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The Maximum and Minimum

Let’s consider two Markov chains:

{Xrlz}neN and {X?L}neN :

The space of states are given by F; and Fs, respectively. In both of
them it is suppose that the states are transient, except one, which is
absorbing.

Let a; and ao, be the initial distributions of the corresponding
Markov chains.

Let
o Sl S1 _ SQ S92
Al - ( 0 1 ) ) A2 - ( 0 1 )
be the transition probability matrices of the corresponding Markov

chains, where
s, =e— S;e,i=1,2.
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Let
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which are independent.

Denote
Yv(l) = min (Yh Y2> 5

Y2) = mix (Y1,Y2),

the first and the second order statistics.
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Multivariable Markov chain

Consider the multivariable Markov chain
{Xn} = (X;,X7), neN

Suppose that By = {1,2,3} and Ey = {1,2,3} are the space of
states of the corresponding Markov chains.

Consequently, the space of state of the multivariable Markov chain
is:

{(1,1),(1,2),(2,1),(2,2),(3,1), (3,2), (1,3),(2,3), (3,3)} -
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(3,3)+ L ) o0 o000
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Probabilistic interpretation

@ The initial distribution of the multivariable Markov chain {X,,} is
given by
(061 ® a2, 0) .
@ The transition probability matrix is

S51®85 5108 S ®sy s1®s:

0 Ss 0 S2
0 0 S1 S1
0 0 0 1

@ Sub-transition probability matrix for the minimum Y(;):
A =851® 8.
@ Sub-transition probability matrix for the maximum Y{y:

S51®8 51®8 S1®sy
Ap) = 0 Sy 0
0 0 S

7/20



Motivation
Order statistics of two independent discrete phase-type distributions

Representation for the minimum Y{y)

Denote a3 = a1 ® as.

8/20



Motivation
Order statistics of two independent discrete phase-type distributions

Representation for the minimum Y{y)

Denote a3 = a1 ® as.
Let m € N. Then the product

@A

is the survival function of Y(y).

8/20
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Order statistics of two independent discrete phase-type distributions

Representation for the minimum Y{y)

Denote a3 = a1 ® as.
Let m € N. Then the product

@A

is the survival function of Y(y).

®Ahe = (1®a)(S1®852)"e
= (a187"e) (a255"€)
= PY1>m)P (Y2 >m)
= P(Y1>m,Ys>m)
P (}/(1) > m) .
Consequently, by the Kronecker product properties and
independence of the variables, we conclude that

Yoy ~ DPH (a3, Aq) -

8/20



Motivation
Order statistics of two independent discrete phase-type distributions

Representation for the maximum Y/,

Recall
S1®8 8188y S R®ss
Ap=| o S, 0
0 0 S1

9/20



Motivation
Order statistics of two independent discrete phase-type distributions

Representation for the maximum Y/,

Recall
S1®8 8188y S R®ss
Ap=| o S, 0
0 0 S1

We are going to verify that the product
(@a 0) Ag)ea m e Na

is the survival function of Y(3).

9/20



Motivation
Order statistics of two independent discrete phase-type distributions

Representation for the maximum Y/,

Recall
S1®8 8188y S R®ss
Ap=| o S, 0
0 0 S1

We are going to verify that the product
(@a 0) Ag)ea m e Na

is the survival function of Y(3).
o Let us denote

S 0
B(l) =(51®8; S1®s2) and C(l) = < 02 S, ) .

9/20



Motivation
Order statistics of two independent discrete phase-type distributions

Representation for the maximum Y/,

Recall
S1®8 8188y S R®ss
Ap=| o S, 0
0 0 S1

We are going to verify that the product
(@a 0) Ag)ea m e Na

is the survival function of Y(3).
o Let us denote

S 0
B(l) =(51®8; S1®s2) and C(l) = < 02 S, ) .

@ Then, we have that
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Observe that

A7 B
=8 Tont ] m=2

€]

and
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Observe that

and

(az,0) Ag)e = CTQA?{)e + a2 B(1 m)e.

Since we already have that
OTQA’(’{)e =P (Y(l) > m) .

then, we just need to make the product a2 By )€
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Amfl B B A B
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Motivation
Order statistics of two independent discrete phase-type distributions

One way to calculate that is by the following product:

Amfl B _ A B
m _ Am—1 _ (1) (1,m-1) (1) (1)
ECChs ( o oy ) ( 0 Cpy )

m—1
Bam) = A1y Bu) + Bam-1)C)-

It can be proved by induction that

B me="P (Y(l) <m,Yg) > m) , forall meN.
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Then,
(2,0) A5 e = @Al e+ @B me
= P(Yu) >m) +P(Yn) <m, Yo >m)
= ]P) (}/22) > m) .
Therefore,

((@2.0). A))

is a representation for the distribution of Y/s).
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Representation for the maximum

Let Y71,Y5 and Y3 be three independent Matrix-geometric distributed
random variables with the following representations.

Y, ~ MG (a;, Siysi), s;=e—Se, i=123.

Denote
az = a1 @ az ® as.
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Representation for the maximum

S5 ®8®8; 510808 50508 S5085®s3 5105083 5105 0s3 S ®s;®s
0 0

0 Sy ® 83 0 sp @ S3 S> ®s3

0 0 518 S; 0 5195, 0 51 @8
Ap) = 0 0 0 5198, 0 5128, 51 ®s

0 0 0 0 S5 0 0

0 0 0 0 0 S» 0

0 0 0 0 0 0 S

We are going to prove that

((@3,0),Ap),a@), ag =e—Age.

is a representation for the maximum Y(3).
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Let us write the matrix A s) as follows.

Aw Bu) B

0 Cu Cup |,
0 0 Cp

where A (1), B(1) and C(y) is as in the second order statistic,
Boy=(s10808; s1085 0s3 S1®s;Qs3 ),
S2 @83 Se®s3 0

Cua=| s1®5;s 0 S1 ®s3
0 $1®82 S1®s2

and
S; 0 0
Cpo = 0o S, 0
0O 0 S
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Order statistics for independent Matrix-geometric distributions Representation for the third order statistic

Since we are going to calculate

(ES’ 0) Ag)ea

we need to obtain an expression for Ag).
Observe that

Ally Bam) Baam

& = 0 €y Cuazm
0 0 cn

Then,
(aii’n 0) Ag)e = @A?{)e + 0473B(1,m)e + a73B(1,2,m)e7

where
OT;;A?{)G + CTgB(Lm)e =P (Y(z) > m)
by the second order statistic.
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Consequently,

(a3,0) Aly)e
= ngA’(q)e +az3Ba,me +azB2,m)e

P (Yo >m) +P Yoy < m, Vo) < m, Y >m)
= P (Y(g) > m) .

Therefore,
(073, A(g), a(g)) ,  where ag) =e— A(3)e,

is a representation for the distribution of ¥(3).
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random variables, with representation

(a1, 8S:,8i), where s;=e—S;e, i=1,...,n.

Denote a,, = a1 @ s ® - -+ @ .
For r = 1. }/(1) ~ MG (O(in,A(l),a(l)) R where

A(l) = Sl (39 SQ R ® Sn and ang =e— A(l)e'
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o C(;) is a block diagonal matrix which consists on all the
combinations formed with ¢ — 1 elements of S1,S5,...,S,, and
depends of the block exit given by B(;_1).

e C;, is a exit block corresponding to the block matrices C; and
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Thanks for your attention.
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