# Shift techniques for Quasi-Birth-and-Death processes: canonical factorizations and matrix equations 

Beatrice Meini<br>Università di Pisa<br>Joint work with D.A. Bini and G. Latouche

MAM9 - Budapest

## QBD processes

Let

$$
P=\left[\begin{array}{cccc}
A_{0}^{\prime} & A_{1}^{\prime} & & 0 \\
A_{-1} & A_{0} & A_{1} & \\
0 & \ddots & \ddots & \ddots
\end{array}\right]
$$

be the transition matrix of a QBD with space state $\mathbb{N} \times S$, $S=\{1, \ldots, n\}$.
Here $A_{-1}, A_{0}, A_{1}$ are $n \times n$ nonnegative matrices such that $A_{-1}+A_{0}+A_{1}$ is stochastic and irreducible
Define the matrix polynomial

$$
A(z)=A_{-1}+z\left(A_{0}-I\right)+z^{2} A_{1}
$$

We call eigenvalues of the matrix polynomial $A(z)$ the roots of $a(z)=\operatorname{det} A(z)$
Remark: Since $A(1) \mathbf{1}=0$ then $z=1$ is an eigenvalue of $A(z)$

## Quadratic matrix equations and canonical factorizations

Let $G, R, \widehat{G}$ and $\widehat{R}$ be the minimal nonnegative solutions of the matrix equations

$$
\begin{aligned}
& A_{-1}+A_{0} X+A_{1} X^{2}=X \\
& X^{2} A_{-1}+X A_{0}+A_{1}=X \\
& A_{-1} X^{2}+A_{0} X+A_{1}=X \\
& X^{2} A_{1}+X A_{0}+A_{-1}=X .
\end{aligned}
$$

Then $A(z)$ and the reversed matrix polynomial $\widehat{A}(z)=z^{2} A_{-1}+z\left(A_{0}-I\right)+A_{1}$ have the weak canonical factorizations

$$
\begin{aligned}
& A(z)=(I-z R) K(z I-G) \\
& \widehat{A}(z)=(I-z \widehat{R}) \widehat{K}(z I-\widehat{G})
\end{aligned}
$$

with $K=A_{0}-I+A_{1} G$ and $\widehat{K}=A_{0}-I+A_{-1} \widehat{G}$.

## Roots of the matrix polynomial $A(z)$

The roots $\xi_{i}, i=1, \ldots, 2 n$ of $a(z)$ are such that

$$
\left|\xi_{1}\right| \leq \cdots \leq\left|\xi_{n-1}\right| \leq \xi_{n} \leq 1 \leq \xi_{n+1} \leq\left|\xi_{n+2}\right| \leq \cdots \leq\left|\xi_{2 n}\right|
$$

where we have introduced $2 n-\operatorname{deg} a(z)$ roots at infinity if $\operatorname{deg} a(z)<2 n$ More specifically, we have the following scenario:

- $\xi_{n}=1<\xi_{n+1} \quad$ positive recurrent
- $\xi_{n}=1=\xi_{n+1} \quad$ null recurrent
- $\xi_{n}<1=\xi_{n+1} \quad$ transient

Remark. If $G u=\lambda u$ then $A(\lambda) u=0$; if $v^{\top} R=\mu v^{\top}$ then $v^{\top} A\left(\mu^{-1}\right)=0$. That is, the eigenvalues of $G$ and the reciprocals of the eigenvalues of $R$ are eigenvalues of $A(z)$. In particular:

- $G$ has eigenvalues $\xi_{1}, \ldots, \xi_{n}$
- $R$ has eigenvalues $\xi_{n+1}^{-1}, \ldots, \xi_{2 n}^{-1}$

Assumption 1 : the process is recurrent, i.e., $\xi_{n}=1$
Assumption 2: $\left|\xi_{n-1}\right|<\xi_{n}$ and $\xi_{n+1}<\left|\xi_{n+2}\right|$

