Order statistics of Matrix-Geometric distributions

Azucena Campillo Navarro ${ }^{1}$, Bo Friis Nielsen ${ }^{1}$, Mogens Bladt ${ }^{2}$.
${ }^{1}$ Technical University of Denmark
Department of Applied Mathematics and Compute Science.
${ }^{2}$ Autonomous National University of Mexico.

Budapest, Hungary, June 2016.

Outline

1. Motivation: Maximum and minimum of two independent phase-type distributions.

The Maximum of three independent Matrix-geometric distributions.

Generalization: The r-th order statistics of n independent Matrix-geometric distributions.

Outline

1. Motivation: Maximum and minimum of two independent phase-type distributions.
2. The Maximum of three independent Matrix-geometric distributions.

> Generalization: The r-th order statistics of n independent Matrix-geometric distributions.

Outline

1. Motivation: Maximum and minimum of two independent phase-type distributions.
2. The Maximum of three independent Matrix-geometric distributions.
3. Generalization: The r-th order statistics of n independent Matrix-geometric distributions.

The Maximum and Minimum

Let's consider two Markov chains:

$$
\left\{X_{n}^{1}\right\}_{n \in \mathbb{N}} \quad \text { and } \quad\left\{X_{n}^{2}\right\}_{n \in \mathbb{N}}
$$

The space of states are given by E_{1} and E_{2}, respectively. In both of them it is suppose that the states are transient, except one, which is absorbing.
Let α_{1} and α_{2}, be the initial distributions of the corresponding Markov chains.

Let

$$
\Lambda_{1}=\left(\begin{array}{cc}
\boldsymbol{S}_{1} & \mathrm{~s}_{1} \\
0 & 1
\end{array}\right), \quad \Lambda_{2}=\left(\begin{array}{cc}
\boldsymbol{S}_{2} & \mathrm{~s}_{2} \\
0 & 1
\end{array}\right),
$$

be the transition probability matrices of the corresponding Markov chains, where

$$
\mathrm{s}_{i}=\mathrm{e}-S_{i} \mathrm{e}, i=1,2 .
$$

The Maximum and Minimum

Let's consider two Markov chains:

$$
\left\{X_{n}^{1}\right\}_{n \in \mathbb{N}} \quad \text { and } \quad\left\{X_{n}^{2}\right\}_{n \in \mathbb{N}}
$$

The space of states are given by E_{1} and E_{2}, respectively. In both of them it is suppose that the states are transient, except one, which is absorbing.
Let α_{1} and α_{2}, be the initial distributions of the corresponding Markov chains.
Let

be the transition probability matrices of the corresponding Markov chains, where

The Maximum and Minimum

Let's consider two Markov chains:

$$
\left\{X_{n}^{1}\right\}_{n \in \mathbb{N}} \quad \text { and } \quad\left\{X_{n}^{2}\right\}_{n \in \mathbb{N}}
$$

The space of states are given by E_{1} and E_{2}, respectively. In both of them it is suppose that the states are transient, except one, which is absorbing.
Let α_{1} and α_{2}, be the initial distributions of the corresponding Markov chains.

be the transition probability matrices of the corresponding Markov chains, where

The Maximum and Minimum

Let's consider two Markov chains:

$$
\left\{X_{n}^{1}\right\}_{n \in \mathbb{N}} \quad \text { and } \quad\left\{X_{n}^{2}\right\}_{n \in \mathbb{N}}
$$

The space of states are given by E_{1} and E_{2}, respectively. In both of them it is suppose that the states are transient, except one, which is absorbing.
Let α_{1} and α_{2}, be the initial distributions of the corresponding Markov chains.
Let

$$
\Lambda_{1}=\left(\begin{array}{cc}
\boldsymbol{S}_{1} & \mathbf{s}_{1} \\
\mathbf{0} & 1
\end{array}\right), \quad \Lambda_{2}=\left(\begin{array}{cc}
\boldsymbol{S}_{2} & \mathbf{s}_{2} \\
\mathbf{0} & 1
\end{array}\right),
$$

be the transition probability matrices of the corresponding Markov chains, where

$$
\mathbf{s}_{i}=\mathbf{e}-\boldsymbol{S}_{i} \mathbf{e}, i=1,2 .
$$

Let

$$
Y_{1} \sim \mathrm{DPH}\left(\alpha_{1}, \boldsymbol{S}_{1}\right) \quad \text { and } \quad Y_{2} \sim \mathrm{DPH}\left(\alpha_{2}, \boldsymbol{S}_{2}\right)
$$

which are independent.
Denote

$$
\begin{aligned}
& Y_{(1)}=\operatorname{mín}\left(Y_{1}, Y_{2}\right), \\
& Y_{(2)}=\operatorname{máx}\left(Y_{1}, Y_{2}\right),
\end{aligned}
$$

the first and the second order statistics.

Let

$$
Y_{1} \sim \operatorname{DPH}\left(\alpha_{1}, \boldsymbol{S}_{1}\right) \quad \text { and } \quad Y_{2} \sim \operatorname{DPH}\left(\alpha_{2}, \boldsymbol{S}_{2}\right),
$$

which are independent.
Denote

$$
\begin{aligned}
Y_{(1)} & =\operatorname{mín}\left(Y_{1}, Y_{2}\right), \\
Y_{(2)} & =\operatorname{máx}\left(Y_{1}, Y_{2}\right),
\end{aligned}
$$

the first and the second order statistics.

Multivariable Markov chain

Consider the multivariable Markov chain

$$
\left\{X_{n}\right\}=\left(X_{n}^{1}, X_{n}^{2}\right), \quad n \in \mathbb{N} .
$$

Suppose that $E_{1}=\{1,2,3\}$ and $E_{2}=\{1,2,3\}$ are the space of states of the corresponding Markov chains.

Consequently, the space of state of the multivariable Markov chain is:

$$
\{(1,1),(1,2),(2,1),(2,2),(3,1),(3,2),(1,3),(2,3),(3,3)\} .
$$

Multivariable Markov chain

Consider the multivariable Markov chain

$$
\left\{X_{n}\right\}=\left(X_{n}^{1}, X_{n}^{2}\right), \quad n \in \mathbb{N} .
$$

Suppose that $E_{1}=\{1,2,3\}$ and $E_{2}=\{1,2,3\}$ are the space of states of the corresponding Markov chains.
Consequently, the space of state of the multivariable Markov chain

$$
\{(1,1),(1,2),(2,1),(2,2),(3,1),(3,2),(1,3),(2,3),(3,3)\}
$$

Multivariable Markov chain

Consider the multivariable Markov chain

$$
\left\{X_{n}\right\}=\left(X_{n}^{1}, X_{n}^{2}\right), \quad n \in \mathbb{N}
$$

