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Motivation and purpose

Large queues are a key feature in queueing networks. We are

interested in how they are influenced by randomness in arrivals and
services, but this is hard to analyze.

e To overcome it, we employ asymptotic analyses for their
stationary joint queue length distributions.

= Their tail asymptotics (Large deviations).

= Their weak limits in heavy traffic (Approximation).

e We aim to refine a tool to solve both problems.

= This talk focuses on the tail asymptotic problem in a d-node
generalized Jackson network as its application.
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Stochastic process for the problems to be solved

Stochastic process for describing those problems is preferable to be
general but simple.

e One candidate for this is a joint queue length process
supplemented by remaining arrival and service times, which can
be considered as a PDMP (Piecewise Deterministic Markov
Process) due to Davis [2].

@ Another is discretization of the state space, which is typically
used in MAM (matrix analytic method).

We will take the PDMP for our analysis because it has a simple
sample path, but a basic idea is also applicable to MAM.
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Piecewise deterministic Markov process (PDMP)
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Figure: A sample path of PDMP X (¢) = (L(t), R.(t), Rs(t)) for GI/G/1 queue

A sample path of a PDMP is composed of two parts, deterministic

and continuous sections and discontinuous changes due to expiring of
remaining times.
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Analytic tools: test function and filtration

X (t) has a multidimensional state space S, and is right continuous in
t. We need two tools.

e A function f: S — R, called a test function.

e An increasing family of o-field {F;;t > 0}, called a filtration,
such that {X(¢)} is a F;-Markov process.

How they can be used 7

o Let C'(9) be the set of all functions from S to R that are
continuously differentiable.

o For f € C1(S), derive an equation for the time evolution of
sample function f(X(-)), then decompose it as a predictable
process plus a martingale with respect to {F;;t > 0}, which is
called a special semi-martingale in Jacod and Shriyaev [4].
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Example: X (t) = (L(t), Rc(t), Rs(t)) for GIG/1 queue

Let t.,, be the n-th arrival instant of customers, and Let ¢, be its
service completion instant. Define counting processes as

[e.o] o0

No(t) = 1tes <t),  Nut) =D 1(tei <),

n=1 n=1
N(t) = Ne(t) + Ns(t), tl == mf{t > ti—l; AN(t) > O},
for t > 0, then we have, for f € C'(S),

FX(0) / AF(X(u))du + / AJ(X()dN(w), (1)
where Af(X(u)) = f(X(u—)) and
AFCX () = - apf(t)f(X(t)) - %S(t)f(X(t))l(L(t) >1). (2)

= (1) is also valid for PDMP, while (2) is specific for the GI/G/1.
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Martingale decomposition (Davis [2])

Define a jump kernel @ as Q f(X (t;—)) = E(f(X(¢;))| X (t;—)), then

M(t) = / (F(X () — QF(X(u—)))dN ()
is F;-martingale, that is,
E(M(#H)|F) = M(s), 0<s<t,

if E(|M(t)|) < co. Hence, the time evolution (1) yields martingale
decomposition under appropriate conditions on f and N.

FX(0) = FX(0) + / AS(X () du
+f (QF(X (=) — FX (=))dN(w) + M) (3)

The second integration is hard to evaluate because of N !
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A conditions for a simpler martingale decomposition

Let A={xeS;di>1,z=X(t—)} If

Qf(w) = f($)7 x €A, (4)

for a test function f, which is referred to as a terminal condition,
then the martingale decomposition (3) is simplified to

FX () = / AFX()dut M), (5)

@ (5) can be considered as a Dynkin's formula for a Markov process
with generator A.

e PDMP is hard to analyze because of the terminal condition (4).

= It is important to find a class of good test functions.
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Exponential change of measure for asymptotic analysis

Suppose the martingale decomp05|t|on is obtalned Let

o (- | oy o

Y-M(t)—1+/ Y (u)dM (u),

0
then Y - M(t) is an E—martingale obtained as

Y(t) =

Finy — v _ f( Af(X(u))
() =Y M) = 150 / ()
which is positive, and E(E/ (¢ )) E(Ef = 1. Hence
B(A) = / El(t)dP, AcF (7)
A

is a probability measure. Under P, X (t) may have diffrent
asymptotics as t — 0o, which is useful to see them under P.
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Return to the GI/G/1 queue: good test functions

Let X (¢) = (L(t), Re(t), Rs(t)) be a PDP for GI/G/1 queue.
Choose the followng test function f with parameters 6,7, ( € R.
f(’z? y) = eaZV1+nye+Cys7 (27 y€7 ys) E S7 (8)

where a V b = max(a,b). Let Ts, T, be random variables subject to
the interarrival and service time distributions F,, I, then

