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QBD processes

Let

P =

 A′0 A′1 0
A−1 A0 A1

0
. . .

. . .
. . .


be the transition matrix of a QBD with space state N× S ,
S = {1, . . . , n}.

Here A−1,A0,A1 are n × n nonnegative matrices such that
A−1 + A0 + A1 is stochastic and irreducible

Define the matrix polynomial

A(z) = A−1 + z(A0 − I ) + z2A1

We call eigenvalues of the matrix polynomial A(z) the roots of
a(z) = det A(z)

Remark: Since A(1)1 = 0 then z = 1 is an eigenvalue of A(z)



Quadratic matrix equations and canonical factorizations

Let G , R, Ĝ and R̂ be the minimal nonnegative solutions of the
matrix equations

A−1 + A0X + A1X 2 = X

X 2A−1 + X A0 + A1 = X

A−1X 2 + A0X + A1 = X

X 2A1 + X A0 + A−1 = X .

Then A(z) and the reversed matrix polynomial
Â(z) = z2A−1 + z(A0 − I ) + A1 have the weak canonical
factorizations

A(z) = (I − zR)K (zI − G )

Â(z) = (I − zR̂)K̂ (zI − Ĝ )

with K = A0 − I + A1G and K̂ = A0 − I + A−1Ĝ .



Roots of the matrix polynomial A(z)

The roots ξi , i = 1, . . . , 2n of a(z) are such that

|ξ1| ≤ · · · ≤ |ξn−1| ≤ ξn ≤ 1 ≤ ξn+1 ≤ |ξn+2| ≤ · · · ≤ |ξ2n|
where we have introduced 2n − deg a(z) roots at infinity if
deg a(z) < 2n
More specifically, we have the following scenario:

I ξn = 1 < ξn+1 positive recurrent
I ξn = 1 = ξn+1 null recurrent
I ξn < 1 = ξn+1 transient

Remark. If G u = λu then A(λ)u = 0; if vTR = µvT then
vTA(µ−1) = 0. That is, the eigenvalues of G and the reciprocals
of the eigenvalues of R are eigenvalues of A(z). In particular:

I G has eigenvalues ξ1, . . . , ξn
I R has eigenvalues ξ−1n+1, . . . , ξ

−1
2n

Assumption 1 : the process is recurrent, i.e., ξn = 1

Assumption 2 : |ξn−1| < ξn and ξn+1 < |ξn+2|



Motivation of the shift

I There exist algorithms for computing the minimal nonnegative
solution G ; their efficiency deteriorates as ξn/ξn+1 gets close
to 1

I In the null recurrent case where ξn = ξn+1, the convergence
speed turns from linear to sublinear, or from superlinear to
linear, according to the used algorithm

Here we provide a tool for getting rid of this drawback

The idea is an elaboration of the Brauer theorem and of the shift
technique for matrix polynomials [He, Meini, Rhee 2001]

It relies on transforming the matrix polynomial A(z) into a new
one Ã(z) in such a way that ã(z) = det Ã(z) has the same roots of
a(z) except for ξn = 1 which is shifted to 0, and/or ξn+1 = 1
which is shifted to infinity



Brauer’s theorem on eigenvalues

Theorem (Brauer 1956)

Let A be an n × n matrix with eigenvalues λ1, . . . , λn. Let xk be
an eigenvector of A associated with the eigenvalue λk , 1 ≤ k ≤ n,
and let q be any n-dimensional vector. Then the matrix A + xkqT

has eigenvalues λ1, . . . , λk−1, λk + qT xk , λk+1, . . . , λn.

Remark: if q is such that qT xk = −λk , then A + xkqT has
eigenvalues 0, λ1, . . . , λk−1, λk+1, . . . , λn, i.e., the eigenvalue λk is
shifted to 0.

Question: can we generalize this shifting to the eigenvalues of
matrix polynomials?



Functional interpretation of Brauer’s theorem

Let A be an n × n matrix and let Au = λu, u 6= 0.
Choose any vector v such that vTu = 1 and define Ã = A− λuvT .

Remark : Ãu = Au − λuvTu = λu − λu = 0.

Functional interpretation : by direct inspection, one has

Ã− zI = (A− zI )

(
I +

λ

z − λ
uvT

)
Taking determinants:

det(Ã− zI ) = det(A− zI )
z

z − λ
Therefore:

I Ã has the same eigenvalues of A except for λ which is shifted
to zero

I A and Ã share the right eigenvector u and the left
eigenvectors not corresponding to λ

Question: can we do anything similar for A(z)?



YES! Shift to the right

Let uG 6= 0 such that A(ξn)uG = 0, and let v be any vector such
that vTuG = 1.
Define:

Ãr (z) = A(z)

(
I +

ξn
z − ξn

Q

)
, Q = uGvT

Remark: similarly to the matrix case, det Ãr (z) = det A(z) z
z−ξn

Theorem

The function Ãr (z) coincides with the quadratic matrix polynomial
Ãr (z) = Ã−1 + z(Ã0 − I ) + z2Ã1 with matrix coefficients

Ã−1 = A−1(I − Q), Ã0 = A0 + ξnA1Q, Ã1 = A1.