Suppose that $E_{1}=\{1,2,3\}$ and $E_{2}=\{1,2,3\}$ are the space of states of the corresponding Markov chains.
Consequently, the space of state of the multivariable Markov chain is:

$$
\{(1,1),(1,2),(2,1),(2,2),(3,1),(3,2),(1,3),(2,3),(3,3)\}
$$

Multivariable Markov chain

Probabilistic interpretation

- The initial distribution of the multivariable Markov chain $\left\{X_{n}\right\}$ is given by

$$
\left(\alpha_{1} \otimes \alpha_{2}, \mathbf{0}\right) .
$$

- The transition probability matrix is

- Sub-transition probability matrix for the minimum $Y_{(1)}$

$$
\boldsymbol{A}_{(1)}=\boldsymbol{S}_{1} \otimes \boldsymbol{S}_{2} .
$$

- Sub-transition probability matrix for the maximum $Y_{(2)}$

Probabilistic interpretation

- The initial distribution of the multivariable Markov chain $\left\{X_{n}\right\}$ is given by

$$
\left(\alpha_{1} \otimes \alpha_{2}, \mathbf{0}\right) .
$$

- The transition probability matrix is

$$
\left(\begin{array}{cccc}
\boldsymbol{S}_{1} \otimes \boldsymbol{S}_{2} & \mathbf{s}_{1} \otimes \boldsymbol{S}_{2} & \boldsymbol{S}_{1} \otimes \mathbf{s}_{2} & \mathbf{s}_{1} \otimes \mathbf{s}_{2} \\
\mathbf{0} & \boldsymbol{S}_{2} & \mathbf{0} & \mathbf{s}_{2} \\
\mathbf{0} & \mathbf{0} & \boldsymbol{S}_{1} & \mathbf{s}_{1} \\
0 & 0 & 0 & 1
\end{array}\right) .
$$

- Sub-transition probability matrix for the minimum $Y_{(1)}$
- Sub-transition probability matrix for the maximum $Y_{(2)}$

Probabilistic interpretation

- The initial distribution of the multivariable Markov chain $\left\{X_{n}\right\}$ is given by

$$
\left(\alpha_{1} \otimes \alpha_{2}, \mathbf{0}\right) .
$$

- The transition probability matrix is

$$
\left(\begin{array}{cccc}
\boldsymbol{S}_{1} \otimes \boldsymbol{S}_{2} & \mathbf{s}_{1} \otimes \boldsymbol{S}_{2} & \boldsymbol{S}_{1} \otimes \mathbf{s}_{2} & \mathbf{s}_{1} \otimes \mathbf{s}_{2} \\
\mathbf{0} & \boldsymbol{S}_{2} & \mathbf{0} & \mathbf{s}_{2} \\
\mathbf{0} & \mathbf{0} & \boldsymbol{S}_{1} & \mathbf{s}_{1} \\
0 & 0 & 0 & 1
\end{array}\right) .
$$

- Sub-transition probability matrix for the minimum $Y_{(1)}$:

$$
\boldsymbol{A}_{(1)}=\boldsymbol{S}_{1} \otimes \boldsymbol{S}_{2} .
$$

- Sub-transition probability matrix for the maximum $Y_{(2)}$

Probabilistic interpretation

- The initial distribution of the multivariable Markov chain $\left\{X_{n}\right\}$ is given by

$$
\left(\alpha_{1} \otimes \alpha_{2}, \mathbf{0}\right)
$$

- The transition probability matrix is

$$
\left(\begin{array}{cccc}
\boldsymbol{S}_{1} \otimes \boldsymbol{S}_{2} & \mathbf{s}_{1} \otimes \boldsymbol{S}_{2} & \boldsymbol{S}_{1} \otimes \mathbf{s}_{2} & \mathbf{s}_{1} \otimes \mathbf{s}_{2} \\
\mathbf{0} & \boldsymbol{S}_{2} & \mathbf{0} & \mathbf{s}_{2} \\
\mathbf{0} & \mathbf{0} & \boldsymbol{S}_{1} & \mathbf{s}_{1} \\
0 & 0 & 0 & 1
\end{array}\right)
$$

- Sub-transition probability matrix for the minimum $Y_{(1)}$:

$$
\boldsymbol{A}_{(1)}=\boldsymbol{S}_{1} \otimes \boldsymbol{S}_{2}
$$

- Sub-transition probability matrix for the maximum $Y_{(2)}$:

$$
\boldsymbol{A}_{(2)}=\left(\begin{array}{ccc}
\boldsymbol{S}_{1} \otimes \boldsymbol{S}_{2} & \mathbf{s}_{1} \otimes \boldsymbol{S}_{2} & \boldsymbol{S}_{1} \otimes \mathbf{s}_{2} \\
\mathbf{0} & \boldsymbol{S}_{2} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \boldsymbol{S}_{1}
\end{array}\right)
$$

Representation for the minimum $Y_{(1)}$

Denote $\overline{\alpha_{2}}=\alpha_{1} \otimes \alpha_{2}$.
Let $m \in \mathbb{N}$. Then the product

is the survival function of $Y_{(1)}$.

$$
\begin{aligned}
\overline{\alpha_{2}} \boldsymbol{A}_{(1)}^{m} \mathbf{e} & =\left(\alpha_{1} \otimes \alpha_{2}\right)\left(\boldsymbol{S}_{1} \otimes \boldsymbol{S}_{2}\right)^{m} \mathbf{e} \\
& =\left(\alpha_{1} \boldsymbol{S}_{1}^{m} \mathbf{e}\right)\left(\alpha_{2} \boldsymbol{S}_{2}^{m} \mathbf{e}\right) \\
& =\mathbb{P}\left(Y_{1}>m\right) \mathbb{P}\left(Y_{2}>m\right) \\
& =\mathbb{P}\left(Y_{1}>m, Y_{2}>m\right) \\
& =\mathbb{P}\left(Y_{(1)}>m\right) .
\end{aligned}
$$

Consequently, by the Kronecker product properties and independence of the variables, we conclude that

$$
Y_{(1)} \sim D P H\left(\overline{\alpha_{2}}, \boldsymbol{A}_{(1)}\right) .
$$

Representation for the minimum $Y_{(1)}$

Denote $\overline{\alpha_{2}}=\alpha_{1} \otimes \alpha_{2}$.
Let $m \in \mathbb{N}$. Then the product

$$
\overline{\alpha_{2}} \boldsymbol{A}_{(1)}^{m} \mathbf{e}
$$

is the survival function of $Y_{(1)}$.

