Shift techniques for Quasi-Birth-and-Death processes: canonical factorizations and matrix equations

> Beatrice Meini Università di Pisa Joint work with D.A. Bini and G. Latouche

> > MAM9 - Budapest

QBD processes

Let

$$P = \left[egin{array}{cccc} A_0' & A_1' & 0 \ A_{-1} & A_0 & A_1 & \ 0 & \ddots & \ddots & \ddots \end{array}
ight]$$

be the transition matrix of a QBD with space state $\mathbb{N} \times S$, $S = \{1, \ldots, n\}.$

Here A_{-1} , A_0 , A_1 are $n \times n$ nonnegative matrices such that $A_{-1} + A_0 + A_1$ is stochastic and irreducible

Define the matrix polynomial

$$A(z) = A_{-1} + z(A_0 - I) + z^2 A_1$$

We call eigenvalues of the matrix polynomial A(z) the roots of $a(z) = \det A(z)$ **Remark:** Since $A(1)\mathbf{1} = 0$ then z = 1 is an eigenvalue of A(z)

Quadratic matrix equations and canonical factorizations

Let G, R, \widehat{G} and \widehat{R} be the minimal nonnegative solutions of the matrix equations

$$A_{-1} + A_0 X + A_1 X^2 = X$$

$$X^2 A_{-1} + X A_0 + A_1 = X$$

$$A_{-1} X^2 + A_0 X + A_1 = X$$

$$X^2 A_1 + X A_0 + A_{-1} = X.$$

Then A(z) and the reversed matrix polynomial $\widehat{A}(z) = z^2 A_{-1} + z(A_0 - I) + A_1$ have the weak canonical factorizations

$$\begin{aligned} A(z) &= (I - zR)K(zI - G)\\ \widehat{A}(z) &= (I - z\widehat{R})\widehat{K}(zI - \widehat{G}) \end{aligned}$$

with $K = A_0 - I + A_1G$ and $\widehat{K} = A_0 - I + A_{-1}\widehat{G}.$

Roots of the matrix polynomial A(z)

The roots ξ_i , i = 1, ..., 2n of a(z) are such that

 $|\xi_1| \leq \cdots \leq |\xi_{n-1}| \leq \xi_n \leq 1 \leq \xi_{n+1} \leq |\xi_{n+2}| \leq \cdots \leq |\xi_{2n}|$

where we have introduced $2n - \deg a(z)$ roots at infinity if $\deg a(z) < 2n$

More specifically, we have the following scenario:

► $\xi_n = 1 < \xi_{n+1}$ positive recurrent ► $\xi_n = 1 = \xi_{n+1}$ null recurrent ► $\xi_n < 1 = \xi_{n+1}$ transient

Remark. If $Gu = \lambda u$ then $A(\lambda)u = 0$; if $v^T R = \mu v^T$ then $v^T A(\mu^{-1}) = 0$. That is, the eigenvalues of G and the reciprocals of the eigenvalues of R are eigenvalues of A(z). In particular:

- G has eigenvalues ξ_1, \ldots, ξ_n
- *R* has eigenvalues $\xi_{n+1}^{-1}, \ldots, \xi_{2n}^{-1}$

Assumption 1: the process is recurrent, i.e., $\xi_n = 1$

Assumption 2: $|\xi_{n-1}| < \xi_n$ and $\xi_{n+1} < |\xi_{n+2}|$

Motivation of the shift

- There exist algorithms for computing the minimal nonnegative solution G; their efficiency deteriorates as ξ_n/ξ_{n+1} gets close to 1
- In the null recurrent case where ξ_n = ξ_{n+1}, the convergence speed turns from linear to sublinear, or from superlinear to linear, according to the used algorithm

Here we provide a tool for getting rid of this drawback

The idea is an elaboration of the Brauer theorem and of the shift technique for matrix polynomials [HE, MEINI, RHEE 2001]

It relies on transforming the matrix polynomial A(z) into a new one $\widetilde{A}(z)$ in such a way that $\widetilde{a}(z) = \det \widetilde{A}(z)$ has the same roots of a(z) except for $\xi_n = 1$ which is shifted to 0, and/or $\xi_{n+1} = 1$ which is shifted to infinity

Theorem (Brauer 1956)

Let A be an $n \times n$ matrix with eigenvalues $\lambda_1, \ldots, \lambda_n$. Let x_k be an eigenvector of A associated with the eigenvalue λ_k , $1 \le k \le n$, and let q be any n-dimensional vector. Then the matrix $A + x_k q^T$ has eigenvalues $\lambda_1, \ldots, \lambda_{k-1}, \lambda_k + q^T x_k, \lambda_{k+1}, \ldots, \lambda_n$.

