Dario A. Bini, Stefano Massei, Leonardo Robol

Efficient cyclic reduction for QBDs with rank structured blocks: algorithm and analysis

University of Pisa

Scuola Normale Superiore

KU Leuven

stefano.massei@sns.it

Budapest, 28 June 2016

Quasi-birth-death processes

A QBD process, in discrete time, is a bidimensional Markov chain whose transition probability matrix has the tridiagonal block Toeplitz structure

$$P = \begin{pmatrix} B_0 & B_1 & & & \\ A_{-1} & A_0 & A_1 & & \\ & A_{-1} & A_0 & A_1 & \\ & & A_{-1} & A_0 & \ddots \\ & & & \ddots & \ddots \end{pmatrix},$$

with $A_i, B_i \in \mathbb{R}^{m \times m}$ $(m \in \mathbb{N} \cup \{+\infty\})$ non negative and P stochastic.

Suppose $m < \infty$ and let the matrix P be irreducible and nonperiodic. We consider the computation of the stationary distribution of the QBD, i.e. an infinite vector π such that

$$oldsymbol{\pi}^T P = oldsymbol{\pi}^T, \hspace{0.2cm} oldsymbol{\pi} \geq 0, \hspace{0.2cm} ext{and} \hspace{0.2cm} \parallel oldsymbol{\pi} \parallel_1 = 1.$$

Due to the matrix-geometric property of π , a crucial step consists in finding the minimal non negative solution *G* of the quadratic matrix equation:

$$X = A_{-1} + A_0 X + A_1 X^2, \quad X \in \mathbb{R}^{m \times m}.$$

Many numerical methods have been proposed to address the problem and most of them are designed to deal with the general case where the block coefficients A_{-1} , A_0 and A_1 have no particular structure.

< □ > < □ > < □ > < □ > < □ >

Cyclic Reduction

The method on which we are going to focus is the Cyclic Reduction. Its iterative scheme requires the computation of four sequences of matrices, $A_i^{(h)}$, i = -1, 0, 1 and $\hat{A_0}^{(h)}$, which follow the recurrence relations:

$$\begin{aligned} A_{1}^{(h+1)} &= A_{1}^{(h)} \ (I - A_{0}^{(h)})^{-1} \ A_{1}^{(h)}, \\ A_{0}^{(h+1)} &= A_{0}^{(h)} + A_{1}^{(h)} \ (I - A_{0}^{(h)})^{-1} \ A_{-1}^{(h)} \ + \ A_{-1}^{(h)} \ (I - A_{0}^{(h)})^{-1} \ A_{1}^{(h)}, \\ A_{-1}^{(h+1)} &= A_{-1}^{(h)} \ (I - A_{0}^{(h)})^{-1} \ A_{-1}^{(h)}, \\ \hat{A}_{0}^{(h+1)} &= \hat{A}_{0}^{(h)} \ + A_{1}^{(h)} \ (I - A_{0}^{(h)})^{-1} \ A_{-1}^{(h)}. \end{aligned}$$

with $A_i^{(0)} = A_i$, i = -1, 0, 1 and $\hat{A_0}^{(0)} = A_0$. After each step, an approximation of the matrix *G* is provided by

$$(I - \hat{A_0}^{(h)})^{-1}A_{-1}$$

Under mild hypothesis applicability and quadratic convergence are guaranteed. The cost of each iteration is $\mathcal{O}(m^3)$ because it involves four matrix multiplications and the resolution of 2m linear systems of size m. For example, consider the case in which A_i is finite tridiagonal for i = -1, 0, 1 (Double Quasi-Birth and Death).

The band structure is lost immediately when applying CR due to the inversions in its iteration scheme.

Goal: Find an alternative structure to exploit for speeding up the cyclic reduction.

Definition

 $A \in \mathbb{R}^{m \times m}$ has quasiseparable rank k if the maximum rank among the off diagonal submatrices of A is k.