## Motivation of the shift

- There exist algorithms for computing the minimal nonnegative solution $G$; their efficiency deteriorates as $\xi_{n} / \xi_{n+1}$ gets close to 1
- In the null recurrent case where $\xi_{n}=\xi_{n+1}$, the convergence speed turns from linear to sublinear, or from superlinear to linear, according to the used algorithm

Here we provide a tool for getting rid of this drawback
The idea is an elaboration of the Brauer theorem and of the shift technique for matrix polynomials [He, Meini, Rhee 2001]

It relies on transforming the matrix polynomial $A(z)$ into a new one $\widetilde{A}(z)$ in such a way that $\widetilde{a}(z)=\operatorname{det} \widetilde{A}(z)$ has the same roots of $a(z)$ except for $\xi_{n}=1$ which is shifted to 0 , and/or $\xi_{n+1}=1$ which is shifted to infinity

## Brauer's theorem on eigenvalues

## Theorem (Brauer 1956)

Let $A$ be an $n \times n$ matrix with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$. Let $x_{k}$ be an eigenvector of $A$ associated with the eigenvalue $\lambda_{k}, 1 \leq k \leq n$, and let $q$ be any $n$-dimensional vector. Then the matrix $A+x_{k} q^{T}$ has eigenvalues $\lambda_{1}, \ldots, \lambda_{k-1}, \lambda_{k}+q^{T} x_{k}, \lambda_{k+1}, \ldots, \lambda_{n}$.

Remark: if $q$ is such that $q^{T} x_{k}=-\lambda_{k}$, then $A+x_{k} q^{T}$ has eigenvalues $0, \lambda_{1}, \ldots, \lambda_{k-1}, \lambda_{k+1}, \ldots, \lambda_{n}$, i.e., the eigenvalue $\lambda_{k}$ is shifted to 0 .

Question: can we generalize this shifting to the eigenvalues of matrix polynomials?

## Functional interpretation of Brauer's theorem

Let $A$ be an $n \times n$ matrix and let $A u=\lambda u, u \neq 0$.
Choose any vector $v$ such that $v^{\top} u=1$ and define $\widetilde{A}=A-\lambda u v^{\top}$.
Remark : $\widetilde{A} u=A u-\lambda u v^{\top} u=\lambda u-\lambda u=0$.
Functional interpretation : by direct inspection, one has

$$
\tilde{A}-z I=(A-z I)\left(I+\frac{\lambda}{z-\lambda} u v^{\top}\right)
$$

Taking determinants:

$$
\operatorname{det}(\widetilde{A}-z I)=\operatorname{det}(A-z I) \frac{z}{z-\lambda}
$$

Therefore:

- $\widetilde{A}$ has the same eigenvalues of $A$ except for $\lambda$ which is shifted to zero
- $A$ and $\widetilde{A}$ share the right eigenvector $u$ and the left eigenvectors not corresponding to $\lambda$
Question: can we do anything similar for $A(z)$ ?


## YES! Shift to the right

Let $u_{G} \neq 0$ such that $A\left(\xi_{n}\right) u_{G}=0$, and let $v$ be any vector such that $v^{\top} u_{G}=1$.
Define:

$$
\tilde{A}_{r}(z)=A(z)\left(1+\frac{\xi_{n}}{z-\xi_{n}} Q\right), \quad Q=u_{G} v^{T}
$$

Remark: similarly to the matrix case, $\operatorname{det} \widetilde{A}_{r}(z)=\operatorname{det} A(z) \frac{z}{z-\xi_{n}}$

## YES! Shift to the right

Let $u_{G} \neq 0$ such that $A\left(\xi_{n}\right) u_{G}=0$, and let $v$ be any vector such that $v^{\top} u_{G}=1$.
Define:

$$
\widetilde{A}_{r}(z)=A(z)\left(1+\frac{\xi_{n}}{z-\xi_{n}} Q\right), \quad Q=u_{G} v^{T}
$$

Remark: similarly to the matrix case, $\operatorname{det} \widetilde{A}_{r}(z)=\operatorname{det} A(z) \frac{z}{z-\xi_{n}}$