Qf(z,y) =E(f(+1,Te,u5),  (2.0,55) €A,
Qf(z,y) =E(f(z = Ly, TL1(z 2 2))),  (2,,0) € A.
Hence, f satisfies the terminal condition (4) if and only if
CRm =1 'EQ)=1, 9)

where F.(n) = E(e"), F,(¢) = E(e¢™). We denote these 7, ¢ by
n(#),¢(0), and denote f with them by fy.
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Time evolution for the the exponential test function (8)

Substituting f = fp and n = n(0),{ = ((0) into the martingale
decomposition (5), we have

OL(t)V1+n(0)Re(t)+((0)Rs(t) OL(0)V1+n(0) Re (0)+C(0) R (0)

€ — €

t
== / (n(6) + € (0))e? IV IHnO Re(w+O) B () gy,
0
t
+/ C(@)l(L(u) — 0)69+77(9)R6(U)+C(9)R3(u)du
0
+ M(t)
This gives a concrete expression for the F;-martingale M (t) in terms
of the process { X (t);t > 0}.

Masakiyo Miyazawa (TUS) Large queue asymptotics June 28, 2016 12 /30



~

The shape of function 7(0) = F,!

e

n(#) is concave and decreasing in 6.

From Theorem 1 of Glynn & Whitt [3], we have
() = — lim 1log]E(e‘()N‘f(t))
g t—oo t ’

Hence, —n(6) is the rate function of large deviations of N.(t).
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Similar to 7(6), we have
¢(0) = — lim —logE( —ON),

A problem is that (), ((6) may not be well defined for some 6, we
need truncation of 7., T in such cases.
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Change of measure for the GI/G/1 queue

Let 7,7 = inf{t > 0; L(t) > n} and 7, = inf{t > 75"; L(t) = 0}, and
let Eq represents the expectation when L(0) = 0 and X (0) is subject
to the stationary distribution of X (¢). Then, we have

Eo (7'0 — T

1 o
P(L > n) = —E0< / 1(L(u) >n)du). (10)
)N
From (2) and (5), it follows that
eeL(t)+77(0)Re(t)+C(0)Rs( )

Fipy SH(O)+C(0)-C(0) f{ 1L(w=0)du
EXt) = Giomeroreomo °

Using this, we define a new measure Py by (7), then

Eo(Z(t}=)) = fEO(e—(n—1)9—c(9)Rs(nT—)e—(n(9)+<(9))ﬁZ( +)) (11)

for Z(t) = Eo( [ 1(L(u) > n)dul(t < 15)|F).
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Tail asymptotic for a queue in the GI/G/1 queue

Let v(0) = —(n(0) + ((#)), and assume that
1 < 7(6p) < o0, for some 6y > 0. (12)
Noting that v(#) is convex and /(0) = A — p < 0, define « as
a = sup{f > 0;7(f) < 0}.

Then, we can prove that (10) and (11) imply, for some ¢ > 0,

lim e*"P(L > n) = < -

o0 Eo(rg —79) (13)

When (12) fails, we need to truncate T; as T; A v for v > 0 and
replace ((0) by ((v,0), where a A v = min(a, b), then let v to infinity.
This truncation is shown to work in Miyazawa [7].
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Effect of the truncation T A v for (v, 6)

¢'(v,0) = 1/E(Ts Av)
v, 0)

.
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.
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Figure: This is the case that T has a heavy tail distribution

((v,0) for v > 0 and ((A,0) are determined by

e IR(eSCOTMYy — 1 ¢(A,0) = lim ((v,6).

V—00
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d-node generalized Jackson network (GJN)

J={1,2,...,d}: the set of all nodes, p;;, i, € J are routing
probabilities. N, ;(t) is a renewal process, T} ; is a random variable
subject to the service time distribution £ ; at node j.
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Assumptions on the generalized Jackson network (GJN)

We consider a d-station generalized Jackson network (GJN), for

which we assume:

(a) Stations has single servers and Markovian routing.

(b) Exogenous arrivals are subject to renewal processes, and service
times at each node are 7.7.d..

(c) The stability condition, p; < 1 fori =1,2,...,d, is assumed,
where p; is the traffic intensity at station .

(d) Phase type distributions for arrivals and services.

Assumption (d) may be unnecessarily strong, but we currently need it

(except for d = 2) to confirm that the distribution of the remaining

service time of a customer being served at node i, denoted by R, ;(t),

is well behaved under the stationary distribution.
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Test functions for the terminal condition

Our strategy to get the tail asympptotics is basically the same as it
for the GI/G/1 queue. However, there are problems to be resolved
because the queue length L(t) is multidimasional.