Properties:

(i)
$$q_{rank}(A+B) \le q_{rank}(A) + q_{rank}(B)$$

(ii) $q_{rank}(A \cdot B) \le q_{rank}(A) + q_{rank}(B)$
(iii) $q_{rank}(A) = q_{rank}(A^{-1})$

Vandebril, Van Barel and Mastronardi. Matrix computations and semiseparable matrices. Johns Hopkins University Press, 2008.

Example:

Cyclic reduction with starting points $A_i \in \mathbb{R}^{1000 \times 1000}$ tridiagonal. Distribution of the singular values of the sub-block

in $A_0^{(h)}$ during the iteration.

イロト イヨト イヨト イヨ

Hierarchical matrices

<u>Strategy:</u> Partition the row and column indices recursively and - at each step - represent the new off-diagonal blocks as low-rank outer products. Stop when the diagonal blocks reach a small dimension and represent them as full matrices.

Matrix operations:

Addition $\mathcal{O}(m \log(m))$

Multiplication $\mathcal{O}(m \log(m)^2)$

Lin. System $\mathcal{O}(m \log(m)^2)$ Storage $\mathcal{O}(m \log(m))$

Börm, Grasedyck and Hackbusch. Hierarchical matrices. Lecture notes, 2003. Hackbusch. Hierarchical Matrices: Algorithms and Analysis. Springer Berlin, 2016.

- \mathcal{H} -matrix approximation of BEM matrices. [Hackbusch, Sauter,...1990s]
- Matrix sign function iteration in *H*-arithmetic for solving matrix Lyapunov and Riccati equations. [Grasedyck,Hackbusch,Khoromskij 2004]
- Contour integral + H-matrices for matrix functions [Gavrilyuk et al. 2002].
- *H*-matrix based preconditioning for FE discretization of 3D Maxwell [Ostrowski et al. 2010].
- Block low-rank approximation of kernel matrices [Si, Hsieh, Dhillon 2014, Wang et al. 2015].
- Clustered low-rank approximation of graphs [Savas, Dhillon 2011].
- Cyclic reduction + H-matrices for quadratic matrix equations with quasiseparable coefficients. [Bini, M., Robol 2016]

• . . .

イロト イヨト イヨト イヨト

Numerical Results/ Tridiagonal: Size VS Execution Time

	CR		$H_{10^{-16}}$		$H_{10^{-12}}$		H ₁₀ -8				
Size	Time (s)	Residue									
100	6.04 <i>e</i> - 02	1.91e - 16	2.21e - 01	1.79e - 15	2.04e - 01	8.26 <i>e</i> – 14	1.92e - 01	7.40e - 10			
200	1.88e - 01	2.51 <i>e</i> – 16	5.78 <i>e</i> – 01	1.39e - 14	5.03e – 01	1.01e - 13	4.29 <i>e</i> - 01	2.29e – 09			
400	1.61e + 01	2.09e - 16	3.32e + 00	1.41e - 14	2.60e + 00	1.33e – 13	1.98e + 00	1.99e - 09			
800	2.63e + 01	2.74 <i>e</i> - 16	4.55e + 00	1.94e - 14	3.49e + 00	2.71e – 13	2.63e + 00	2.69 <i>e</i> - 09			
1600	8.12e + 01	3.82e - 12	1.18e + 01	3.82e - 12	8.78 <i>e</i> + 00	3.82 <i>e</i> - 12	6.24e + 00	3.39 <i>e</i> - 09			
3200	6.35e + 02	5.46 <i>e</i> - 08	3.12e + 01	5.46 <i>e</i> - 08	2.21e + 01	5.46 <i>e</i> - 08	1.51e + 01	5.43e – 08			
6400	5.03e + 03	3.89 <i>e</i> - 08	7.83e + 01	3.89 <i>e</i> - 08	5.38e + 01	3.89 <i>e</i> - 08	3.58e + 01	3.87 <i>e</i> - 08			
12800	4.06e + 04	1.99e - 08	1.94e + 02	1.99e - 08	1.29e + 02	1.99e - 08	8.37e + 01	1.97e - 08			