## Theorem

The function $\widetilde{A}_{r}(z)$ coincides with the quadratic matrix polynomial $\widetilde{A}_{r}(z)=\widetilde{A}_{-1}+z\left(\widetilde{A}_{0}-I\right)+z^{2} \widetilde{A}_{1}$ with matrix coefficients

$$
\widetilde{A}_{-1}=A_{-1}(I-Q), \quad \widetilde{A}_{0}=A_{0}+\xi_{n} A_{1} Q, \quad \widetilde{A}_{1}=A_{1}
$$

Moreover, the eigenvalues of $\widetilde{A}_{r}(z)$ are $0, \xi_{1}, \ldots, \xi_{n-1}, \xi_{n+1}, \ldots, \xi_{2 n}$.

## Shift to the left

Let $v_{R} \neq 0$ such that $v_{R}^{T} A\left(\xi_{n+1}\right)=0$, and let $w$ be any vector such that $w^{T} v_{R}=1$.
Define

$$
\widetilde{A}_{\ell}(z)=\left(I-\frac{z}{z-\xi_{n+1}} S\right) A(z), \quad S=w v_{R}^{T}
$$

Remark: similarly to the right shift, $\operatorname{det} \widetilde{A}_{\ell}(z)=\operatorname{det} A(z) \frac{1}{z-\xi_{n}}$

## Shift to the left

Let $v_{R} \neq 0$ such that $v_{R}^{T} A\left(\xi_{n+1}\right)=0$, and let $w$ be any vector such that $w^{T} v_{R}=1$.
Define

$$
\tilde{A}_{\ell}(z)=\left(1-\frac{z}{z-\xi_{n+1}} S\right) A(z), \quad S=w v_{R}^{T}
$$

Remark: similarly to the right shift, $\operatorname{det} \widetilde{A}_{\ell}(z)=\operatorname{det} A(z) \frac{1}{z-\xi_{n}}$

## Theorem

The function $\widetilde{A}_{\ell}(z)$ coincides with the quadratic matrix polynomial $\widetilde{A}_{\ell}(z)=\widetilde{A}_{-1}+z\left(\widetilde{A}_{0}-I\right)+z^{2} \widetilde{A}_{1}$ with matrix coefficients

$$
\widetilde{A}_{-1}=A_{-1}, \quad \widetilde{A}_{0}=A_{0}+\xi_{n+1}^{-1} S A_{-1}, \quad \widetilde{A}_{1}=(I-S) A_{1} .
$$

Moreover, the eigenvalues of $\widetilde{A}_{\ell}(z)$ are $\xi_{1}, \ldots, \xi_{n}, \xi_{n+2}, \ldots, \xi_{2 n}, \infty$.

## Double shift

The right and left shifts can be combined together.
Define the matrix function

$$
\tilde{A}_{d}(z)=\left(I-\frac{z}{z-\xi_{n+1}} S\right) A(z)\left(I+\frac{\xi_{n}}{z-\xi_{n}} Q\right)
$$

## Theorem

The function $\widetilde{A}_{d}(z)$ coincides with the quadratic matrix polynomial $\widetilde{A}_{d}(z)=\widetilde{A}_{-1}+z\left(\widetilde{A}_{0}-I\right)+z^{2} \widetilde{A}_{1}$ with matrix coefficients

$$
\begin{aligned}
& \widetilde{A}_{-1}=A_{-1}(I-Q) \\
& \widetilde{A}_{0}=A_{0}+\xi_{n} A_{1} Q+\xi_{n+1}^{-1} S A_{-1}-\xi_{n+1}^{-1} S A_{-1} Q \\
& \widetilde{A}_{1}=(I-S) A_{1}
\end{aligned}
$$

Moreover, the eigenvalues of $\widetilde{A}_{d}(z)$ are $0, \xi_{1}, \ldots, \xi_{n-1}, \xi_{n+2}, \ldots$, $\xi_{2 n}, \infty$. In particular, $\widetilde{A}_{d}(z)$ is nonsingular on the unit circle and on the annulus $\left|\xi_{n-1}\right|<|z|<\left|\xi_{n+2}\right|$.