Consequently, by the Kronecker product properties and independence of the variables, we conclude that

$$
Y_{(1)} \sim D P H\left(\overline{\alpha_{2}}, \boldsymbol{A}_{(1)}\right)
$$

Representation for the minimum $Y_{(1)}$

Denote $\overline{\alpha_{2}}=\alpha_{1} \otimes \alpha_{2}$.
Let $m \in \mathbb{N}$. Then the product

$$
\overline{\alpha_{2}} \boldsymbol{A}_{(1)}^{m} \mathbf{e}
$$

is the survival function of $Y_{(1)}$.

$$
\begin{aligned}
\overline{\alpha_{2}} \boldsymbol{A}_{(1)}^{m} \mathbf{e} & =\left(\alpha_{1} \otimes \alpha_{2}\right)\left(\boldsymbol{S}_{1} \otimes \boldsymbol{S}_{2}\right)^{m} \mathbf{e} \\
& =\left(\alpha_{1} \boldsymbol{S}_{1}^{m} \mathbf{e}\right)\left(\alpha_{2} \boldsymbol{S}_{2}^{m} \mathbf{e}\right) \\
& =\mathbb{P}\left(Y_{1}>m\right) \mathbb{P}\left(Y_{2}>m\right) \\
& =\mathbb{P}\left(Y_{1}>m, Y_{2}>m\right) \\
& =\mathbb{P}\left(Y_{(1)}>m\right)
\end{aligned}
$$

Consequently, by the Kronecker product properties and independence of the variables, we conclude that

$$
Y_{(1)} \sim D P H\left(\overline{\alpha_{2}}, \boldsymbol{A}_{(1)}\right)
$$

Representation for the maximum $Y_{(2)}$

Recall

$$
\boldsymbol{A}_{(2)}=\left(\begin{array}{ccc}
\boldsymbol{S}_{1} \otimes \boldsymbol{S}_{2} & \mathbf{s}_{1} \otimes \boldsymbol{S}_{2} & \boldsymbol{S}_{1} \otimes \mathbf{s}_{2} \\
\mathbf{0} & \boldsymbol{S}_{2} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \boldsymbol{S}_{1}
\end{array}\right)
$$

We are going to verify that the product

$$
\left(\overline{\alpha_{2}}, \mathbf{0}\right) \boldsymbol{A}_{(2)}^{m} \mathbf{e}, \quad m \in \mathbb{N},
$$

is the survival function of $Y_{(2)}$.

- Let us denote

$$
\boldsymbol{B}_{(1)}=\left(\begin{array}{lll}
\mathbf{s}_{1} \otimes \boldsymbol{S}_{2} & \boldsymbol{S}_{1} \otimes \mathbf{s}_{2}
\end{array}\right) \quad \text { and } \quad \boldsymbol{C}_{(1)}=\left(\begin{array}{cc}
\boldsymbol{S}_{2} & 0 \\
0 & \boldsymbol{S}_{1}
\end{array}\right)
$$

- Then, we have that

Representation for the maximum $Y_{(2)}$

Recall

$$
\boldsymbol{A}_{(2)}=\left(\begin{array}{ccc}
\boldsymbol{S}_{1} \otimes \boldsymbol{S}_{2} & \mathbf{s}_{1} \otimes \boldsymbol{S}_{2} & \boldsymbol{S}_{1} \otimes \mathbf{s}_{2} \\
\mathbf{0} & \boldsymbol{S}_{2} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \boldsymbol{S}_{1}
\end{array}\right) .
$$

We are going to verify that the product

$$
\left(\overline{\alpha_{2}}, \mathbf{0}\right) \boldsymbol{A}_{(2)}^{m} \mathbf{e}, \quad m \in \mathbb{N},
$$

is the survival function of $Y_{(2)}$.

- Then, we have that

Representation for the maximum $Y_{(2)}$

Recall

$$
\boldsymbol{A}_{(2)}=\left(\begin{array}{ccc}
\boldsymbol{S}_{1} \otimes \boldsymbol{S}_{2} & \mathbf{s}_{1} \otimes \boldsymbol{S}_{2} & \boldsymbol{S}_{1} \otimes \mathbf{s}_{2} \\
\mathbf{0} & \boldsymbol{S}_{2} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \boldsymbol{S}_{1}
\end{array}\right) .
$$

We are going to verify that the product

$$
\left(\overline{\alpha_{2}}, \mathbf{0}\right) \boldsymbol{A}_{(2)}^{m} \mathbf{e}, \quad m \in \mathbb{N},
$$

is the survival function of $Y_{(2)}$.

- Let us denote

$$
\boldsymbol{B}_{(1)}=\left(\begin{array}{ll}
\mathbf{s}_{1} \otimes \boldsymbol{S}_{2} & \boldsymbol{S}_{1} \otimes \mathbf{s}_{2}
\end{array}\right) \quad \text { and } \quad \boldsymbol{C}_{(1)}=\left(\begin{array}{cc}
\boldsymbol{S}_{2} & \mathbf{0} \\
\mathbf{0} & \boldsymbol{S}_{1}
\end{array}\right) .
$$

- Then, we have that

Representation for the maximum $Y_{(2)}$

Recall

$$
\boldsymbol{A}_{(2)}=\left(\begin{array}{ccc}
\boldsymbol{S}_{1} \otimes \boldsymbol{S}_{2} & \mathbf{s}_{1} \otimes \boldsymbol{S}_{2} & \boldsymbol{S}_{1} \otimes \mathbf{s}_{2} \\
\mathbf{0} & \boldsymbol{S}_{2} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \boldsymbol{S}_{1}
\end{array}\right) .
$$

We are going to verify that the product

$$
\left(\overline{\alpha_{2}}, \mathbf{0}\right) \boldsymbol{A}_{(2)}^{m} \mathbf{e}, \quad m \in \mathbb{N},
$$

is the survival function of $Y_{(2)}$.

- Let us denote

$$
\boldsymbol{B}_{(1)}=\left(\begin{array}{ll}
\mathbf{s}_{1} \otimes \boldsymbol{S}_{2} & \boldsymbol{S}_{1} \otimes \mathbf{s}_{2}
\end{array}\right) \quad \text { and } \quad \boldsymbol{C}_{(1)}=\left(\begin{array}{cc}
\boldsymbol{S}_{2} & \mathbf{0} \\
\mathbf{0} & \boldsymbol{S}_{1}
\end{array}\right) .
$$

- Then, we have that

$$
\boldsymbol{A}_{(2)}=\left(\begin{array}{cc}
\boldsymbol{A}_{(1)} & \boldsymbol{B}_{(1)} \\
\mathbf{0} & \boldsymbol{C}_{(1)}
\end{array}\right) .
$$

Observe that

$$
\boldsymbol{A}_{(2)}^{m}=\left(\begin{array}{cc}
\boldsymbol{A}_{(1)}^{m} & \boldsymbol{B}_{(1, m)} \\
\mathbf{0} & \boldsymbol{C}_{(1)}^{m}
\end{array}\right), \quad m \geq 2
$$

and

$$
\left(\overline{\alpha_{2}}, \mathbf{0}\right) \boldsymbol{A}_{(2)}^{m} \mathbf{e}=\overline{\alpha_{2}} \boldsymbol{A}_{(1)}^{m} \mathbf{e}+\overline{\alpha_{2}} \boldsymbol{B}_{(1, m)} \mathbf{e} .
$$