Quasiseparable rank's growth

Numerical Results/ Size=1600: Band VS Execution Time

	CR		$H_{10^{-16}}$		$H_{10^{-12}}$		$H_{10^{-8}}$	
Band	Time (s)	Residue	Time (s)	Residue	Time (s)	Residue	Time (s)	Residue
2	7.47e + 01	2.11 <i>e</i> – 16	1.58e + 01	6.95 <i>e</i> – 15	1.08e + 01	2.62 <i>e</i> - 13	7.86e + 00	2.57 <i>e</i> – 09
4	7.65e + 01	1.66e - 16	1.92e + 01	4.88 <i>e</i> - 15	1.48e + 01	2.36e – 13	9.44e + 00	3.15 <i>e</i> – 09
8	7.82e + 01	1.48e - 16	2.81e + 01	6.11 <i>e</i> – 15	2.15e + 01	2.08e - 13	1.31e + 01	2.10e - 09
16	7.50e + 01	1.35 <i>e</i> – 16	4.99e + 01	4.98 <i>e</i> - 15	3.48e + 01	2.29 <i>e</i> - 13	2.28e + 01	2.08 <i>e</i> - 09
32	7.97e + 01	1.33e – 16	9.40e + 01	5.79e — 15	6.32e + 01	2.01e - 13	4.15e + 01	2.28e - 09
64	8.03e + 01	1.31e - 16	1.97e + 02	6.79 <i>e</i> – 15	1.29e + 02	1.99e - 13	8.37e + 01	2.01e - 09
128	7.53e + 01	1.28e - 16	4.01e + 02	5.89 <i>e</i> - 15	2.71e + 02	2.02e - 13	1.75e + 02	2.15e - 09

28 June 2016

Theoretical analysis/ Functional interpretation of CR

We associate at each step of the CR the matrix Laurent polynomial

$$arphi^{(h)}(z) := -z^{-1} \cdot A^{(h)}_{-1} + (I - A^{(h)}_0) - z \cdot A^{(h)}_1, \qquad arphi(z) := arphi^{(0)}(z),$$

and the matrix function defined by recurrence

$$\begin{cases} \psi^{(0)}(z) := \varphi(z)^{-1} \\ \psi^{(h+1)}(z^2) := \frac{1}{2}(\psi^{(h)}(z) + \psi^{(h)}(-z)) \end{cases} \Rightarrow \psi^{(h)}(z^{2^h}) = \frac{1}{2^h} \sum_{j=0}^{2^n-1} \psi^{(0)}(\zeta_j z)$$

Theorem (Bini, Meini)

Let $z \in \mathbb{C} \setminus \{0\}$ be such that $\det(\varphi^{(i)}(z))) \neq 0 \ \forall i = 0, ..., h$ and let $\det(I - A_0^{(i)}) \neq 0 \ \forall i = 0, ..., h - 1$ then

$$\varphi^{(i)}(z) = \psi^{(i)}(z)^{-1}, \quad i = 0, \dots, h.$$

In particular $\varphi^{(h)}(z^{2^h}) = \psi^{(h)}(z^{2^h})^{-1} = \left(\frac{1}{2^h} \sum_{j=0}^{2^h-1} \psi^{(0)}(\zeta_j z)\right)^{-1}$.

<u>Goal</u>: Show that the off-diagonal singular values in $A_i^{(h)}$ decay fast.

First approach:

- Since φ^(h)(z) = ψ^(h)(z)⁻¹ by means of interpolation techniques we can reformulate the problem in proving the property for ψ^(h)(z) with z on the unit circle.
- Using the formula $\psi^{(h)}(z^{2^h}) = \left(\frac{1}{2^h} \sum_{j=0}^{2^h-1} \psi^{(0)}(\zeta_j z)\right)$ and the decay in the Laurent coefficients of $\psi^{(0)}$ we get the property for the latter.