Moreover, the eigenvalues of Ãr (z) are 0,ξ1,. . .,ξn−1,ξn+1,. . . , ξ2n.



YES! Shift to the right

Let uG 6= 0 such that A(ξn)uG = 0, and let v be any vector such
that vTuG = 1.
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Ãr (z) = A(z)
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I +

ξn
z − ξn

Q
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, Q = uGvT
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The function Ãr (z) coincides with the quadratic matrix polynomial
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Shift to the left

Let vR 6= 0 such that vT
R A(ξn+1) = 0, and let w be any vector

such that wT vR = 1.
Define

Ã`(z) =

(
I − z

z − ξn+1
S

)
A(z), S = wvT

R

Remark: similarly to the right shift, det Ã`(z) = det A(z) 1
z−ξn

Theorem

The function Ã`(z) coincides with the quadratic matrix polynomial
Ã`(z) = Ã−1 + z(Ã0 − I ) + z2Ã1 with matrix coefficients

Ã−1 = A−1, Ã0 = A0 + ξ−1n+1SA−1, Ã1 = (I − S)A1.

Moreover, the eigenvalues of Ã`(z) are ξ1,. . .,ξn,ξn+2,. . .,ξ2n,∞.



Shift to the left

Let vR 6= 0 such that vT
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such that wT vR = 1.
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I − z

z − ξn+1
S
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A(z), S = wvT

R
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Double shift

The right and left shifts can be combined together.
Define the matrix function

Ãd(z) =

(
I − z

z − ξn+1
S

)
A(z)

(
I +

ξn
z − ξn

Q

)
.

Theorem

The function Ãd(z) coincides with the quadratic matrix polynomial
Ãd(z) = Ã−1 + z(Ã0 − I ) + z2Ã1 with matrix coefficients

Ã−1 = A−1(I − Q),

Ã0 = A0 + ξnA1Q + ξ−1n+1SA−1 − ξ−1n+1SA−1Q,

Ã1 = (I − S)A1.

Moreover, the eigenvalues of Ãd(z) are 0,ξ1,. . .,ξn−1, ξn+2, . . .,
ξ2n, ∞. In particular, Ãd(z) is nonsingular on the unit circle and
on the annulus |ξn−1| < |z | < |ξn+2|.



Shifts and canonical factorizations

Question: Under which conditions both the polynomials Ãs(z)

and z2Ãs(z−1) for s ∈ {r , `, d} obtained after applying the shift
have a (weak) canonical factorization?

In different words:

Question: Under which conditions there exist the four minimal
solutions to the matrix equations associated with the polynomial
Ãs(z) obtained after applying the shift?

These matrix solutions will be denoted by Gs , Rs , Ĝs , R̂s , with
s ∈ {r , `, d} . They are the analogous of the solutions G , R, Ĝ , R̂
to the original equations.

We examine the case of the shift to the right

The shift to the left and the double shift can be treated similarly.



Right shift: the polynomial Ãr(z)

Recall that

Ãr (z) = A(z)

(
I +

ξn
z − ξn

Q

)
=

= (I − zR)K (zI − G )

(
I +

ξn
z − ξn

Q

)
with Q = uGvT .

By a direct computation we obtain

(zI − G )

(
I +

ξn
z − ξn

Q

)
= zI − Gr

with Gr = G − ξnQ. Therefore

Ãr (z) = (I − zR)K (zI − Gr )



Right shift: the polynomial Ãr(z)

Recall that

Ãr (z) = A(z)

(
I +

ξn
z − ξn

Q

)
=

= (I − zR)K (zI − G )

(
I +

ξn
z − ξn

Q

)
with Q = uGvT .
By a direct computation we obtain

(zI − G )

(
I +

ξn
z − ξn

Q

)
= zI − Gr

with Gr = G − ξnQ. Therefore

Ãr (z) = (I − zR)K (zI − Gr )



Right shift: the polynomial Ãr(z)

Theorem

I The polynomial Ãr (z) has the following factorization

Ãr (z) = (I − zR)K (zI − Gr ), Gr = G − ξnQ

This factorization is canonical in the positive recurrent case,
and weak canonical otherwise.

I The eigenvalues of Gr are those of G , except for the
eigenvalue ξn which is replaced by zero

I X = Gr and Y = R are the solutions with minimal spectral
radius of the equations

Ã1X 2 + Ã0X + Ã−1 = X , Y 2Ã−1 + Y Ã0 + Ã1 = Y



Right shift: the reversed polynomial z2Ãr(z
−1)

Recall that

z2Ãr (z−1) = z2A(z−1)

(
I +

zξn
1− zξn

Q

)
=

= (I − zR̂)K̂ (zI − Ĝ )

(
I +

zξn
1− zξn

Q

)
with Q = uGvT .