Since we already have that

$$
\overline{\alpha_{2}} A_{(1)}^{m} \mathrm{e}=\mathbb{P}\left(Y_{(1)}>m\right) .
$$

then, we just need to make the product $\overline{\alpha_{2}} \boldsymbol{B}_{(1, m)} \mathbf{e}$

Observe that

$$
\boldsymbol{A}_{(2)}^{m}=\left(\begin{array}{cc}
\boldsymbol{A}_{(1)}^{m} & \boldsymbol{B}_{(1, m)} \\
\mathbf{0} & \boldsymbol{C}_{(1)}^{m}
\end{array}\right), \quad m \geq 2,
$$

and

$$
\left(\overline{\alpha_{2}}, \mathbf{0}\right) \boldsymbol{A}_{(2)}^{m} \mathbf{e}=\overline{\alpha_{2}} \boldsymbol{A}_{(1)}^{m} \mathbf{e}+\overline{\alpha_{2}} \boldsymbol{B}_{(1, m)} \mathbf{e} .
$$

Since we already have that

$$
\overline{\alpha_{2}} \boldsymbol{A}_{(1)}^{m} \mathbf{e}=\mathbb{P}\left(Y_{(1)}>m\right) .
$$

then, we just need to make the product $\overline{\alpha_{2}} \boldsymbol{B}_{(1, m)} \mathbf{e}$

One way to calculate that is by the following product:

$$
\boldsymbol{A}_{(2)}^{m}=\boldsymbol{A}_{(2)}^{m-1} \boldsymbol{A}_{(2)}=\left(\begin{array}{cc}
\boldsymbol{A}_{(1)}^{m-1} & \boldsymbol{B}_{(1, m-1)} \\
\mathbf{0} & \boldsymbol{C}_{(1)}^{m-1}
\end{array}\right)\left(\begin{array}{cc}
\boldsymbol{A}_{(1)} & \boldsymbol{B}_{(1)} \\
\mathbf{0} & \boldsymbol{C}_{(1)}
\end{array}\right) .
$$

$$
\boldsymbol{B}_{(1, m)}=\boldsymbol{A}_{(1)}^{m-1} \boldsymbol{B}_{(1)}+\boldsymbol{B}_{(1, m-1)} \boldsymbol{C}_{(1)} .
$$

It can be proved by induction that

One way to calculate that is by the following product:

$$
\begin{gathered}
\boldsymbol{A}_{(2)}^{m}=\boldsymbol{A}_{(2)}^{m-1} \boldsymbol{A}_{(2)}=\left(\begin{array}{cc}
\boldsymbol{A}_{(1)}^{m-1} & \boldsymbol{B}_{(1, m-1)} \\
\mathbf{0} & \boldsymbol{C}_{(1)}^{m-1}
\end{array}\right)\left(\begin{array}{cc}
\boldsymbol{A}_{(1)} & \boldsymbol{B}_{(1)} \\
\mathbf{0} & \boldsymbol{C}_{(1)}
\end{array}\right) . \\
\boldsymbol{B}_{(1, m)}=\boldsymbol{A}_{(1)}^{m-1} \boldsymbol{B}_{(1)}+\boldsymbol{B}_{(1, m-1)} \boldsymbol{C}_{(1)} .
\end{gathered}
$$

It can be proved by induction that

One way to calculate that is by the following product:

$$
\begin{gathered}
\boldsymbol{A}_{(2)}^{m}=\boldsymbol{A}_{(2)}^{m-1} \boldsymbol{A}_{(2)}=\left(\begin{array}{cc}
\boldsymbol{A}_{(1)}^{m-1} & \boldsymbol{B}_{(1, m-1)} \\
\mathbf{0} & \boldsymbol{C}_{(1)}^{m-1}
\end{array}\right)\left(\begin{array}{cc}
\boldsymbol{A}_{(1)} & \boldsymbol{B}_{(1)} \\
\mathbf{0} & \boldsymbol{C}_{(1)}
\end{array}\right) . \\
\boldsymbol{B}_{(1, m)}=\boldsymbol{A}_{(1)}^{m-1} \boldsymbol{B}_{(1)}+\boldsymbol{B}_{(1, m-1)} \boldsymbol{C}_{(1)} .
\end{gathered}
$$

It can be proved by induction that

$$
\overline{\alpha_{2}} \boldsymbol{B}_{(1, m)} \mathbf{e}=\mathbb{P}\left(Y_{(1)} \leq m, Y_{(2)}>m\right), \quad \text { for all } \quad m \in \mathbb{N} .
$$

Then,

$$
\begin{aligned}
\left(\overline{\alpha_{2}}, \mathbf{0}\right) \boldsymbol{A}_{(2)}^{m} \mathbf{e} & =\overline{\alpha_{2}} \boldsymbol{A}_{(1)}^{m} \mathbf{e}+\overline{\alpha_{2}} \boldsymbol{B}_{(1, m)} \mathbf{e} \\
& =\mathbb{P}\left(Y_{(1)}>m\right)+\mathbb{P}\left(Y_{(1)} \leq m, Y_{(2)}>m\right) \\
& =\mathbb{P}\left(Y_{(2)}>m\right)
\end{aligned}
$$

Therefore,

$$
\left(\left(\overline{\alpha_{2}}, \mathbf{0}\right), \boldsymbol{A}_{(2)}\right)
$$

is a representation for the distribution of $Y_{(2)}$.

Representation for the maximum

Let Y_{1}, Y_{2} and Y_{3} be three independent Matrix-geometric distributed random variables with the following representations.

Denote

Representation for the maximum

Let Y_{1}, Y_{2} and Y_{3} be three independent Matrix-geometric distributed random variables with the following representations.

$$
Y_{i} \sim M G\left(\alpha_{i}, \boldsymbol{S}_{i}, \mathbf{s}_{i}\right), \quad \mathbf{s}_{i}=\mathbf{e}-\boldsymbol{S}_{i} \mathbf{e}, \quad i=1,2,3
$$

Denote

Representation for the maximum

Let Y_{1}, Y_{2} and Y_{3} be three independent Matrix-geometric distributed random variables with the following representations.

$$
Y_{i} \sim M G\left(\alpha_{i}, \boldsymbol{S}_{i}, \mathbf{s}_{i}\right), \quad \mathbf{s}_{i}=\mathbf{e}-\boldsymbol{S}_{i} \mathbf{e}, \quad i=1,2,3 .
$$