## Shifts and canonical factorizations

Question: Under which conditions both the polynomials $\widetilde{A}_{s}(z)$ and $z^{2} \widetilde{A}_{s}\left(z^{-1}\right)$ for $s \in\{r, \ell, d\}$ obtained after applying the shift have a (weak) canonical factorization?

In different words:
Question: Under which conditions there exist the four minimal $\underset{\sim}{\text { solutions }}$ to the matrix equations associated with the polynomial $\widetilde{A}_{s}(z)$ obtained after applying the shift?

These matrix solutions will be denoted by $G_{s}, R_{s}, \widehat{G}_{s}, \widehat{R}_{s}$, with $s \in\{r, \ell, d\}$. They are the analogous of the solutions $G, R, \widehat{G}, \widehat{R}$ to the original equations.

We examine the case of the shift to the right
The shift to the left and the double shift can be treated similarly.

## Right shift: the polynomial $\widetilde{A}_{r}(z)$

Recall that

$$
\begin{aligned}
\widetilde{A}_{r}(z) & =A(z)\left(I+\frac{\xi_{n}}{z-\xi_{n}} Q\right)= \\
& =(I-z R) K(z I-G)\left(I+\frac{\xi_{n}}{z-\xi_{n}} Q\right)
\end{aligned}
$$

with $Q=u_{G} v^{T}$.

## Right shift: the polynomial $\widetilde{A}_{r}(z)$

Recall that

$$
\begin{aligned}
\widetilde{A}_{r}(z) & =A(z)\left(I+\frac{\xi_{n}}{z-\xi_{n}} Q\right)= \\
& =(I-z R) K(z I-G)\left(I+\frac{\xi_{n}}{z-\xi_{n}} Q\right)
\end{aligned}
$$

with $Q=u_{G} v^{T}$.
By a direct computation we obtain

$$
(z I-G)\left(I+\frac{\xi_{n}}{z-\xi_{n}} Q\right)=z I-G_{r}
$$

with $G_{r}=G-\xi_{n} Q$. Therefore

$$
\widetilde{A}_{r}(z)=(I-z R) K\left(z I-G_{r}\right)
$$

## Right shift: the polynomial $\widetilde{A}_{r}(z)$

## Theorem

- The polynomial $\widetilde{A}_{r}(z)$ has the following factorization

$$
\widetilde{A}_{r}(z)=(I-z R) K\left(z I-G_{r}\right), \quad G_{r}=G-\xi_{n} Q
$$

This factorization is canonical in the positive recurrent case, and weak canonical otherwise.

- The eigenvalues of $G_{r}$ are those of $G$, except for the eigenvalue $\xi_{n}$ which is replaced by zero
- $X=G_{r}$ and $Y=R$ are the solutions with minimal spectral radius of the equations

$$
\widetilde{A}_{1} X^{2}+\widetilde{A}_{0} X+\widetilde{A}_{-1}=X, \quad Y^{2} \widetilde{A}_{-1}+Y \widetilde{A}_{0}+\widetilde{A}_{1}=Y
$$

## Right shift: the reversed polynomial $z^{2} \widetilde{A}_{r}\left(z^{-1}\right)$

Recall that

$$
\begin{aligned}
z^{2} \widetilde{A}_{r}\left(z^{-1}\right) & =z^{2} A\left(z^{-1}\right)\left(I+\frac{z \xi_{n}}{1-z \xi_{n}} Q\right)= \\
& =(I-z \widehat{R}) \widehat{K}(z I-\widehat{G})\left(I+\frac{z \xi_{n}}{1-z \xi_{n}} Q\right)
\end{aligned}
$$

with $Q=u_{G} v^{T}$.

