Order statistics of Matrix-Geometric distributions

¹Technical University of Denmark Department of Applied Mathematics and Compute Science.

²Autonomous National University of Mexico.

Budapest, Hungary, June 2016.

Outline

- 1. Motivation: Maximum and minimum of two independent phase-type distributions.
- 2. The Maximum of three independent Matrix-geometric distributions.
- 3. Generalization: The r-th order statistics of n independent Matrix-geometric distributions.

Outline

- 1. Motivation: Maximum and minimum of two independent phase-type distributions.
- 2. The Maximum of three independent Matrix-geometric distributions.
- 3. Generalization: The r-th order statistics of *n* independent Matrix-geometric distributions.

Outline

- 1. Motivation: Maximum and minimum of two independent phase-type distributions.
- 2. The Maximum of three independent Matrix-geometric distributions.
- 3. Generalization: The r-th order statistics of *n* independent Matrix-geometric distributions.

The Maximum and Minimum

Let's consider two Markov chains:

 $\left\{X_n^1\right\}_{n\in\mathbb{N}}\quad\text{and}\quad\left\{X_n^2\right\}_{n\in\mathbb{N}}.$

The space of states are given by E_1 and E_2 , respectively. In both of them it is suppose that the states are transient, except one, which is absorbing.

Let α_1 and α_2 , be the initial distributions of the corresponding Markov chains.

Let

$$\Lambda_1 = \begin{pmatrix} S_1 & \mathbf{s}_1 \\ \mathbf{0} & 1 \end{pmatrix}, \quad \Lambda_2 = \begin{pmatrix} S_2 & \mathbf{s}_2 \\ \mathbf{0} & 1 \end{pmatrix},$$

$$\mathbf{s}_i = \mathbf{e} - \mathbf{S}_i \mathbf{e}, i = 1, 2.$$

The Maximum and Minimum

Let's consider two Markov chains:

$$\left\{X_n^1\right\}_{n\in\mathbb{N}}\quad\text{and}\quad \left\{X_n^2\right\}_{n\in\mathbb{N}}.$$

The space of states are given by E_1 and E_2 , respectively. In both of them it is suppose that the states are transient, except one, which is absorbing.

Let α_1 and α_2 , be the initial distributions of the corresponding Markov chains.

Let

$$\Lambda_1 = \begin{pmatrix} S_1 & \mathbf{s}_1 \\ \mathbf{0} & 1 \end{pmatrix}, \quad \Lambda_2 = \begin{pmatrix} S_2 & \mathbf{s}_2 \\ \mathbf{0} & 1 \end{pmatrix},$$

$$\mathbf{s}_i = \mathbf{e} - \mathbf{S}_i \mathbf{e}, i = 1, 2.$$

The Maximum and Minimum

Let's consider two Markov chains:

$$\left\{X_n^1\right\}_{n\in\mathbb{N}}$$
 and $\left\{X_n^2\right\}_{n\in\mathbb{N}}$.

The space of states are given by E_1 and E_2 , respectively. In both of them it is suppose that the states are transient, except one, which is absorbing.

Let $\alpha_1 \quad \text{and} \quad \alpha_2,$ be the initial distributions of the corresponding Markov chains.

Let

$$\Lambda_1 = \begin{pmatrix} S_1 & \mathbf{s}_1 \\ \mathbf{0} & 1 \end{pmatrix}, \quad \Lambda_2 = \begin{pmatrix} S_2 & \mathbf{s}_2 \\ \mathbf{0} & 1 \end{pmatrix},$$

$$\mathbf{s}_i = \mathbf{e} - \boldsymbol{S}_i \mathbf{e}, i = 1, 2.$$

The Maximum and Minimum

Let's consider two Markov chains:

$$\left\{X_n^1\right\}_{n\in\mathbb{N}}$$
 and $\left\{X_n^2\right\}_{n\in\mathbb{N}}$.

The space of states are given by E_1 and E_2 , respectively. In both of them it is suppose that the states are transient, except one, which is absorbing.

Let $\alpha_1 \quad \text{and} \quad \alpha_2,$ be the initial distributions of the corresponding Markov chains.

Let

$$\Lambda_1 = \begin{pmatrix} \mathbf{S}_1 & \mathbf{s}_1 \\ \mathbf{0} & 1 \end{pmatrix}, \quad \Lambda_2 = \begin{pmatrix} \mathbf{S}_2 & \mathbf{s}_2 \\ \mathbf{0} & 1 \end{pmatrix},$$

$$\mathbf{s}_i = \mathbf{e} - \boldsymbol{S}_i \mathbf{e}, i = 1, 2.$$

Let

 $Y_1 \sim \mathsf{DPH}(\alpha_1, S_1) \quad \text{and} \quad Y_2 \sim \mathsf{DPH}(\alpha_2, S_2),$

which are independent.

$$Y_{(1)} = \min(Y_1, Y_2),$$

 $Y_{(2)} = \max(Y_1, Y_2),$

Let

$$Y_1 \sim \mathsf{DPH}\left(\alpha_1, \boldsymbol{S}_1\right) \quad \mathsf{and} \quad Y_2 \sim \mathsf{DPH}\left(\alpha_2, \boldsymbol{S}_2\right),$$

which are independent.

Denote

$$Y_{(1)} = \min(Y_1, Y_2),$$

 $Y_{(2)} = \max(Y_1, Y_2),$

the first and the second order statistics.

Multivariable Markov chain

Consider the multivariable Markov chain

$$\{X_n\} = \left(X_n^1, X_n^2\right), \quad n \in \mathbb{N}.$$

Suppose that $E_1 = \{1, 2, 3\}$ and $E_2 = \{1, 2, 3\}$ are the space of states of the corresponding Markov chains.