Let X (¢) = (L(t), R.(t), Rs(t)) be a PDMP for the GJN, and let

fg(Z, Ye> ys) = 6<0’ZV1>+<TI(0)’y6>+<C(e)’ys>7 (Z, Yes ys) € S’ 0 c Rd)
where (a,b) is the inner product of vectors a,b € R%. This fy
satisfies the terminal condition (4), if n(0) = {n;(6;);: € J} and
¢(0) ={¢(0);i € J} are given by
" Fa(mi(0)) =1, t:(0)F.i(G(6)) =1, (14)
where F. (1)) = E(enT1), F,;(C) = E(e™4), and
ti(0) = e ( Zpijeej + pio).

icJ
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Interpretations of functions (@) and ¢{(0)

Let N.,(t) be the counting process for exogenous arriving customers
at node i (if no arrival, N, ;(t) = 0), then, similar to the GI/G/1,

1
n:(6;) = —tli>rcr>10 7 log E(efNeil) 9, e R, i € J,

Let N, ;(t) be the renewal process generated by the service times at
node ¢ and W, ;(n) be the number of routing from node i to j among
n departures., then, for @ € R?,

¢(0) = — lim —logE( —0iNsi(H)+2 ¢, ejq:‘i,j(Ns,i(t)))7 ieJ

t—oo {

In the view of these facts, we introduce convex functions:

Ve,i(0:) = —ni(0:), 74i(0) = —Gi(0),
and denote their vectors by «,.(0) and v,(6).
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The tail decay rates for the stable GJN

The following rate functions and geometric objects (convex sets) will
be useful to get the tail decay rates.

YDO) =3 (1eis) +7a:(0)),  +7(8) = +1(0) — 4(6).
ieJ

I"={#cR%:30 71 (@) <0,6<8},

I%. ={0 cR*~M(@)=0,v7(0) <0,i € K}, KcJ

For d = 2, Miyazawa [6] derives the tail decay rate in direction c:

1
lim —logP(c1 Ly + cols > ) = a,

T—00 U
where (L1, Ly) is the stationary queue length vector, and
e =sup{u > 0;uc € Ty, 0; < 75,0 = 1,2}, (15)

for the solution 7 of 7; = sup{6; > 0;0 € 'y, 05_; < 13_;}.
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Geometric objects for the tail decay rates for d = 2

0 0
04 et =119+ €T

T2

0(27C): 0(27r)

Ve, 1(01) + Ye,2(02) +74,1(0) +7a,2(0) =
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Procedure to derive the decay rates: steps 1, 2, 3

1. For the cycle formula, we choose boundary sets:
Sk ={(2,9.,y,) €S;z=0,Yie K}, KC.J

2. Derive an exponential martingale E/¢(t) for change of measure
with the initial distribution vx on Sk.
(O, L(H)V1)—(7e(8),Re(t))—(vq(0), Rs (1))
Efe (t) =
e(0,L(0)V1)—(7e(0),Rc(0))—(v4(0),Rs(0))
x e~V PO+ 17a4(8) Jo ULi(w)=0)du_

P, (A) =E, (E*()14), AeF.
3. We get back P, from ﬁuK by
P, (A) =E, ((E*(t)'4), AeF.
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Procedure to derive the decay rates: further steps

4. 1g =inf{t > 0; L(t) & Sk}, 75, = inf{t > 74 _; L(t) € Sk},

TSK
P,.(L > xc) = cKIEl,K(/ 1(L(u) > xc)du).
+
TSy
5. Let 7., = inf{t > 0; L(t) > zc},
Z(th—) = VK(fSKl ) > xc) du‘}"+ ) then

P(L > zc) = cxE,, (B (r,-) " Z(r,)1(r}, < 75,))
where

(0, L(0)V1)—(7(0),Re(0)) = (va(6),Rs(0))
(B (=) =

(0. L(15e=)V1) = (7e(8),Re (e =)~ (Va(0), Rs ()

X 6’7(+) (O)TZ-';Z Z’LEJ Yd,i 0) ITIC 1 :O)du‘

6. Find conditions for e*(©® P(L > xc) to be bounded for 2 — oo.
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Bounds for the decay rates

Lemma 1

For the stable GJN, assume that the interarrival and service time
distributions are of phase type. Let L be a random vector subject
to the stationary distribution of L(t), and let

0i(0) =E(e®L1(L; = 0)) for @ € R%,i € J, then we have, for

K C J,

1
lim sup — log P(L > nc)

n—oo 1N

< —sup{(c,0);0 € T%_,¢;(0) <oo,Vig K},  (16)

1
lim inf — log P(L > nc)
n—oo n

> —inf{(c,0);0 € T%_,;(0) < oo,Vi & K}. (17)
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Concluding remarks

e For d = 2, we can get all the decay rate for directions ¢ > 0.
This refines the decay rates, which are only known for the
marginal distributions obtained in [5].

e For d > 3, how the decay rates can be derived ?
= This is a challenging problem even for the corresponding
SRBM (semi-martingale reflecting Brownian motion).

e The phase-type assumption can be removed ?
= Yes, it could be. As in the extended abstract, we may apply
truncation arguments on 1. ;, T ; for this, but there still remains
hard problems to be resolved.

e Do the decay rates converge to those of the corresponding
SRBM in heavy traffic 7
= Yes, it is true for d = 2. We also conjecture it for d > 3.
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