By a direct computation we obtain

(zI − Ĝ )

(
I +

zξn
1− zξn

Q

)
= z(I − ξnQ)− Ĝ

and I − ξnQ is singular!

Things are more complicated. We need some preliminary results



Right shift: the reversed polynomial z2Ãr(z
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Q
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=

= (I − zR̂)K̂ (zI − Ĝ )

(
I +

zξn
1− zξn

Q

)
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(zI − Ĝ )

(
I +

zξn
1− zξn

Q

)
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and I − ξnQ is singular!

Things are more complicated. We need some preliminary results



General properties

Theorem (Bini, Latouche, Meini 2005)

Let B(z) be an n × n quadratic matrix polynomial with eigenvalues λi ,
such that |λi | ≤ |λi+1|, i = 1, . . . , 2n − 1. Assume that |λn| < 1 < |λn+1|
and that B(z) has the canonical factorization
B(z) = (I − zR)K (zI − G ). Then:

1. B(z) is invertible in A = {z ∈ C : |ξn| < z < |ξn+1|} and
H(z) = (z−1B(z))−1 =

∑+∞
i=−∞ z iHi is convergent for z ∈ A, where

Hi =


G−iH0, i < 0,∑+∞

j=0 G jK−1R j , i = 0,

H0R i , i > 0.

2. If H0 is nonsingular, then B̂(z) = z2B(z−1) has the canonical
factorization

B̂(z) = (I − zR̂)K̂ (zI − Ĝ ),

where Ĝ = H0RH−10 , R̂ = H−10 GH0.



Right shift: the reversed polynomial z2Ãr(z
−1)

Theorem (Positive recurrent case)

Assume that 1 = ξn < ξn+1. Let Q = uGvT , with v any vector
such that uT

G v = 1 and vTWRW−1uG 6= 1, with

W =
∑+∞

i=0 G iK−1R i . Then z2Ãr (z−1) has the canonical
factorization

z2Ãr (z−1) = (I − zR̃r )K̃r (zI − G̃r )

R̃r = W−1
r GrWr , G̃r = WrRW−1

r , Gr = G − ξnQ,

Wr = W − ξnQWR, K̃r = Ã0 + Ã−1G̃r .

Moreover, G̃r and R̃r are the solutions with minimal spectral radius
of the matrix equations

Ã−1X 2 + Ã0X + Ã1 = X , X 2Ã1 + X Ã0 + Ã−1 = X



Right shift: the reversed polynomial z2Ãr(z
−1)

Theorem (Null recurrent case)

Assume that ξn = ξn+1 = 1 and let Q = uGvT
Ĝ

, where uT
G vĜ = 1 and

vT
Ĝ

K̂−1uR̂ = 1. Then z2Ãr (z−1) has the weak canonical factorization

z2Ãr (z−1) = (I − zR̃r )K̃r (zI − G̃r )

R̃r = R̂ − uR̂vT
Ĝ

K̂−1, K̃r = K̂ − (uR̂ − K̂ uG )vT
Ĝ
,

G̃r = Ĝ + (uG − K̂−1uR̂)vT
Ĝ

The eigenvalues of R̃r are those of R̂ except for 1 which is replaced by 0;
the eigevalues of G̃r are the same as those of Ĝ . Moreover, G̃r and R̃r are
solutions of minimum spectral radius of the quadratic matrix equations

Ã−1X 2 + Ã0X + Ã1 = X , X 2Ã1 + X Ã0 + Ã−1 = X



Application to the Poisson problem
Bini, Dendievel, Latouche, Meini, 2016

The Poisson problem for a QBD consists in solving the equation

(I − P)z = q,

where q is an infinite vector, z is the unknown and

P =


A0 + A−1 A1

A−1 A0 A1

A−1 A0 A1

. . .
. . .

. . .


where A−1,A0,A1 are nonnegative and A−1 + A0 + A1 is
stochastic.

If ξn 6= ξn+1, the series W =
∑∞

i=0 G iK−1R i is convergent and
det W 6= 0. Through W we may construct a resolvent triple for
A(z), and provide the general expression of the solution.



Application to the Poisson problem

This is not possible in the null recurrent case, where ξn = ξn+1

Solution :

I represent the Poisson problem in functional form

I apply the shift to the right to move ξn to zero

I construct a new matrix difference equation and solve it by
using resolvent triples

I recover the solution of the original problem



Generalizations

The shift technique can be generalized in order to shift to zero or
to infinity a set of selected eigenvalues, leaving unchanged the
remaining eigenvalues.

Potential applications:

I Shifting a pair of conjugate complex eigenvalues to zero or to
infinity still maintaining real arithmetic.

I Deflation of already approximated roots within a polynomial
rootfinder

I Solution of matrix difference equation where resolvent triples
cannot be explicitly constructed for the presence of multiple
eigenvalues