Consequently, the space of state of the multivariable Markov chain is:

 $\left\{(1,1),(1,2),(2,1),(2,2),(3,1),(3,2),(1,3),(2,3),(3,3)\right\}.$

Multivariable Markov chain

Consider the multivariable Markov chain

$$\{X_n\} = \left(X_n^1, X_n^2\right), \quad n \in \mathbb{N}.$$

Suppose that $E_1 = \{1, 2, 3\}$ and $E_2 = \{1, 2, 3\}$ are the space of states of the corresponding Markov chains.

Consequently, the space of state of the multivariable Markov chain is:

 $\left\{(1,1),(1,2),(2,1),(2,2),(3,1),(3,2),(1,3),(2,3),(3,3)\right\}.$

Multivariable Markov chain

Consider the multivariable Markov chain

$$\{X_n\} = \left(X_n^1, X_n^2\right), \quad n \in \mathbb{N}.$$

Suppose that $E_1 = \{1, 2, 3\}$ and $E_2 = \{1, 2, 3\}$ are the space of states of the corresponding Markov chains.

Consequently, the space of state of the multivariable Markov chain is:

 $\left\{(1,1),(1,2),(2,1),(2,2),(3,1),(3,2),(1,3),(2,3),(3,3)\right\}.$

Order statistics for independent Matrix-geometric distributions

Order statistics of two independent discrete phase-type distributions

Order statistics for independent Matrix-geometric distributions

Order statistics of two independent discrete phase-type distributions

Order statistics for independent Matrix-geometric distributions

Order statistics of two independent discrete phase-type distributions

Order statistics for independent Matrix-geometric distributions

Order statistics of two independent discrete phase-type distributions

Order statistics for independent Matrix-geometric distributions

Order statistics of two independent discrete phase-type distributions

Order statistics for independent Matrix-geometric distributions

Order statistics of two independent discrete phase-type distributions

Order statistics for independent Matrix-geometric distributions

Order statistics of two independent discrete phase-type distributions

order statistics for independent Matrix-geometric distributions Conclusion Order statistics of two independent discrete phase-type distributions

order statistics for independent Matrix-geometric distributions Conclusion Order statistics of two independent discrete phase-type distributions

order statistics for independent Matrix-geometric distributions Conclusion Order statistics of two independent discrete phase-type distributions

Order statistics for independent Matrix-geometric distributions Conclusion Order statistics of two independent discrete phase-type distributions

Multivariable Markov chain

6 / 20

Order statistics for independent Matrix-geometric distributions Conclusion Order statistics of two independent discrete phase-type distributions

Order statistics for independent Matrix-geometric distributions Conclusion Order statistics of two independent discrete phase-type distributions

Multivariable Markov chain

6 / 20

Order statistics for independent Matrix-geometric distributions Conclusion Order statistics of two independent discrete phase-type distributions

Probabilistic interpretation

 $\bullet\,$ The initial distribution of the multivariable Markov chain $\{X_n\}$ is given by

 $(\alpha_1\otimes\alpha_2,\mathbf{0}).$

• The transition probability matrix is

($oldsymbol{S}_1\otimesoldsymbol{S}_2$	$\mathbf{s}_1\otimes oldsymbol{S}_2$	$oldsymbol{S}_1\otimes \mathbf{s}_2$	$\mathbf{s}_1 \otimes \mathbf{s}_2$)
	0	$oldsymbol{S}_2$	0	\mathbf{s}_2
	0	0	$oldsymbol{S}_1$	\mathbf{s}_1
				1

• Sub-transition probability matrix for the minimum $Y_{(1)}$:

$$A_{(1)} = S_1 \otimes S_2.$$

$$m{A}_{(2)} = \left(egin{array}{cccc} m{S}_1 \otimes m{S}_2 & m{s}_1 \otimes m{S}_2 & m{S}_1 \otimes m{s}_2 \ 0 & m{S}_2 & m{0} \ m{0} & m{O} & m{S}_1 \end{array}
ight)$$

Probabilistic interpretation

 $\bullet\,$ The initial distribution of the multivariable Markov chain $\{X_n\}$ is given by

 $(\alpha_1\otimes\alpha_2,\mathbf{0}).$

• The transition probability matrix is

1	$oldsymbol{S}_1\otimesoldsymbol{S}_2$	$\mathbf{s}_1\otimes oldsymbol{S}_2$	$oldsymbol{S}_1\otimes \mathbf{s}_2$	$\mathbf{s}_1\otimes\mathbf{s}_2$	
	0	$oldsymbol{S}_2$	0	\mathbf{s}_2	
	0	0	$oldsymbol{S}_1$	\mathbf{s}_1	
	0	0	0	1	Ϊ

• Sub-transition probability matrix for the minimum $Y_{(1)}$:

$$A_{(1)} = S_1 \otimes S_2.$$

$$m{A}_{(2)} = \left(egin{array}{cccc} m{S}_1 \otimes m{S}_2 & m{s}_1 \otimes m{S}_2 & m{S}_1 \otimes m{s}_2 \end{array}
ight) \ m{0} & m{S}_2 & m{0} \ m{0} & m{S}_1 \end{array}
ight)$$

Probabilistic interpretation

 $\bullet\,$ The initial distribution of the multivariable Markov chain $\{X_n\}$ is given by