## Right shift: the reversed polynomial $z^{2} \widetilde{A}_{r}\left(z^{-1}\right)$

Recall that

$$
\begin{aligned}
z^{2} \widetilde{A}_{r}\left(z^{-1}\right) & =z^{2} A\left(z^{-1}\right)\left(I+\frac{z \xi_{n}}{1-z \xi_{n}} Q\right)= \\
& =(I-z \widehat{R}) \widehat{K}(z I-\widehat{G})\left(I+\frac{z \xi_{n}}{1-z \xi_{n}} Q\right)
\end{aligned}
$$

with $Q=u_{G} v^{T}$.
By a direct computation we obtain

$$
(z I-\widehat{G})\left(I+\frac{z \xi_{n}}{1-z \xi_{n}} Q\right)=z\left(I-\xi_{n} Q\right)-\widehat{G}
$$

and $I-\xi_{n} Q$ is singular!
Things are more complicated. We need some preliminary results

## General properties

## Theorem (Bini, Latouche, Meini 2005)

Let $B(z)$ be an $n \times n$ quadratic matrix polynomial with eigenvalues $\lambda_{i}$, such that $\left|\lambda_{i}\right| \leq\left|\lambda_{i+1}\right|, i=1, \ldots, 2 n-1$. Assume that $\left|\lambda_{n}\right|<1<\left|\lambda_{n+1}\right|$ and that $B(z)$ has the canonical factorization $B(z)=(I-z R) K(z I-G)$. Then:

1. $B(z)$ is invertible in $\mathbb{A}=\left\{z \in \mathbb{C}:\left|\xi_{n}\right|<z<\left|\xi_{n+1}\right|\right\}$ and $H(z)=\left(z^{-1} B(z)\right)^{-1}=\sum_{i=-\infty}^{+\infty} z^{i} H_{i}$ is convergent for $z \in \mathbb{A}$, where

$$
H_{i}= \begin{cases}G^{-i} H_{0}, & i<0, \\ \sum_{j=0}^{+\infty} G^{j} K^{-1} R^{j}, & i=0, \\ H_{0} R^{i}, & i>0 .\end{cases}
$$

2. If $H_{0}$ is nonsingular, then $\widehat{B}(z)=z^{2} B\left(z^{-1}\right)$ has the canonical factorization

$$
\widehat{B}(z)=(I-z \widehat{R}) \widehat{K}(z I-\widehat{G}),
$$

where $\widehat{G}=H_{0} R H_{0}^{-1}, \widehat{R}=H_{0}^{-1} G H_{0}$.

Right shift: the reversed polynomial $z^{2} \widetilde{A}_{r}\left(z^{-1}\right)$

## Theorem (Positive recurrent case)

Assume that $1=\xi_{n}<\xi_{n+1}$. Let $Q=u_{G} v^{T}$, with $v$ any vector such that $u_{G}^{T} v=1$ and $v^{\top} W R W^{-1} u_{G} \neq 1$, with $W=\sum_{i=0}^{+\infty} G^{i} K^{-1} R^{i}$. Then $z^{2} \widetilde{A}_{r}\left(z^{-1}\right)$ has the canonical factorization

$$
\begin{aligned}
& z^{2} \widetilde{A}_{r}\left(z^{-1}\right)=\left(I-z \widetilde{R}_{r}\right) \widetilde{K}_{r}\left(z I-\widetilde{G}_{r}\right) \\
& \widetilde{R}_{r}=W_{r}^{-1} G_{r} W_{r}, \quad \widetilde{G}_{r}=W_{r} R W_{r}^{-1}, \quad G_{r}=G-\xi_{n} Q \\
& W_{r}=W-\xi_{n} Q W R, \quad \widetilde{K}_{r}=\widetilde{A}_{0}+\widetilde{A}_{-1} \widetilde{G}_{r}
\end{aligned}
$$

Moreover, $\widetilde{G}_{r}$ and $\widetilde{R}_{r}$ are the solutions with minimal spectral radius of the matrix equations

$$
\widetilde{A}_{-1} X^{2}+\widetilde{A}_{0} X+\widetilde{A}_{1}=X, \quad X^{2} \widetilde{A}_{1}+X \widetilde{A}_{0}+\widetilde{A}_{-1}=X
$$