Remark: if q is such that $q^T x_k = -\lambda_k$, then $A + x_k q^T$ has eigenvalues $0, \lambda_1, \ldots, \lambda_{k-1}, \lambda_{k+1}, \ldots, \lambda_n$, i.e., the eigenvalue λ_k is shifted to 0.

Question: can we generalize this shifting to the eigenvalues of matrix polynomials?

Functional interpretation of Brauer's theorem

Let A be an $n \times n$ matrix and let $Au = \lambda u$, $u \neq 0$. Choose any vector v such that $v^T u = 1$ and define $\widetilde{A} = A - \lambda u v^T$. **Remark**: $\widetilde{A}u = Au - \lambda u v^T u = \lambda u - \lambda u = 0$.

Functional interpretation : by direct inspection, one has

$$\widetilde{A} - zI = (A - zI)\left(I + \frac{\lambda}{z - \lambda}uv^{T}\right)$$

Taking determinants:

$$\det(\widetilde{A} - zI) = \det(A - zI)\frac{z}{z - \lambda}$$

Therefore:

- A has the same eigenvalues of A except for λ which is shifted to zero
- A and A share the right eigenvector u and the left eigenvectors not corresponding to λ

Question: can we do anything similar for A(z)?

YES! Shift to the right

Let $u_G \neq 0$ such that $A(\xi_n)u_G = 0$, and let v be any vector such that $v^T u_G = 1$. Define:

$$\widetilde{A}_r(z) = A(z) \left(I + \frac{\xi_n}{z - \xi_n} Q \right), \quad Q = u_G v^T$$

Remark: similarly to the matrix case, det $\widetilde{A}_r(z) = \det A(z) \frac{z}{z-\xi_n}$

YES! Shift to the right

Let $u_G \neq 0$ such that $A(\xi_n)u_G = 0$, and let v be any vector such that $v^T u_G = 1$. Define:

$$\widetilde{A}_r(z) = A(z) \left(I + \frac{\xi_n}{z - \xi_n} Q \right), \quad Q = u_G v^T$$

Remark: similarly to the matrix case, det $\widetilde{A}_r(z) = \det A(z) \frac{z}{z - \xi_n}$

Theorem

The function $A_r(z)$ coincides with the quadratic matrix polynomial $\widetilde{A}_r(z) = \widetilde{A}_{-1} + z(\widetilde{A}_0 - I) + z^2 \widetilde{A}_1$ with matrix coefficients

$$\widetilde{A}_{-1}=A_{-1}(I-Q), \quad \widetilde{A}_0=A_0+\xi_nA_1Q, \quad \widetilde{A}_1=A_1.$$

Moreover, the eigenvalues of $A_r(z)$ are $0, \xi_1, \ldots, \xi_{n-1}, \xi_{n+1}, \ldots, \xi_{2n}$.

Shift to the left

Let $v_R \neq 0$ such that $v_R^T A(\xi_{n+1}) = 0$, and let w be any vector such that $w^T v_R = 1$. Define

$$\widetilde{A}_{\ell}(z) = \left(I - \frac{z}{z - \xi_{n+1}}S\right)A(z), \quad S = wv_R^T$$

Remark: similarly to the right shift, det $\widetilde{A}_{\ell}(z) = \det A(z) \frac{1}{z - \xi_n}$

Shift to the left

Let $v_R \neq 0$ such that $v_R^T A(\xi_{n+1}) = 0$, and let w be any vector such that $w^T v_R = 1$. Define

$$\widetilde{A}_{\ell}(z) = \left(I - \frac{z}{z - \xi_{n+1}}S\right)A(z), \quad S = wv_R^T$$