 $(\alpha_1\otimes\alpha_2,\mathbf{0}).$

• The transition probability matrix is

$$\begin{pmatrix} \boldsymbol{S}_1 \otimes \boldsymbol{S}_2 & \boldsymbol{\mathrm{s}}_1 \otimes \boldsymbol{S}_2 & \boldsymbol{S}_1 \otimes \boldsymbol{\mathrm{s}}_2 & \boldsymbol{\mathrm{s}}_1 \otimes \boldsymbol{\mathrm{s}}_2 \\ \boldsymbol{0} & \boldsymbol{S}_2 & \boldsymbol{0} & \boldsymbol{\mathrm{s}}_2 \\ \boldsymbol{0} & \boldsymbol{0} & \boldsymbol{S}_1 & \boldsymbol{\mathrm{s}}_1 \\ \boldsymbol{0} & \boldsymbol{0} & \boldsymbol{0} & \boldsymbol{1} \end{pmatrix}$$

• Sub-transition probability matrix for the minimum $Y_{(1)}$:

$$A_{(1)} = S_1 \otimes S_2.$$

$$m{A}_{(2)} = \left(egin{array}{cccc} m{S}_1 \otimes m{S}_2 & m{s}_1 \otimes m{S}_2 & m{S}_1 \otimes m{s}_2 \end{array}
ight) \ m{0} & m{S}_2 & m{0} & m{0} & m{S}_1 & m{S}_2 & m{S}_1 \end{array}
ight)$$

Probabilistic interpretation

 $\bullet\,$ The initial distribution of the multivariable Markov chain $\{X_n\}$ is given by

 $(\alpha_1\otimes\alpha_2,\mathbf{0}).$

• The transition probability matrix is

$$\left(\begin{array}{ccccc} \boldsymbol{S}_1 \otimes \boldsymbol{S}_2 & \boldsymbol{\mathrm{s}}_1 \otimes \boldsymbol{S}_2 & \boldsymbol{S}_1 \otimes \boldsymbol{\mathrm{s}}_2 & \boldsymbol{\mathrm{s}}_1 \otimes \boldsymbol{\mathrm{s}}_2 \\ \boldsymbol{0} & \boldsymbol{S}_2 & \boldsymbol{0} & \boldsymbol{\mathrm{s}}_2 \\ \boldsymbol{0} & \boldsymbol{0} & \boldsymbol{S}_1 & \boldsymbol{\mathrm{s}}_1 \\ \boldsymbol{0} & \boldsymbol{0} & \boldsymbol{0} & \boldsymbol{1} \end{array}\right)$$

• Sub-transition probability matrix for the minimum $Y_{(1)}$:

$$A_{(1)} = S_1 \otimes S_2.$$

$$oldsymbol{A}_{(2)}=\left(egin{array}{cccc} oldsymbol{S}_1\otimesoldsymbol{S}_2&oldsymbol{s}_1\otimesoldsymbol{s}_2\ oldsymbol{0}&oldsymbol{S}_2&oldsymbol{0}\ oldsymbol{0}&oldsymbol{0}&oldsymbol{S}_1\end{array}
ight)$$

Order statistics for independent Matrix-geometric distributions Conclusion Order statistics of two independent discrete phase-type distributions

Representation for the minimum $Y_{(1)}$

Denote $\overline{\alpha_2} = \alpha_1 \otimes \alpha_2$. Let $m \in \mathbb{N}$. Then the product

 $\overline{lpha_2} oldsymbol{A}^m_{(1)} oldsymbol{e}$

is the survival function of $Y_{(1)}$.

$$\overline{\alpha_2} \mathbf{A}_{(1)}^m \mathbf{e} = (\alpha_1 \otimes \alpha_2) (\mathbf{S}_1 \otimes \mathbf{S}_2)^m \mathbf{e}$$

$$= (\alpha_1 \mathbf{S}_1^m \mathbf{e}) (\alpha_2 \mathbf{S}_2^m \mathbf{e})$$

$$= \mathbb{P} (Y_1 > m) \mathbb{P} (Y_2 > m)$$

$$= \mathbb{P} (Y_1 > m, Y_2 > m)$$

$$= \mathbb{P} (Y_{(1)} > m).$$

Consequently, by the Kronecker product properties and independence of the variables, we conclude that

$$Y_{(1)} \sim DPH\left(\overline{\alpha_2}, \boldsymbol{A}_{(1)}\right).$$

Order statistics of two independent discrete phase-type distributions

Representation for the minimum $Y_{(1)}$

Denote $\overline{\alpha_2} = \alpha_1 \otimes \alpha_2$. Let $m \in \mathbb{N}$. Then the product

 $\overline{lpha_2} \boldsymbol{A}^m_{(1)} \mathbf{e}$

is the survival function of $Y_{(1)}$.

$$\overline{\alpha_2} \mathbf{A}_{(1)}^m \mathbf{e} = (\alpha_1 \otimes \alpha_2) (\mathbf{S}_1 \otimes \mathbf{S}_2)^m \mathbf{e}$$

$$= (\alpha_1 \mathbf{S}_1^m \mathbf{e}) (\alpha_2 \mathbf{S}_2^m \mathbf{e})$$

$$= \mathbb{P} (Y_1 > m) \mathbb{P} (Y_2 > m)$$

$$= \mathbb{P} (Y_1 > m, Y_2 > m)$$

$$= \mathbb{P} (Y_{(1)} > m).$$

Consequently, by the Kronecker product properties and independence of the variables, we conclude that

$$Y_{(1)} \sim DPH\left(\overline{\alpha_2}, \boldsymbol{A}_{(1)}\right).$$

Order statistics of two independent discrete phase-type distributions

Representation for the minimum $Y_{(1)}$

Denote $\overline{\alpha_2} = \alpha_1 \otimes \alpha_2$. Let $m \in \mathbb{N}$. Then the product

$$\overline{\alpha_2} A^m_{(1)} \mathbf{e}$$

is the survival function of $Y_{(1)}$.