## Right shift: the reversed polynomial $z^{2} \widetilde{A}_{r}\left(z^{-1}\right)$

## Theorem (Null recurrent case)

Assume that $\xi_{n}=\xi_{n+1}=1$ and let $Q=u_{G} v_{\widehat{G}}^{T}$, where $u_{G}^{T} v_{\widehat{G}}=1$ and $v_{\widehat{G}}^{T} \widehat{K}^{-1} u_{\widehat{R}}=1$. Then $z^{2} \widetilde{A}_{r}\left(z^{-1}\right)$ has the weak canonical factorization

$$
\begin{aligned}
& z^{2} \widetilde{A}_{r}\left(z^{-1}\right)=\left(I-z \widetilde{R}_{r}\right) \widetilde{K}_{r}\left(z I-\widetilde{G}_{r}\right) \\
& \widetilde{R}_{r}=\widehat{R}-u_{\widehat{R}} v \widehat{G} \widehat{K}^{-1}, \quad \widetilde{K}_{r}=\widehat{K}-\left(u_{\widehat{R}}-\widehat{K} u_{G}\right) v_{\widehat{G}}^{T}, \\
& \widetilde{G}_{r}=\widehat{G}+\left(u_{G}-\widehat{K}^{-1} u_{\widehat{R}}\right) v_{\widehat{G}}^{T}
\end{aligned}
$$

The eigenvalues of $\widetilde{R}_{r}$ are those of $\widehat{R}$ except for 1 which is replaced by 0 ; the eigevalues of $\widetilde{G}_{r}$ are the same as those of $\widehat{G}$. Moreover, $\widetilde{G}_{r}$ and $\widetilde{R}_{r}$ are solutions of minimum spectral radius of the quadratic matrix equations

$$
\widetilde{A}_{-1} X^{2}+\widetilde{A}_{0} X+\widetilde{A}_{1}=X, \quad X^{2} \widetilde{A}_{1}+X \widetilde{A}_{0}+\widetilde{A}_{-1}=X
$$

## Application to the Poisson problem

## Bini, Dendievel, Latouche, Meini, 2016

The Poisson problem for a QBD consists in solving the equation

$$
(I-P) z=q
$$

where $q$ is an infinite vector, $z$ is the unknown and

$$
P=\left[\begin{array}{ccccc}
A_{0}+A_{-1} & A_{1} & & & \\
A_{-1} & A_{0} & A_{1} & & \\
& A_{-1} & A_{0} & A_{1} & \\
& & \ddots & \ddots & \ddots
\end{array}\right]
$$

where $A_{-1}, A_{0}, A_{1}$ are nonnegative and $A_{-1}+A_{0}+A_{1}$ is stochastic.

If $\xi_{n} \neq \xi_{n+1}$, the series $W=\sum_{i=0}^{\infty} G^{i} K^{-1} R^{i}$ is convergent and $\operatorname{det} W \neq 0$. Through $W$ we may construct a resolvent triple for $A(z)$, and provide the general expression of the solution.

## Application to the Poisson problem

This is not possible in the null recurrent case, where $\xi_{n}=\xi_{n+1}$

## Solution :

- represent the Poisson problem in functional form
- apply the shift to the right to move $\xi_{n}$ to zero
- construct a new matrix difference equation and solve it by using resolvent triples
- recover the solution of the original problem


## Generalizations

The shift technique can be generalized in order to shift to zero or to infinity a set of selected eigenvalues, leaving unchanged the remaining eigenvalues.

Potential applications:

- Shifting a pair of conjugate complex eigenvalues to zero or to infinity still maintaining real arithmetic.
- Deflation of already approximated roots within a polynomial rootfinder
- Solution of matrix difference equation where resolvent triples cannot be explicitly constructed for the presence of multiple eigenvalues