Denote

$$
\overline{\alpha_{3}}=\alpha_{1} \otimes \alpha_{2} \otimes \alpha_{3} .
$$

Representation for the maximum

$$
\boldsymbol{A}_{(3)}=\left(\begin{array}{ccccccc}
\boldsymbol{S}_{1} \otimes \boldsymbol{S}_{2} \otimes \boldsymbol{S}_{3} & \mathrm{~s}_{1} \otimes \boldsymbol{S}_{2} \otimes \boldsymbol{S}_{3} & \boldsymbol{S}_{1} \otimes \mathbf{s}_{2} \otimes \boldsymbol{S}_{3} & \boldsymbol{S}_{1} \otimes \boldsymbol{S}_{2} \otimes \mathbf{s}_{3} & \mathrm{~s}_{1} \otimes \mathbf{s}_{2} \otimes \boldsymbol{S}_{3} & \mathrm{~s}_{1} \otimes \boldsymbol{S}_{2} \otimes \mathbf{s}_{3} & \boldsymbol{S}_{1} \otimes \mathbf{s}_{2} \otimes \mathbf{s}_{3} \\
\mathbf{0} & \boldsymbol{S}_{2} \otimes \boldsymbol{S}_{3} & \mathbf{0} & \mathbf{0} & \mathbf{s}_{2} \otimes \boldsymbol{S}_{3} & \boldsymbol{S}_{2} \otimes \mathbf{s}_{3} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \boldsymbol{S}_{1} \otimes \boldsymbol{S}_{3} & \mathbf{0} & \mathrm{~s}_{1} \otimes \boldsymbol{S}_{3} & \mathbf{0} & \boldsymbol{S}_{1} \otimes \mathbf{s}_{3} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \boldsymbol{S}_{1} \otimes \boldsymbol{S}_{2} & \mathbf{0} & \mathbf{s}_{1} \otimes \boldsymbol{S}_{2} & \boldsymbol{S}_{1} \otimes \mathbf{s}_{2} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \boldsymbol{S}_{3} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \boldsymbol{S}_{2} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \boldsymbol{S}_{1}
\end{array}\right) .
$$

We are going to prove that

is a representation for the maximum $Y_{(3)}$.

Representation for the maximum

$$
\boldsymbol{A}_{(3)}=\left(\begin{array}{ccccccc}
\boldsymbol{S}_{1} \otimes \boldsymbol{S}_{2} \otimes \boldsymbol{S}_{3} & \mathrm{~s}_{1} \otimes \boldsymbol{S}_{2} \otimes \boldsymbol{S}_{3} & \boldsymbol{S}_{1} \otimes \mathrm{~s}_{2} \otimes \boldsymbol{S}_{3} & \boldsymbol{S}_{1} \otimes \boldsymbol{S}_{2} \otimes \mathrm{~s}_{3} & \mathrm{~s}_{1} \otimes \mathbf{s}_{2} \otimes \boldsymbol{S}_{3} & \mathrm{~s}_{1} \otimes \boldsymbol{S}_{2} \otimes \mathrm{~s}_{3} & \boldsymbol{S}_{1} \otimes \mathrm{~s}_{2} \otimes \mathbf{s}_{3} \\
\mathbf{0} & \boldsymbol{S}_{2} \otimes \boldsymbol{S}_{3} & \mathbf{0} & \mathbf{0} & \mathrm{~s}_{2} \otimes \boldsymbol{S}_{3} & \boldsymbol{S}_{2} \otimes \mathrm{~s}_{3} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \boldsymbol{S}_{1} \otimes \boldsymbol{S}_{3} & \mathbf{0} & \mathrm{~s}_{1} \otimes \boldsymbol{S}_{3} & \mathbf{0} & \boldsymbol{S}_{1} \otimes \mathrm{~s}_{3} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \boldsymbol{S}_{1} \otimes \boldsymbol{S}_{2} & \mathbf{0} & \mathrm{~s}_{1} \otimes \boldsymbol{S}_{2} & \boldsymbol{S}_{1} \otimes \mathrm{~s}_{2} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \boldsymbol{S}_{3} & 0 & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \boldsymbol{S}_{2} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \boldsymbol{S}_{1}
\end{array}\right) .
$$

We are going to prove that

$$
\left(\left(\overline{\alpha_{3}}, \mathbf{0}\right), \boldsymbol{A}_{(3)}, \mathbf{a}_{(3)}\right), \quad \mathbf{a}_{(3)}=\mathbf{e}-\boldsymbol{A}_{(3)} \mathbf{e} .
$$

is a representation for the maximum $Y_{(3)}$.

Let us write the matrix $\boldsymbol{A}_{(3)}$ as follows.

$$
\left(\begin{array}{ccc}
\boldsymbol{A}_{(1)} & \boldsymbol{B}_{(1)} & \boldsymbol{B}_{(2)} \\
\mathbf{0} & \boldsymbol{C}_{(1)} & \boldsymbol{C}_{(1,2)} \\
\mathbf{0} & \mathbf{0} & \boldsymbol{C}_{(2)}
\end{array}\right),
$$

where $\boldsymbol{A}_{(1)}, \boldsymbol{B}_{(1)}$ and $C_{(1)}$ is as in the second order statistic,

Let us write the matrix $\boldsymbol{A}_{(3)}$ as follows.

$$
\left(\begin{array}{ccc}
\boldsymbol{A}_{(1)} & \boldsymbol{B}_{(1)} & \boldsymbol{B}_{(2)} \\
\mathbf{0} & \boldsymbol{C}_{(1)} & \boldsymbol{C}_{(1,2)} \\
\mathbf{0} & \mathbf{0} & \boldsymbol{C}_{(2)}
\end{array}\right),
$$

where $\boldsymbol{A}_{(1)}, \boldsymbol{B}_{(1)}$ and $\boldsymbol{C}_{(1)}$ is as in the second order statistic,

Let us write the matrix $\boldsymbol{A}_{(3)}$ as follows.

$$
\left(\begin{array}{ccc}
\boldsymbol{A}_{(1)} & \boldsymbol{B}_{(1)} & \boldsymbol{B}_{(2)} \\
\mathbf{0} & \boldsymbol{C}_{(1)} & \boldsymbol{C}_{(1,2)} \\
\mathbf{0} & \mathbf{0} & \boldsymbol{C}_{(2)}
\end{array}\right),
$$

where $\boldsymbol{A}_{(1)}, \boldsymbol{B}_{(1)}$ and $\boldsymbol{C}_{(1)}$ is as in the second order statistic,

$$
\boldsymbol{B}_{(2)}=\left(\begin{array}{ccc}
\mathbf{s}_{1} \otimes \mathbf{s}_{2} \otimes \boldsymbol{S}_{3} & \mathbf{s}_{1} \otimes \boldsymbol{S}_{2} \otimes \mathbf{s}_{3} & \boldsymbol{S}_{1} \otimes \mathbf{s}_{2} \otimes \mathbf{s}_{3}
\end{array}\right),
$$

Let us write the matrix $\boldsymbol{A}_{(3)}$ as follows.