$$\overline{\alpha_2} \mathbf{A}_{(1)}^m \mathbf{e} = (\alpha_1 \otimes \alpha_2) (\mathbf{S}_1 \otimes \mathbf{S}_2)^m \mathbf{e}$$

$$= (\alpha_1 \mathbf{S}_1^m \mathbf{e}) (\alpha_2 \mathbf{S}_2^m \mathbf{e})$$

$$= \mathbb{P} (Y_1 > m) \mathbb{P} (Y_2 > m)$$

$$= \mathbb{P} (Y_1 > m, Y_2 > m)$$

$$= \mathbb{P} (Y_{(1)} > m).$$

Consequently, by the Kronecker product properties and independence of the variables, we conclude that

$$Y_{(1)} \sim DPH\left(\overline{\alpha_2}, \boldsymbol{A}_{(1)}\right).$$

Order statistics for independent Matrix-geometric distributions

Order statistics of two independent discrete phase-type distributions

Representation for the maximum $Y_{(2)}$

Recall

$$oldsymbol{A}_{(2)}=\left(egin{array}{cccc} oldsymbol{S}_1\otimesoldsymbol{S}_2&oldsymbol{s}_1\otimesoldsymbol{S}_2\ oldsymbol{0}&oldsymbol{S}_2&oldsymbol{0}\ oldsymbol{0}&oldsymbol{O}&oldsymbol{S}_1\ \end{array}
ight)$$

We are going to verify that the product

 $(\overline{\alpha_2}, \mathbf{0}) \mathbf{A}_{(2)}^m \mathbf{e}, \quad m \in \mathbb{N},$

is the survival function of $Y_{(2)}$.

Let us denote

$$m{B}_{(1)} = (m{s}_1 \otimes m{S}_2 \quad m{S}_1 \otimes m{s}_2) \quad ext{and} \quad m{C}_{(1)} = \left(egin{array}{cc} m{S}_2 & m{0} \ m{0} & m{S}_1 \end{array}
ight).$$

Then, we have that

$$oldsymbol{A}_{(2)}=\left(egin{array}{cc}oldsymbol{A}_{(1)}&oldsymbol{B}_{(1)}\oldsymbol{0}&oldsymbol{C}_{(1)}\end{array}
ight).$$

Order statistics for independent Matrix-geometric distributions Conclusion Order statistics of two independent discrete phase-type distributions

Representation for the maximum $Y_{(2)}$

Recall

$$oldsymbol{A}_{(2)}=\left(egin{array}{cccc}oldsymbol{S}_1\otimesoldsymbol{S}_2&oldsymbol{s}_1\otimesoldsymbol{s}_2&oldsymbol{0}\oldsymbol{0}&oldsymbol{S}_2&oldsymbol{0}\oldsymbol{0}&oldsymbol{S}_2&oldsymbol{0}\oldsymbol{0}&oldsymbol{S}_2&oldsymbol{0}\oldsymbol{0}&oldsymbol{S}_2&oldsymbol{0}\oldsymbol{0}&oldsymbol{S}_2&oldsymbol{0}\oldsymbol{0}&oldsymbol{S}_2&oldsymbol{0}\oldsymbol{0}&oldsymbol{S}_2&oldsymbol{0}\oldsymbol{0}&oldsymbol{S}_2&oldsymbol{0}\oldsymbol{0}&oldsymbol{S}_2&oldsymbol{0}\oldsymbol{0}&oldsymbol{S}_2&oldsymbol{0}\oldsymbol{0}&oldsymbol{S}_2&oldsymbol{0}\oldsymbol{0}&oldsymbol{S}_2&oldsymbol{0}\oldsymbol{0}&oldsymbol{S}_2&oldsymbol{0}\oldsymbol{0}&oldsymbol{S}_2&oldsymbol{0}\oldsymbol{S}_2&oldsymbol{0}\oldsymbol{S}_2&oldsymbol{0}\oldsymbol{S}_2&oldsymbol{0}\oldsymbol{S}_2&oldsymbol{0}\oldsymbol{S}_2&oldsymbol{0}\oldsymbol{S}_2&oldsymbol{0}\oldsymbol{S}_2&oldsymbol{S}_2&oldsymbol{0}\oldsymbol{S}_2&oldsymbol{S$$

We are going to verify that the product

$$(\overline{\alpha_2}, \mathbf{0}) \mathbf{A}_{(2)}^m \mathbf{e}, \quad m \in \mathbb{N},$$

is the survival function of $Y_{(2)}$.

Let us denote

$$m{B}_{(1)} = (m{s}_1 \otimes m{S}_2 \quad m{S}_1 \otimes m{s}_2) \quad ext{and} \quad m{C}_{(1)} = \left(egin{array}{cc} m{S}_2 & m{0} \ m{0} & m{S}_1 \end{array}
ight).$$

Then, we have that

$$oldsymbol{A}_{(2)}=\left(egin{array}{cc}oldsymbol{A}_{(1)}&oldsymbol{B}_{(1)}\oldsymbol{0}&oldsymbol{C}_{(1)}\end{array}
ight).$$

Order statistics for independent Matrix-geometric distributions Conclusion Order statistics of two independent discrete phase-type distributions

