bounds for the inter-event times for $m \geq 3$ and the batch sizes for $m \geq 2$.
- Develop estimation methods to fit properly the correlation pattern of the data to a $B M A P_{m ?}(k)$.
- Understand how the autocorrelation functions modify the behavior of the counting process.

The results showed in this talk have been recently accepted for publication in:
Rodríguez, J., Lillo, R.E. and Ramírez-Cobo, P. (2016). Dependence patterns for modeling simultaneous events, Reliability Engineering and System Safety, 154, 19-30.

References

国
Asmussen, S. and Koole, G. (1993). Marked point processes as limits of Markovian arrival streams. Journal of Applied Probability, 30, 365-372.

Chakravarthy, SR. (2001). The batch Markovian arrival process: a review and future work. In: Krishnamoorthy A, et al., editors. Advances in probability theory and stochastic processes. NJ: Notable Publications, Inc. pp. 21-49.

Chakravarthy, SR. (2010). The Markovian arrival processes: a review and future work.In J. Cochran, editor. Wiley Encyclopedia of Operations Research and Management Science, John Wiley \& Sons, Inc.

Heindl, A., Mitchell, K. and van de Liefvoort, A. (2006). Correlation bounds for second-order MAPs with application to queueing network decomposition. Performance Evaluation, 63, 553-577.

Hervé, L. and Ledoux, J. (2013). Geometric ρ-mixing property of the interarrival times of a stationary Markovian arrival process. Journal of Applied Probability, 50, 598-601.

IEEE Standard Computer Dictionary: A Compilation of IEEE Standard Computer Glossaries. IEEE Press Piscataway, New York, NY; 1990.

Latouche, G. and Ramaswami, V. (1990). Introduction to Matrix Analytic Methods in Stochastic Modeling, ASA-SIAM Series on Statistics and Applied Probability, vol. 5, SIAM, Philadelphia, PA.

References

国
Lucantoni，D．（1991）．New results on the single server queue with a batch Markovian arrival process．Stochastic Models，7，1－46．

Lucantoni，D．（1993）．The BMAP／G／1 queue：a tutorial．In：L．Donatiello and R．Nelson （eds．）Models and Techniques for performance Evaluation of Computer and Communications Systems．Springer Verlag，Berlin，pp 330－358．

Mandelbaum，A．（2012）．Service Engineering of Stochastic Networks web page： http：／／iew3．technion．ac．il／serveng／．

Montoro－Cazorla，D．and Pérez－Ocón，R．（2014）．Matrix stochastic analysis of the maintainability of a machine under shocks．Reliability Engineering and System Safety，121， 11－17．
䒠
Montoro－Cazorla，D．and Pérez－Ocón，R．（2014）．A redundant n－system under shocks and repairs following Markovian arrival processes．Reliability Engineering and System Safety， 130，69－75．
國 Montoro－Cazorla，D．and Pérez－Ocón，R．（2014）．A reliability system under cumulative shocks governed by a BMAP．Applied Mathematical Modelling， doi：10．1016／j．apm．2015．03．066．

Montoro－Cazorla，D．and Pérez－Ocón，R．（2015）．A shock and wear model with dependence between the interarrival failures．Applied Mathematics and Computation，259，339－352．

References

国
Neuts, MF. (1979). A versatile Markovian point process. Journal of Applied Probability, 16, 764-779.

Ramírez-Cobo, P., Lillo, R.E. and Wiper, M. (2010). Non identifiability of the two-state Markovian arrival process. Journal of Applied Probability, 47, 630-649.

Ramírez-Cobo, P. and Carrizosa., E. (2012). A note on the dependence structure of the two-state Markovian arrival process. Journal of Applied Probability, 49, 295-302.

Rodríguez, J., Lillo, R.E. and Ramírez-Cobo, P. (2014). Nonidentifiability of the two-state BMAP, Methodology and Computing in Applied Probability. http://dx.doi.org/10.1007/s11009-014-9401-z.

Rodríguez, J., Lillo, R.E. and Ramírez-Cobo, P. (2015). Failure modeling of an electrical N-component framework by the non-stationary Markovian arrival process, Reliability Engineering and System Safety, 134, 126-133.