$$
\left(\begin{array}{ccc}
\boldsymbol{A}_{(1)} & \boldsymbol{B}_{(1)} & \boldsymbol{B}_{(2)} \\
\mathbf{0} & \boldsymbol{C}_{(1)} & \boldsymbol{C}_{(1,2)} \\
\mathbf{0} & \mathbf{0} & \boldsymbol{C}_{(2)}
\end{array}\right),
$$

where $\boldsymbol{A}_{(1)}, \boldsymbol{B}_{(1)}$ and $\boldsymbol{C}_{(1)}$ is as in the second order statistic,

$$
\begin{aligned}
& \boldsymbol{B}_{(2)}=\left(\begin{array}{l}
\mathbf{s}_{1} \otimes \mathbf{s}_{2} \otimes \boldsymbol{S}_{3} \quad \mathbf{s}_{1} \otimes \boldsymbol{S}_{2} \otimes \mathbf{s}_{3} \quad \boldsymbol{S}_{1} \otimes \mathbf{s}_{2} \otimes \mathbf{s}_{3}
\end{array}\right), \\
& \boldsymbol{C}_{(1,2)}=\left(\begin{array}{ccc}
\mathbf{s}_{2} \otimes \boldsymbol{S}_{3} & \boldsymbol{S}_{2} \otimes \mathbf{s}_{3} & \mathbf{0} \\
\mathbf{s}_{1} \otimes \boldsymbol{S}_{3} & \mathbf{0} & \boldsymbol{S}_{1} \otimes \mathbf{s}_{3} \\
\mathbf{0} & \mathbf{s}_{1} \otimes \boldsymbol{S}_{2} & \boldsymbol{S}_{1} \otimes \mathbf{s}_{2}
\end{array}\right)
\end{aligned}
$$

and

Let us write the matrix $\boldsymbol{A}_{(3)}$ as follows.

$$
\left(\begin{array}{ccc}
\boldsymbol{A}_{(1)} & \boldsymbol{B}_{(1)} & \boldsymbol{B}_{(2)} \\
\mathbf{0} & \boldsymbol{C}_{(1)} & \boldsymbol{C}_{(1,2)} \\
\mathbf{0} & \mathbf{0} & \boldsymbol{C}_{(2)}
\end{array}\right)
$$

where $\boldsymbol{A}_{(1)}, \boldsymbol{B}_{(1)}$ and $\boldsymbol{C}_{(1)}$ is as in the second order statistic,

$$
\begin{aligned}
& \boldsymbol{B}_{(2)}=\left(\begin{array}{l}
\mathbf{s}_{1} \otimes \mathbf{s}_{2} \otimes \boldsymbol{S}_{3} \quad \mathbf{s}_{1} \otimes \boldsymbol{S}_{2} \otimes \mathbf{s}_{3} \quad \boldsymbol{S}_{1} \otimes \mathbf{s}_{2} \otimes \mathbf{s}_{3}
\end{array}\right), \\
& \boldsymbol{C}_{(1,2)}=\left(\begin{array}{ccc}
\mathbf{s}_{2} \otimes \boldsymbol{S}_{3} & \boldsymbol{S}_{2} \otimes \mathbf{s}_{3} & \mathbf{0} \\
\mathbf{s}_{1} \otimes \boldsymbol{S}_{3} & \mathbf{0} & \boldsymbol{S}_{1} \otimes \mathbf{s}_{3} \\
\mathbf{0} & \mathbf{s}_{1} \otimes \boldsymbol{S}_{2} & \boldsymbol{S}_{1} \otimes \mathbf{s}_{2}
\end{array}\right)
\end{aligned}
$$

and

$$
\boldsymbol{C}_{(2)}=\left(\begin{array}{ccc}
\boldsymbol{S}_{3} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \boldsymbol{S}_{2} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \boldsymbol{S}_{1}
\end{array}\right) .
$$

Since we are going to calculate

$$
\left(\overline{\alpha_{3}}, \mathbf{0}\right) \boldsymbol{A}_{(3)}^{m} \mathbf{e}
$$

we need to obtain an expression for $\boldsymbol{A}_{(3)}^{m}$.
Observe that

Then,

$$
\left(\bar{\alpha}_{3}, 0\right) A_{(3)}^{m} \mathrm{e}=\bar{\alpha}_{3} A_{(1)}^{m} \mathrm{e}+\overline{\alpha_{3}} B_{(1, m)} \mathrm{e}+\overline{\alpha_{3}} B_{(1,2, m)} \mathrm{e},
$$

where

$$
\overline{\alpha_{3}} \boldsymbol{A}_{(1)}^{m} \mathbf{e}+\overline{\alpha_{3}} \boldsymbol{B}_{(1, m)} \mathbf{e}=\mathbb{P}\left(Y_{(2)}>m\right)
$$

by the second order statistic.

Since we are going to calculate

$$
\left(\overline{\alpha_{3}}, \mathbf{0}\right) \boldsymbol{A}_{(3)}^{m} \mathbf{e}
$$

we need to obtain an expression for $\boldsymbol{A}_{(3)}^{m}$.
Observe that

$$
\boldsymbol{A}_{(3)}^{m}=\left(\begin{array}{ccc}
\boldsymbol{A}_{(1)}^{m} & \boldsymbol{B}_{(1, m)} & \boldsymbol{B}_{(1,2, m)} \\
\mathbf{0} & \boldsymbol{C}_{(1)}^{m} & \boldsymbol{C}_{(1,2, m)} \\
\mathbf{0} & \mathbf{0} & \boldsymbol{C}_{(2)}^{m}
\end{array}\right) .
$$

Then,
where
$\overline{\alpha_{3}} \boldsymbol{A}_{(1)}^{m} \mathbf{e}+\overline{\alpha_{3}} \boldsymbol{B}_{(1, m)} \mathbf{e}=\mathbb{P}\left(Y_{(2)}>m\right)$
by the second order statistic.

Since we are going to calculate

$$
\left(\overline{\alpha_{3}}, \mathbf{0}\right) \boldsymbol{A}_{(3)}^{m} \mathbf{e}
$$

we need to obtain an expression for $\boldsymbol{A}_{(3)}^{m}$.
Observe that

$$
\boldsymbol{A}_{(3)}^{m}=\left(\begin{array}{ccc}
\boldsymbol{A}_{(1)}^{m} & \boldsymbol{B}_{(1, m)} & \boldsymbol{B}_{(1,2, m)} \\
\mathbf{0} & \boldsymbol{C}_{(1)}^{m} & \boldsymbol{C}_{(1,2, m)} \\
\mathbf{0} & \mathbf{0} & \boldsymbol{C}_{(2)}^{m}
\end{array}\right) .
$$

Then,

$$
\left(\overline{\alpha_{3}}, \mathbf{0}\right) \boldsymbol{A}_{(3)}^{m} \mathbf{e}=\overline{\alpha_{3}} \boldsymbol{A}_{(1)}^{m} \mathbf{e}+\overline{\alpha_{3}} \boldsymbol{B}_{(1, m)} \mathbf{e}+\overline{\alpha_{3}} \boldsymbol{B}_{(1,2, m)} \mathbf{e}
$$

where

$$
\overline{\alpha_{3}} \boldsymbol{A}_{(1)}^{m} \mathbf{e}+\overline{\alpha_{3}} \boldsymbol{B}_{(1, m)} \mathbf{e}=\mathbb{P}\left(Y_{(2)}>m\right)
$$

by the second order statistic.