Representation for the maximum $Y_{(2)}$

Recall

$$oldsymbol{A}_{(2)}=\left(egin{array}{cccc}oldsymbol{S}_1\otimesoldsymbol{S}_2&oldsymbol{s}_1\otimesoldsymbol{s}_2&oldsymbol{0}\oldsymbol{0}&oldsymbol{S}_2&oldsymbol{0}\oldsymbol{0}&oldsymbol{S}_2&oldsymbol{0}\oldsymbol{0}&oldsymbol{S}_2&oldsymbol{0}\oldsymbol{0}&oldsymbol{S}_2&oldsymbol{0}\oldsymbol{0}&oldsymbol{S}_2&oldsymbol{0}\oldsymbol{0}&oldsymbol{S}_2&oldsymbol{0}\oldsymbol{0}&oldsymbol{S}_2&oldsymbol{0}\oldsymbol{0}&oldsymbol{S}_2&oldsymbol{0}\oldsymbol{0}&oldsymbol{S}_2&oldsymbol{0}\oldsymbol{0}&oldsymbol{S}_2&oldsymbol{0}\oldsymbol{0}&oldsymbol{S}_2&oldsymbol{0}\oldsymbol{0}&oldsymbol{S}_2&oldsymbol{0}\oldsymbol{0}&oldsymbol{S}_2&oldsymbol{0}\oldsymbol{0}&oldsymbol{S}_2&oldsymbol{0}\oldsymbol{S}_2&oldsymbol{0}\oldsymbol{S}_2&oldsymbol{0}\oldsymbol{S}_2&oldsymbol{0}\oldsymbol{S}_2&oldsymbol{0}\oldsymbol{S}_2&oldsymbol{0}\oldsymbol{S}_2&oldsymbol{0}\oldsymbol{S}_2&oldsymbol{S}_2&oldsymbol{0}\oldsymbol{S}_2&oldsymbol{S$$

We are going to verify that the product

$$(\overline{\alpha_2}, \mathbf{0}) \mathbf{A}_{(2)}^m \mathbf{e}, \quad m \in \mathbb{N},$$

is the survival function of $Y_{(2)}$.

Let us denote

$$oldsymbol{B}_{(1)} = (\mathbf{s}_1 \otimes oldsymbol{S}_2 \quad oldsymbol{S}_1 \otimes \mathbf{s}_2) \quad ext{ and } \quad oldsymbol{C}_{(1)} = \left(egin{array}{cc} oldsymbol{S}_2 & oldsymbol{0} \\ oldsymbol{0} & oldsymbol{S}_1 \end{array}
ight).$$

Then, we have that

$$oldsymbol{A}_{(2)}=\left(egin{array}{cc}oldsymbol{A}_{(1)}&oldsymbol{B}_{(1)}\oldsymbol{0}&oldsymbol{C}_{(1)}\end{array}
ight).$$

Order statistics of two independent discrete phase-type distributions

Representation for the maximum $Y_{(2)}$

Recall

$$oldsymbol{A}_{(2)}=\left(egin{array}{cccc}oldsymbol{S}_1\otimesoldsymbol{S}_2&oldsymbol{s}_1\otimesoldsymbol{s}_2&oldsymbol{0}\oldsymbol{0}&oldsymbol{S}_2&oldsymbol{0}\oldsymbol{0}&oldsymbol{S}_2&oldsymbol{0}\oldsymbol{0}&oldsymbol{S}_2&oldsymbol{0}\oldsymbol{0}&oldsymbol{S}_2&oldsymbol{0}\oldsymbol{0}&oldsymbol{S}_2&oldsymbol{0}\oldsymbol{0}&oldsymbol{S}_2&oldsymbol{0}\oldsymbol{0}&oldsymbol{S}_2&oldsymbol{0}\oldsymbol{0}&oldsymbol{S}_2&oldsymbol{0}\oldsymbol{0}&oldsymbol{S}_2&oldsymbol{0}\oldsymbol{0}&oldsymbol{S}_2&oldsymbol{0}\oldsymbol{0}&oldsymbol{S}_2&oldsymbol{0}\oldsymbol{0}&oldsymbol{S}_2&oldsymbol{0}\oldsymbol{0}&oldsymbol{S}_2&oldsymbol{0}\oldsymbol{0}&oldsymbol{S}_2&oldsymbol{0}\oldsymbol{S}_2&oldsymbol{0}\oldsymbol{S}_2&oldsymbol{0}\oldsymbol{S}_2&oldsymbol{0}\oldsymbol{S}_2&oldsymbol{0}\oldsymbol{S}_2&oldsymbol{0}\oldsymbol{S}_2&oldsymbol{0}\oldsymbol{S}_2&oldsymbol{S}_2&oldsymbol{0}\oldsymbol{S}_2&oldsymbol{S$$

We are going to verify that the product

$$(\overline{\alpha_2}, \mathbf{0}) \mathbf{A}_{(2)}^m \mathbf{e}, \quad m \in \mathbb{N},$$

is the survival function of $Y_{(2)}$.