Remark: similarly to the right shift, det $\widetilde{A}_{\ell}(z) = \det A(z) \frac{1}{z - \xi_n}$

Theorem

The function $\widetilde{A}_{\ell}(z)$ coincides with the quadratic matrix polynomial $\widetilde{A}_{\ell}(z) = \widetilde{A}_{-1} + z(\widetilde{A}_0 - I) + z^2 \widetilde{A}_1$ with matrix coefficients

$$\widetilde{A}_{-1} = A_{-1}, \quad \widetilde{A}_0 = A_0 + \xi_{n+1}^{-1} S A_{-1}, \quad \widetilde{A}_1 = (I - S) A_1.$$

Moreover, the eigenvalues of $A_{\ell}(z)$ are $\xi_1, \ldots, \xi_n, \xi_{n+2}, \ldots, \xi_{2n}, \infty$.

Double shift

The right and left shifts can be combined together. Define the matrix function

$$\widetilde{A}_d(z) = \left(I - \frac{z}{z - \xi_{n+1}}S\right)A(z)\left(I + \frac{\xi_n}{z - \xi_n}Q\right).$$

Theorem

The function $\widetilde{A}_d(z)$ coincides with the quadratic matrix polynomial $\widetilde{A}_d(z) = \widetilde{A}_{-1} + z(\widetilde{A}_0 - I) + z^2 \widetilde{A}_1$ with matrix coefficients

$$\begin{aligned} \widetilde{A}_{-1} &= A_{-1}(I - Q), \\ \widetilde{A}_0 &= A_0 + \xi_n A_1 Q + \xi_{n+1}^{-1} S A_{-1} - \xi_{n+1}^{-1} S A_{-1} Q, \\ \widetilde{A}_1 &= (I - S) A_1. \end{aligned}$$

Moreover, the eigenvalues of $A_d(z)$ are $0,\xi_1,\ldots,\xi_{n-1}, \xi_{n+2},\ldots,\xi_{2n},\infty$. In particular, $\widetilde{A}_d(z)$ is nonsingular on the unit circle and on the annulus $|\xi_{n-1}| < |z| < |\xi_{n+2}|$.

Shifts and canonical factorizations

Question: Under which conditions both the polynomials $A_s(z)$ and $z^2 \tilde{A}_s(z^{-1})$ for $s \in \{r, \ell, d\}$ obtained after applying the shift have a (weak) canonical factorization?

In different words:

Question: Under which conditions there exist the four minimal solutions to the matrix equations associated with the polynomial $\tilde{A}_s(z)$ obtained after applying the shift?

These matrix solutions will be denoted by G_s , R_s , \hat{G}_s , \hat{R}_s , with $s \in \{r, \ell, d\}$. They are the analogous of the solutions G, R, \hat{G} , \hat{R} to the original equations.

We examine the case of the shift to the right

The shift to the left and the double shift can be treated similarly.

Right shift: the polynomial $\widetilde{A}_r(z)$

Recall that

$$\widetilde{A}_r(z) = A(z) \left(I + \frac{\xi_n}{z - \xi_n} Q \right) =$$
$$= (I - zR) K(zI - G) \left(I + \frac{\xi_n}{z - \xi_n} Q \right)$$

with $Q = u_G v^T$.

Right shift: the polynomial $A_r(z)$

Recall that

$$\widetilde{A}_r(z) = A(z) \left(I + \frac{\xi_n}{z - \xi_n} Q \right) =$$
$$= (I - zR) K(zI - G) \left(I + \frac{\xi_n}{z - \xi_n} Q \right)$$

with $Q = u_G v^T$. By a direct computation we obtain

$$(zI-G)\left(I+\frac{\xi_n}{z-\xi_n}Q\right)=zI-G_r$$

with $G_r = G - \xi_n Q$. Therefore

$$\widetilde{A}_r(z) = (I - zR)K(zI - G_r)$$

Right shift: the polynomial $A_r(z)$

Theorem

• The polynomial $\widetilde{A}_r(z)$ has the following factorization

$$\widetilde{A}_r(z) = (I - zR)K(zI - G_r), \quad G_r = G - \xi_nQ$$

This factorization is canonical in the positive recurrent case, and weak canonical otherwise.