We can prove by induction, as in the second order statistics, that

$$
\overline{\alpha_{3}} \boldsymbol{B}_{(1,2, m)} \mathbf{e}=\mathbb{P}\left(Y_{(1)} \leq m, Y_{(2)} \leq m, Y_{(3)}>m\right) .
$$

Consequently,

Therefore,

is a representation for the distribution of $Y_{(3)}$.

We can prove by induction, as in the second order statistics, that

$$
\overline{\alpha_{3}} \boldsymbol{B}_{(1,2, m)} \mathbf{e}=\mathbb{P}\left(Y_{(1)} \leq m, Y_{(2)} \leq m, Y_{(3)}>m\right) .
$$

Consequently,

$$
\begin{aligned}
& \left(\overline{\alpha_{3}}, \mathbf{0}\right) \boldsymbol{A}_{(3)}^{m} \mathbf{e} \\
= & \overline{\alpha_{3}} \boldsymbol{A}_{(1)}^{m} \mathbf{e}+\overline{\alpha_{3}} \boldsymbol{B}_{(1, m)} \mathbf{e}+\overline{\alpha_{3}} \boldsymbol{B}_{(1,2, m)} \mathbf{e} \\
= & \mathbb{P}\left(Y_{(2)}>m\right)+\mathbb{P}\left(Y_{(1)} \leq m, Y_{(2)} \leq m, Y_{(3)}>m\right) \\
= & \mathbb{P}\left(Y_{(3)}>m\right) .
\end{aligned}
$$

Therefore,
$\left(\overline{\alpha_{3}}, \boldsymbol{A}_{(3)}, \mathbf{a}_{(3)}\right)$, where $\mathbf{a}_{(3)}=\mathbf{e}-\boldsymbol{A}_{(3)} \mathbf{e}$,
is a representation for the distribution of $Y_{(3)}$.

We can prove by induction, as in the second order statistics, that

$$
\overline{\alpha_{3}} \boldsymbol{B}_{(1,2, m)} \mathbf{e}=\mathbb{P}\left(Y_{(1)} \leq m, Y_{(2)} \leq m, Y_{(3)}>m\right) .
$$

Consequently,

$$
\begin{aligned}
& \left(\overline{\alpha_{3}}, \mathbf{0}\right) \boldsymbol{A}_{(3)}^{m} \mathbf{e} \\
= & \overline{\alpha_{3}} \boldsymbol{A}_{(1)}^{m} \mathbf{e}+\overline{\alpha_{3}} \boldsymbol{B}_{(1, m)} \mathbf{e}+\overline{\alpha_{3}} \boldsymbol{B}_{(1,2, m)} \mathbf{e} \\
= & \mathbb{P}\left(Y_{(2)}>m\right)+\mathbb{P}\left(Y_{(1)} \leq m, Y_{(2)} \leq m, Y_{(3)}>m\right) \\
= & \mathbb{P}\left(Y_{(3)}>m\right) .
\end{aligned}
$$

Therefore,

$$
\left(\overline{\alpha_{3}}, \boldsymbol{A}_{(3)}, \mathbf{a}_{(3)}\right), \quad \text { where } \quad \mathbf{a}_{(3)}=\mathbf{e}-\boldsymbol{A}_{(3)} \mathbf{e},
$$

is a representation for the distribution of $Y_{(3)}$.

Representation for the r-th order statistics

Let $Y_{1}, Y_{2}, \ldots, Y_{n}$ be independents Matrix-geometric distributed random variables, with representation

$$
\left(\alpha_{1}, \boldsymbol{S}_{i}, \mathbf{s}_{i}\right), \quad \text { where } \quad \mathbf{s}_{i}=\mathbf{e}-\boldsymbol{S}_{i} \mathbf{e}, \quad i=1, \ldots, n .
$$

Denote $\overline{\alpha_{n}}=\alpha_{1} \otimes \alpha_{2} \otimes \cdots \otimes \alpha_{n}$
For $r=1$. $Y_{(1)} \sim M G\left(\overline{\alpha_{n}}, \boldsymbol{A}_{(1)}, \mathbf{a}_{(1)}\right)$, where

Representation for the r-th order statistics

Let $Y_{1}, Y_{2}, \ldots, Y_{n}$ be independents Matrix-geometric distributed random variables, with representation

$$
\left(\alpha_{1}, \boldsymbol{S}_{i}, \mathbf{s}_{i}\right), \quad \text { where } \quad \mathbf{s}_{i}=\mathbf{e}-\boldsymbol{S}_{i} \mathbf{e}, \quad i=1, \ldots, n .
$$

Denote $\overline{\alpha_{n}}=\alpha_{1} \otimes \alpha_{2} \otimes \cdots \otimes \alpha_{n}$.
For $r=1$. $Y_{(1)} \sim M G\left(\overline{\alpha_{n}}, \boldsymbol{A}_{(1)}, \mathrm{a}_{(1)}\right)$, where

Representation for the r-th order statistics

Let $Y_{1}, Y_{2}, \ldots, Y_{n}$ be independents Matrix-geometric distributed random variables, with representation

$$
\left(\alpha_{1}, \boldsymbol{S}_{i}, \mathbf{s}_{i}\right), \quad \text { where } \quad \mathbf{s}_{i}=\mathbf{e}-\boldsymbol{S}_{i} \mathbf{e}, \quad i=1, \ldots, n .
$$

Denote $\overline{\alpha_{n}}=\alpha_{1} \otimes \alpha_{2} \otimes \cdots \otimes \alpha_{n}$.
For $r=1$. $Y_{(1)} \sim M G\left(\overline{\alpha_{n}}, \boldsymbol{A}_{(1)}, \mathbf{a}_{(1)}\right)$, where

$$
\boldsymbol{A}_{(1)}=\boldsymbol{S}_{1} \otimes \boldsymbol{S}_{2} \otimes \cdots \otimes \boldsymbol{S}_{n} \quad \text { and } \quad \mathbf{a}_{(1)}=\mathbf{e}-\boldsymbol{A}_{(1)} \mathbf{e} .
$$

Let $2 \leq r \leq n$. The r-th order statistics of $Y_{1}, Y_{2}, \ldots, Y_{n}$ has a Matrix-geometric representation given by

$$
\left(\left(\overline{\alpha_{r}}, \mathbf{0}\right), \boldsymbol{A}_{(r)}, \mathbf{a}_{(r)}\right), \quad \mathbf{a}_{(r)}=\mathbf{e}-\boldsymbol{A}_{(r)} \mathbf{e}
$$

where

- \boldsymbol{B}_{j} block of all the combinations with i exits, $1 \leq j \leq r-1$.
- $C_{(i)}$ is a block diagonal matrix which consists on all the combinations formed with $i-1$ elements of $S_{1}, S_{2}, \ldots, S_{n}$, and depends of the block exit given by $\boldsymbol{B}_{(i-1)}$.
- $C_{(j, i)}$ is a exit block corresponding to the block matrices C_{j} and $B_{(i)}$