Let us denote

$$oldsymbol{B}_{(1)} = (\mathbf{s}_1 \otimes oldsymbol{S}_2 \quad oldsymbol{S}_1 \otimes \mathbf{s}_2) \quad ext{ and } \quad oldsymbol{C}_{(1)} = \left(egin{array}{cc} oldsymbol{S}_2 & oldsymbol{0} \\ oldsymbol{0} & oldsymbol{S}_1 \end{array}
ight).$$

• Then, we have that

$$oldsymbol{A}_{(2)}=\left(egin{array}{cc}oldsymbol{A}_{(1)}&oldsymbol{B}_{(1)}\oldsymbol{0}&oldsymbol{C}_{(1)}\end{array}
ight).$$

Order statistics for independent Matrix-geometric distributions Conclusion

Order statistics of two independent discrete phase-type distributions

Observe that

$$A^m_{(2)} = \begin{pmatrix} A^m_{(1)} & B_{(1,m)} \\ 0 & C^m_{(1)} \end{pmatrix}, \quad m \ge 2,$$

and

$$(\overline{\alpha_2}, \mathbf{0}) \mathbf{A}_{(2)}^m \mathbf{e} = \overline{\alpha_2} \mathbf{A}_{(1)}^m \mathbf{e} + \overline{\alpha_2} \mathbf{B}_{(1,m)} \mathbf{e}$$

Since we already have that

$$\overline{\alpha_2} \mathbf{A}_{(1)}^m \mathbf{e} = \mathbb{P}\left(Y_{(1)} > m\right).$$

then, we just need to make the product $\overline{lpha_2} B_{(1,m)} \mathbf{e}$

rder statistics for independent Matrix-geometric distributi

Observe that

$$A^m_{(2)} = \begin{pmatrix} A^m_{(1)} & B_{(1,m)} \\ 0 & C^m_{(1)} \end{pmatrix}, \quad m \ge 2,$$

and

$$(\overline{\alpha_2}, \mathbf{0}) \mathbf{A}_{(2)}^m \mathbf{e} = \overline{\alpha_2} \mathbf{A}_{(1)}^m \mathbf{e} + \overline{\alpha_2} \mathbf{B}_{(1,m)} \mathbf{e}.$$

Since we already have that

$$\overline{\alpha_2} \mathbf{A}_{(1)}^m \mathbf{e} = \mathbb{P}\left(Y_{(1)} > m\right).$$

then, we just need to make the product $\overline{\alpha_2} {\bm B}_{(1,m)} {\bf e}$

One way to calculate that is by the following product:

$$egin{aligned} m{A}_{(2)}^m = m{A}_{(2)}^{m-1}m{A}_{(2)} = \left(egin{aligned} m{A}_{(1)}^{m-1} & m{B}_{(1,m-1)} \ m{0} & m{C}_{(1)}^{m-1} \end{array}
ight) \left(egin{aligned} m{A}_{(1)} & m{B}_{(1)} \ m{0} & m{C}_{(1)} \end{array}
ight). \ & B_{(1,m)} = m{A}_{(1)}^{m-1}m{B}_{(1)} + m{B}_{(1,m-1)}m{C}_{(1)}. \end{aligned}$$

It can be proved by induction that

$$\overline{\alpha_2} \boldsymbol{B}_{(1,m)} \mathbf{e} = \mathbb{P} \left(Y_{(1)} \leq m, Y_{(2)} > m \right), \quad \text{for all} \quad m \in \mathbb{N}.$$

One way to calculate that is by the following product:

$$egin{aligned} m{A}_{(2)}^m &= m{A}_{(2)}^{m-1} m{A}_{(2)} = \left(egin{aligned} m{A}_{(1)}^{m-1} & m{B}_{(1,m-1)} \ m{0} & m{C}_{(1)}^{m-1} \end{array}
ight) \left(egin{aligned} m{A}_{(1)} & m{B}_{(1)} \ m{0} & m{C}_{(1)} \end{array}
ight). \ & m{B}_{(1,m)} &= m{A}_{(1)}^{m-1} m{B}_{(1)} + m{B}_{(1,m-1)} m{C}_{(1)}. \end{aligned}$$

It can be proved by induction that

•

$$\overline{\alpha_2} \boldsymbol{B}_{(1,m)} \mathbf{e} = \mathbb{P} \left(Y_{(1)} \leq m, Y_{(2)} > m \right), \quad \text{for all} \quad m \in \mathbb{N}.$$

One way to calculate that is by the following product:

$$\begin{aligned} \boldsymbol{A}_{(2)}^{m} &= \boldsymbol{A}_{(2)}^{m-1} \boldsymbol{A}_{(2)} = \begin{pmatrix} \boldsymbol{A}_{(1)}^{m-1} & \boldsymbol{B}_{(1,m-1)} \\ \boldsymbol{0} & \boldsymbol{C}_{(1)}^{m-1} \end{pmatrix} \begin{pmatrix} \boldsymbol{A}_{(1)} & \boldsymbol{B}_{(1)} \\ \boldsymbol{0} & \boldsymbol{C}_{(1)} \end{pmatrix} \\ \boldsymbol{B}_{(1,m)} &= \boldsymbol{A}_{(1)}^{m-1} \boldsymbol{B}_{(1)} + \boldsymbol{B}_{(1,m-1)} \boldsymbol{C}_{(1)}. \end{aligned}$$

It can be proved by induction that

$$\overline{\alpha_2} \boldsymbol{B}_{(1,m)} \mathbf{e} = \mathbb{P} \left(Y_{(1)} \leq m, Y_{(2)} > m \right), \quad \text{for all} \quad m \in \mathbb{N}.$$

Then,

$$(\overline{\alpha_2}, \mathbf{0}) \mathbf{A}_{(2)}^m \mathbf{e} = \overline{\alpha_2} \mathbf{A}_{(1)}^m \mathbf{e} + \overline{\alpha_2} \mathbf{B}_{(1,m)} \mathbf{e}$$

$$= \mathbb{P} \left(Y_{(1)} > m \right) + \mathbb{P} \left(Y_{(1)} \le m, Y_{(2)} > m \right)$$

$$= \mathbb{P} \left(Y_{(2)} > m \right).$$

Therefore,

$$\left(\left(\overline{lpha_{2}}, \mathbf{0}
ight), \boldsymbol{A}_{(2)}
ight)$$

is a representation for the distribution of $Y_{(2)}$.