Pros: We get explicit exponentially decaying bounds for the singular values of a generic off-diagonal block.

Cons: The bounds depend on the gap between the eigenvalues of $\varphi(z)$ which lie inside the unit disc and those outside.

Bini, M. and Robol. Efficient cyclic reduction for Quasi-birth and death problems with rank structured blocks. Applied Numerical Mathematics, to appear in 2016.

Example: tridiagonal blocks, eigenvalues of $\varphi(z)$

Blocks dimension: 200

< □ > < □ > < □ > < □ > < □ >

Theoretical analysis/ Alternative approach

$$\varphi(z) = \begin{bmatrix} A(z) & B(z) \\ C(z) & D(z) \end{bmatrix} \qquad \psi(z) = \begin{bmatrix} * & * \\ \tilde{C}(z) & * \end{bmatrix} \qquad \psi^{(h)}(z) = \begin{bmatrix} * & * \\ \tilde{C}^{(h)}(z) & * \end{bmatrix}$$
$$\tilde{C}^{(h)}(z^{2^{h}}) = \frac{1}{2^{h}} \sum_{j=0}^{2^{h}-1} \tilde{C}(\zeta_{j}z)$$

Retrieve directly the Laurent expansion of the generic off-diagonal block $\tilde{C}^{(h)}(z)$ using linear algebra techniques and the Wiener Hopf factorization

$$\varphi(z) = (I - z R) \cdot U \cdot (I - z^{-1}G).$$

It turns out the following displacement rank property for $\tilde{C}^{(h)}(z)$:

$$\tilde{C}^{(h)}(z) = X^{(h)}(z) + Y^{(h)}(z), \qquad \Pi = \begin{bmatrix} 1 \\ 1 \end{bmatrix},$$
$$rank(\Pi X^{(h)}(z) - X^{(h)}(z)G^{t}) = 1, \qquad rank(\Pi Y^{(h)}(z) - Y^{(h)}(z)R^{t}) = 1.$$

Theorem (Beckermann)

Let $G = WDW^{-1}$ be diagonalizable, call $E, F \subset \mathbb{C}$ be the spectrum of G and Π respectively. Let X be a matrix such that rank $(\Pi X - XG^t) = 1$. Then, the singular values of X can be bounded by

 $\sigma_{I}(X) \leq \kappa(W) \cdot \|X\|_{2} \cdot Z_{I}(E,F), \qquad Z_{I}(E,F) = \min_{deg(r)=(I,I)} \frac{\sup_{E} r(z)}{\inf_{F} r(z)}.$

In our framework F is the set of the 2^{h} -th roots of the unit while E is the set of eigenvalues of $\varphi(z)$ inside S^{1} or the reciprocal of those outside.

Cons: Explicit general estimates for $Z_i(E, F)$ are not available. **Pros:** It is possible to find good numerical bounds for the singular values of X, even if E gets arbitrarily close to F.

イロト イヨト イヨト イヨト

Example: Eigenvalues of $\varphi(z)$ (tridiagonal blocks) and singular values of $X^{(20)}(i)$.

イロト イヨト イヨト イヨ

- CR numerically preserves the quasiseparable structure and implementing the \mathcal{H} -matrix representation we can significantly speed up the algorithm.
- A strong splitting property (wide gap) for the eigenvalues of $\varphi(z)$ implies this phenomenon but it is not necessary.
- The decay in the off-diagonal singular values seems to be better described with the quality of some discrete rational approximation problems.
- Test other kind of partitioning in the hierarchical representation with respect to different sparsity patterns.
- Extend the analysis and formulate algorithms for infinite phase scenario.

イロン イ団 とくほとう ほとう