- The eigenvalues of G_r are those of G, except for the eigenvalue ξ_n which is replaced by zero
- ➤ X = G_r and Y = R are the solutions with minimal spectral radius of the equations

$$\widetilde{A}_{1}X^{2} + \widetilde{A}_{0}X + \widetilde{A}_{-1} = X, \quad Y^{2}\widetilde{A}_{-1} + Y\widetilde{A}_{0} + \widetilde{A}_{1} = Y$$

Right shift: the reversed polynomial $z^2 \widetilde{A}_r(z^{-1})$

Recall that

$$z^{2}\widetilde{A}_{r}(z^{-1}) = z^{2}A(z^{-1})\left(I + \frac{z\xi_{n}}{1 - z\xi_{n}}Q\right) =$$
$$= (I - z\widehat{R})\widehat{K}(zI - \widehat{G})\left(I + \frac{z\xi_{n}}{1 - z\xi_{n}}Q\right)$$

with
$$Q = u_G v^T$$
.

Right shift: the reversed polynomial $z^2 \widetilde{A}_r(z^{-1})$

Recall that

$$z^{2}\widetilde{A}_{r}(z^{-1}) = z^{2}A(z^{-1})\left(I + \frac{z\xi_{n}}{1 - z\xi_{n}}Q\right) =$$
$$= (I - z\widehat{R})\widehat{K}(zI - \widehat{G})\left(I + \frac{z\xi_{n}}{1 - z\xi_{n}}Q\right)$$

with $Q = u_G v^T$. By a direct computation we obtain

$$(zI-\widehat{G})\left(I+\frac{z\xi_n}{1-z\xi_n}Q\right)=z(I-\xi_nQ)-\widehat{G}$$

and $I - \xi_n Q$ is singular!

Things are more complicated. We need some preliminary results

General properties

Theorem (Bini, Latouche, Meini 2005)

Let B(z) be an $n \times n$ quadratic matrix polynomial with eigenvalues λ_i , such that $|\lambda_i| \le |\lambda_{i+1}|$, i = 1, ..., 2n - 1. Assume that $|\lambda_n| < 1 < |\lambda_{n+1}|$ and that B(z) has the canonical factorization B(z) = (I - zR)K(zI - G). Then:

1. B(z) is invertible in $\mathbb{A} = \{z \in \mathbb{C} : |\xi_n| < z < |\xi_{n+1}|\}$ and $H(z) = (z^{-1}B(z))^{-1} = \sum_{i=-\infty}^{+\infty} z^i H_i$ is convergent for $z \in \mathbb{A}$, where

$$H_{i} = \begin{cases} G^{-i}H_{0}, & i < 0, \\ \sum_{j=0}^{+\infty} G^{j}K^{-1}R^{j}, & i = 0, \\ H_{0}R^{i}, & i > 0. \end{cases}$$

2. If H_0 is nonsingular, then $\widehat{B}(z) = z^2 B(z^{-1})$ has the canonical factorization

$$\widehat{B}(z) = (I - z\widehat{R})\widehat{K}(zI - \widehat{G}),$$

where $\widehat{G} = H_0 R H_0^{-1}$, $\widehat{R} = H_0^{-1} G H_0$.

Right shift: the reversed polynomial $z^2 \widetilde{A}_r(z^{-1})$

Theorem (Positive recurrent case)

Assume that $1 = \xi_n < \xi_{n+1}$. Let $Q = u_G v^T$, with v any vector such that $u_G^T v = 1$ and $v^T WRW^{-1}u_G \neq 1$, with $W = \sum_{i=0}^{+\infty} G^i K^{-1} R^i$. Then $z^2 \widetilde{A}_r(z^{-1})$ has the canonical factorization

$$\begin{aligned} z^{2}\widetilde{A}_{r}(z^{-1}) &= (I - z\widetilde{R}_{r})\widetilde{K}_{r}(zI - \widetilde{G}_{r})\\ \widetilde{R}_{r} &= W_{r}^{-1}G_{r}W_{r}, \quad \widetilde{G}_{r} &= W_{r}RW_{r}^{-1}, \quad G_{r} &= G - \xi_{n}Q,\\ W_{r} &= W - \xi_{n}QWR, \quad \widetilde{K}_{r} &= \widetilde{A}_{0} + \widetilde{A}_{-1}\widetilde{G}_{r}. \end{aligned}$$