Representation for the third order statistic

Representation for the maximum

Let Y_1, Y_2 and Y_3 be three independent Matrix-geometric distributed random variables with the following representations.

$$Y_i \sim MG(\alpha_i, S_i, \mathbf{s}_i), \quad \mathbf{s}_i = \mathbf{e} - S_i \mathbf{e}, \quad i = 1, 2, 3.$$

 $\overline{\alpha_3} = \alpha_1 \otimes \alpha_2 \otimes \alpha_3.$

Representation for the third order statistic

Representation for the maximum

Let Y_1, Y_2 and Y_3 be three independent Matrix-geometric distributed random variables with the following representations.

$$Y_i \sim MG(\alpha_i, \mathbf{S}_i, \mathbf{s}_i), \quad \mathbf{s}_i = \mathbf{e} - \mathbf{S}_i \mathbf{e}, \quad i = 1, 2, 3.$$

 $\overline{\alpha_3} = \alpha_1 \otimes \alpha_2 \otimes \alpha_3.$

Representation for the third order statistic

Representation for the maximum

Let Y_1, Y_2 and Y_3 be three independent Matrix-geometric distributed random variables with the following representations.

$$Y_i \sim MG(\alpha_i, \boldsymbol{S}_i, \mathbf{s}_i), \quad \mathbf{s}_i = \mathbf{e} - \boldsymbol{S}_i \mathbf{e}, \quad i = 1, 2, 3.$$

$$\overline{\alpha_3} = \alpha_1 \otimes \alpha_2 \otimes \alpha_3$$

Order statistics for independent Matrix-geometric distributions

Representation for the third order statistic

Representation for the maximum

$$\boldsymbol{A}_{(3)} = \begin{pmatrix} s_1 \otimes s_2 \otimes s_3 & s_1 \otimes s_1 \otimes s_2 \otimes s_3 & s_1 \otimes s_1 \otimes s_2 \otimes s_1 \otimes s_1 \otimes s_2 & s_1 \otimes s$$

We are going to prove that

$$ig((\overline{lpha_3}, \mathbf{0}), oldsymbol{A}_{(3)}, \mathbf{a}_{(3)}ig), \quad \mathbf{a}_{(3)} = \mathbf{e} - oldsymbol{A}_{(3)}\mathbf{e}.$$

is a representation for the maximum $Y_{(3)}$.

.

Representation for the third order statistic

Representation for the maximum

$$\boldsymbol{A}_{(3)} = \begin{pmatrix} s_1 \otimes s_2 \otimes s_3 & 0 \\ 0 & S_2 \otimes S_3 & 0 & 0 & s_2 \otimes S_3 & S_2 \otimes s_3 & 0 \\ 0 & 0 & S_1 \otimes S_3 & 0 & S_1 \otimes S_3 & 0 & S_1 \otimes s_2 \\ 0 & 0 & 0 & 0 & S_1 \otimes S_2 & 0 & s_1 \otimes S_2 & s_1 \otimes s_1 \otimes$$

We are going to prove that

$$\left(\left(\overline{lpha_{3}}, \mathbf{0}
ight), \mathbf{A}_{(3)}, \mathbf{a}_{(3)}
ight), \quad \mathbf{a}_{(3)} = \mathbf{e} - \mathbf{A}_{(3)}\mathbf{e}.$$

is a representation for the maximum $Y_{(3)}$.

Representation for the third order statistic

Let us write the matrix $A_{(3)}$ as follows.

$$\left(egin{array}{ccc} m{A}_{(1)} & m{B}_{(1)} & m{B}_{(2)} \ m{0} & m{C}_{(1)} & m{C}_{(1,2)} \ m{0} & m{0} & m{C}_{(2)} \end{array}
ight),$$

where $oldsymbol{A}_{(1)}, oldsymbol{B}_{(1)}$ and $oldsymbol{C}_{(1)}$ is as in the second order statistic,

$$C_{(1,2)}=\left(egin{array}{ccc} \mathbf{s}_2\otimes oldsymbol{S}_3&oldsymbol{S}_2\otimes oldsymbol{s}_3&oldsymbol{0}\ \mathbf{s}_1\otimes oldsymbol{S}_3&oldsymbol{0}&oldsymbol{S}_1\otimes oldsymbol{s}_3\ oldsymbol{0}&oldsymbol{s}_1\otimes oldsymbol{S}_2&oldsymbol{S}_1\otimes oldsymbol{s}_2\end{array}
ight)$$

$$C_{(2)}=\left(egin{array}{ccc} S_3 & 0 & 0 \ 0 & S_2 & 0 \ 0 & 0 & S_1 \end{array}
ight).$$

Representation for the third order statistic

Let us write the matrix $A_{(3)}$ as follows.

$$\left(egin{array}{ccc} m{A}_{(1)} & m{B}_{(1)} & m{B}_{(2)} \ m{0} & m{C}_{(1)} & m{C}_{(1,2)} \ m{0} & m{0} & m{C}_{(2)} \end{array}
ight),$$

where $oldsymbol{A}_{(1)}, oldsymbol{B}_{(1)}$ and $oldsymbol{C}_{(1)}$ is as in the second order statistic,

$$C_{(1,2)}=\left(egin{array}{ccc} \mathbf{s}_2\otimes oldsymbol{S}_3&oldsymbol{S}_2\otimes \mathbf{s}_3&oldsymbol{0}\ \mathbf{s}_1\otimes oldsymbol{S}_3&oldsymbol{0}&oldsymbol{S}_1\otimes \mathbf{s}_3\ oldsymbol{0}&oldsymbol{s}_1\otimes oldsymbol{S}_2&oldsymbol{S}_1\otimes \mathbf{s}_2\end{array}
ight)$$

$$C_{(2)}=\left(egin{array}{ccc} S_3 & 0 & 0 \ 0 & S_2 & 0 \ 0 & 0 & S_1 \end{array}
ight).$$