Let $2 \leq r \leq n$. The r-th order statistics of $Y_{1}, Y_{2}, \ldots, Y_{n}$ has a Matrix-geometric representation given by

$$
\left(\left(\overline{\alpha_{r}}, \mathbf{0}\right), \boldsymbol{A}_{(r)}, \mathbf{a}_{(r)}\right), \quad \mathbf{a}_{(r)}=\mathbf{e}-\boldsymbol{A}_{(r)} \mathbf{e} .
$$

where

$$
\boldsymbol{A}_{(r)}=\left(\begin{array}{ccccc}
\boldsymbol{A}_{(1)} & \boldsymbol{B}_{(1)} & \boldsymbol{B}_{(2)} & \cdots & \boldsymbol{B}_{(r-1)} \\
\mathbf{0} & \boldsymbol{C}_{(1)} & \boldsymbol{C}_{(1,2)} & \cdots & \boldsymbol{C}_{(1, r-1)} \\
\mathbf{0} & \mathbf{0} & \boldsymbol{C}_{(2)} & \cdots & \boldsymbol{C}_{(2, r-1)} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \cdots & \boldsymbol{C}_{(r-1)}
\end{array}\right),
$$

- \boldsymbol{B}_{j} block of all the combinations with i exits, $1 \leq j \leq r-1$.
- $C_{(i)}$ is a block diagonal matrix which consists on all the combinations formed with $i-1$ elements of $\boldsymbol{S}_{1}, \boldsymbol{S}_{2}$, depends of the block exit given by $B_{(i-1)}$:
- $C_{(j, i)}$ is a exit block corresponding to the block matrices C_{j} and

Let $2 \leq r \leq n$. The r-th order statistics of $Y_{1}, Y_{2}, \ldots, Y_{n}$ has a Matrix-geometric representation given by

$$
\left(\left(\overline{\alpha_{r}}, \mathbf{0}\right), \boldsymbol{A}_{(r)}, \mathbf{a}_{(r)}\right), \quad \mathbf{a}_{(r)}=\mathbf{e}-\boldsymbol{A}_{(r)} \mathbf{e} .
$$

where

$$
\boldsymbol{A}_{(r)}=\left(\begin{array}{ccccc}
\boldsymbol{A}_{(1)} & \boldsymbol{B}_{(1)} & \boldsymbol{B}_{(2)} & \cdots & \boldsymbol{B}_{(r-1)} \\
\mathbf{0} & \boldsymbol{C}_{(1)} & \boldsymbol{C}_{(1,2)} & \cdots & \boldsymbol{C}_{(1, r-1)} \\
\mathbf{0} & \mathbf{0} & \boldsymbol{C}_{(2)} & \cdots & \boldsymbol{C}_{(2, r-1)} \\
\vdots & \vdots & \vdots & \cdots & \vdots \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \cdots & \boldsymbol{C}_{(r-1)}
\end{array}\right),
$$

- \boldsymbol{B}_{j} block of all the combinations with i exits, $1 \leq j \leq r-1$.

Let $2 \leq r \leq n$. The r-th order statistics of $Y_{1}, Y_{2}, \ldots, Y_{n}$ has a Matrix-geometric representation given by

$$
\left(\left(\overline{\alpha_{r}}, \mathbf{0}\right), \boldsymbol{A}_{(r)}, \mathbf{a}_{(r)}\right), \quad \mathbf{a}_{(r)}=\mathbf{e}-\boldsymbol{A}_{(r)} \mathbf{e} .
$$

where

$$
\boldsymbol{A}_{(r)}=\left(\begin{array}{ccccc}
\boldsymbol{A}_{(1)} & \boldsymbol{B}_{(1)} & \boldsymbol{B}_{(2)} & \cdots & \boldsymbol{B}_{(r-1)} \\
\mathbf{0} & \boldsymbol{C}_{(1)} & \boldsymbol{C}_{(1,2)} & \cdots & \boldsymbol{C}_{(1, r-1)} \\
\mathbf{0} & \mathbf{0} & \boldsymbol{C}_{(2)} & \cdots & \boldsymbol{C}_{(2, r-1)} \\
\vdots & \vdots & \vdots & \cdots & \vdots \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \cdots & \boldsymbol{C}_{(r-1)}
\end{array}\right),
$$

- \boldsymbol{B}_{j} block of all the combinations with i exits, $1 \leq j \leq r-1$.
- $\boldsymbol{C}_{(i)}$ is a block diagonal matrix which consists on all the combinations formed with $i-1$ elements of $\boldsymbol{S}_{1}, \boldsymbol{S}_{2}, \ldots, \boldsymbol{S}_{n}$, and depends of the block exit given by $\boldsymbol{B}_{(i-1)}$.

Let $2 \leq r \leq n$. The r-th order statistics of $Y_{1}, Y_{2}, \ldots, Y_{n}$ has a Matrix-geometric representation given by

$$
\left(\left(\overline{\alpha_{r}}, \mathbf{0}\right), \boldsymbol{A}_{(r)}, \mathbf{a}_{(r)}\right), \quad \mathbf{a}_{(r)}=\mathbf{e}-\boldsymbol{A}_{(r)} \mathbf{e}
$$

where

$$
\boldsymbol{A}_{(r)}=\left(\begin{array}{ccccc}
\boldsymbol{A}_{(1)} & \boldsymbol{B}_{(1)} & \boldsymbol{B}_{(2)} & \cdots & \boldsymbol{B}_{(r-1)} \\
\mathbf{0} & \boldsymbol{C}_{(1)} & \boldsymbol{C}_{(1,2)} & \cdots & \boldsymbol{C}_{(1, r-1)} \\
\mathbf{0} & \mathbf{0} & \boldsymbol{C}_{(2)} & \cdots & \boldsymbol{C}_{(2, r-1)} \\
\vdots & \vdots & \vdots & \cdots & \vdots \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \cdots & \boldsymbol{C}_{(r-1)}
\end{array}\right),
$$

- \boldsymbol{B}_{j} block of all the combinations with i exits, $1 \leq j \leq r-1$.
- $C_{(i)}$ is a block diagonal matrix which consists on all the combinations formed with $i-1$ elements of $\boldsymbol{S}_{1}, \boldsymbol{S}_{2}, \ldots, \boldsymbol{S}_{n}$, and depends of the block exit given by $\boldsymbol{B}_{(i-1)}$.
- $\boldsymbol{C}_{(j, i)}$ is a exit block corresponding to the block matrices \boldsymbol{C}_{j} and $\boldsymbol{B}_{(i)}$.

Questions??

Thanks for your attention.

Questions??

Thanks for your attention.