Moreover, \overline{G}_r and \overline{R}_r are the solutions with minimal spectral radius of the matrix equations

$$\widetilde{A}_{-1}X^2 + \widetilde{A}_0X + \widetilde{A}_1 = X, \qquad X^2\widetilde{A}_1 + X\widetilde{A}_0 + \widetilde{A}_{-1} = X$$

Right shift: the reversed polynomial $z^2 \widetilde{A}_r(z^{-1})$

Theorem (Null recurrent case)

Assume that $\xi_n = \xi_{n+1} = 1$ and let $Q = u_G v_{\widehat{G}}^T$, where $u_G^T v_{\widehat{G}} = 1$ and $v_{\widehat{G}}^T \widehat{K}^{-1} u_{\widehat{R}} = 1$. Then $z^2 \widetilde{A}_r(z^{-1})$ has the weak canonical factorization

$$z^{2}\widetilde{A}_{r}(z^{-1}) = (I - z\widetilde{R}_{r})\widetilde{K}_{r}(zI - \widetilde{G}_{r})$$

$$\widetilde{R}_{r} = \widehat{R} - u_{\widehat{R}}v_{\widehat{G}}^{T}\widetilde{K}^{-1}, \qquad \widetilde{K}_{r} = \widehat{K} - (u_{\widehat{R}} - \widehat{K}u_{G})v_{\widehat{G}}^{T},$$

$$\widetilde{G}_{r} = \widehat{G} + (u_{G} - \widehat{K}^{-1}u_{\widehat{R}})v_{\widehat{G}}^{T}$$

The eigenvalues of \tilde{R}_r are those of \hat{R} except for 1 which is replaced by 0; the eigevalues of \tilde{G}_r are the same as those of \hat{G} . Moreover, \tilde{G}_r and \tilde{R}_r are solutions of minimum spectral radius of the quadratic matrix equations

$$\widetilde{A}_{-1}X^2 + \widetilde{A}_0X + \widetilde{A}_1 = X, \quad X^2\widetilde{A}_1 + X\widetilde{A}_0 + \widetilde{A}_{-1} = X$$

Application to the Poisson problem

Bini, Dendievel, Latouche, Meini, 2016

The Poisson problem for a QBD consists in solving the equation

$$(I-P)z=q,$$

where q is an infinite vector, z is the unknown and

$$P = \begin{bmatrix} A_0 + A_{-1} & A_1 & & \\ A_{-1} & A_0 & A_1 & \\ & A_{-1} & A_0 & A_1 & \\ & & \ddots & \ddots & \ddots \end{bmatrix}$$

where A_{-1} , A_0 , A_1 are nonnegative and A_{-1} + A_0 + A_1 is stochastic.

If $\xi_n \neq \xi_{n+1}$, the series $W = \sum_{i=0}^{\infty} G^i K^{-1} R^i$ is convergent and det $W \neq 0$. Through W we may construct a resolvent triple for A(z), and provide the general expression of the solution.

This is not possible in the null recurrent case, where $\xi_n = \xi_{n+1}$

Solution :

- represent the Poisson problem in functional form
- apply the shift to the right to move ξ_n to zero
- construct a new matrix difference equation and solve it by using resolvent triples
- recover the solution of the original problem

The shift technique can be generalized in order to shift to zero or to infinity a set of selected eigenvalues, leaving unchanged the remaining eigenvalues.

Potential applications:

- Shifting a pair of conjugate complex eigenvalues to zero or to infinity still maintaining real arithmetic.
- Deflation of already approximated roots within a polynomial rootfinder
- Solution of matrix difference equation where resolvent triples cannot be explicitly constructed for the presence of multiple eigenvalues