Representation for the third order statistic

Let us write the matrix $A_{(3)}$ as follows.

$$\left(egin{array}{ccc} m{A}_{(1)} & m{B}_{(1)} & m{B}_{(2)} \ m{0} & m{C}_{(1)} & m{C}_{(1,2)} \ m{0} & m{0} & m{C}_{(2)} \end{array}
ight),$$

where $oldsymbol{A}_{(1)}, oldsymbol{B}_{(1)}$ and $oldsymbol{C}_{(1)}$ is as in the second order statistic,

$$oldsymbol{B}_{(2)}=\left(egin{array}{cccc} \mathbf{s}_1\otimes\mathbf{s}_2\otimesoldsymbol{S}_3 & \mathbf{s}_1\otimesoldsymbol{S}_2\otimes\mathbf{s}_3 & oldsymbol{S}_1\otimes\mathbf{s}_2\otimes\mathbf{s}_3 \end{array}
ight),$$

$$C_{(1,2)}=\left(egin{array}{ccc} \mathbf{s}_2\otimes oldsymbol{S}_3&oldsymbol{S}_2\otimes oldsymbol{s}_3&oldsymbol{0}\ \mathbf{s}_1\otimes oldsymbol{S}_3&oldsymbol{0}&oldsymbol{S}_1\otimes oldsymbol{s}_3\ oldsymbol{0}&oldsymbol{s}_1\otimes oldsymbol{S}_2&oldsymbol{S}_1\otimes oldsymbol{s}_2\end{array}
ight)$$

$$C_{(2)}=\left(egin{array}{ccc} S_3 & 0 & 0 \ 0 & S_2 & 0 \ 0 & 0 & S_1 \end{array}
ight).$$

Representation for the third order statistic

Let us write the matrix $A_{(3)}$ as follows.

$$\left(egin{array}{ccc} m{A}_{(1)} & m{B}_{(1)} & m{B}_{(2)} \ m{0} & m{C}_{(1)} & m{C}_{(1,2)} \ m{0} & m{0} & m{C}_{(2)} \end{array}
ight),$$

where $oldsymbol{A}_{(1)}, oldsymbol{B}_{(1)}$ and $oldsymbol{C}_{(1)}$ is as in the second order statistic,

Representation for the third order statistic

Let us write the matrix $oldsymbol{A}_{(3)}$ as follows.

$$\left(egin{array}{ccc} m{A}_{(1)} & m{B}_{(1)} & m{B}_{(2)} \ m{0} & m{C}_{(1)} & m{C}_{(1,2)} \ m{0} & m{0} & m{C}_{(2)} \end{array}
ight),$$

where $oldsymbol{A}_{(1)}, oldsymbol{B}_{(1)}$ and $oldsymbol{C}_{(1)}$ is as in the second order statistic,

Since we are going to calculate

$$(\overline{\alpha_3}, \mathbf{0}) \mathbf{A}^m_{(3)} \mathbf{e},$$

we need to obtain an expression for $A^m_{(3)}$.

Observe that

$$egin{array}{rcl} A^m_{(3)} &=& \left(egin{array}{ccc} A^m_{(1)} & B_{(1,m)} & B_{(1,2,m)} \ m 0 & C^m_{(1)} & C_{(1,2,m)} \ m 0 & m 0 & C^m_{(2)} \end{array}
ight) \end{array}$$

Then,

$$(\overline{\alpha_3},\mathbf{0}) \mathbf{A}_{(3)}^m \mathbf{e} = \overline{\alpha_3} \mathbf{A}_{(1)}^m \mathbf{e} + \overline{\alpha_3} \mathbf{B}_{(1,m)} \mathbf{e} + \overline{\alpha_3} \mathbf{B}_{(1,2,m)} \mathbf{e},$$

where

$$\overline{\alpha_3} \boldsymbol{A}_{(1)}^m \mathbf{e} + \overline{\alpha_3} \boldsymbol{B}_{(1,m)} \mathbf{e} = \mathbb{P}\left(Y_{(2)} > m\right)$$

by the second order statistic.

Since we are going to calculate

$$(\overline{\alpha_3}, \mathbf{0}) \mathbf{A}^m_{(3)} \mathbf{e},$$

we need to obtain an expression for $oldsymbol{A}_{(3)}^m.$ Observe that

$$m{A}^m_{(3)} \;\; = \; \left(egin{array}{ccc} m{A}^m_{(1)} & m{B}_{(1,m)} & m{B}_{(1,2,m)} \ m{0} & m{C}^m_{(1)} & m{C}_{(1,2,m)} \ m{0} & m{0} & m{C}^m_{(2)} \end{array}
ight).$$

Then,

$$(\overline{\alpha_3},\mathbf{0}) \mathbf{A}_{(3)}^m \mathbf{e} = \overline{\alpha_3} \mathbf{A}_{(1)}^m \mathbf{e} + \overline{\alpha_3} \mathbf{B}_{(1,m)} \mathbf{e} + \overline{\alpha_3} \mathbf{B}_{(1,2,m)} \mathbf{e},$$

where

$$\overline{\alpha_3} \boldsymbol{A}_{(1)}^m \mathbf{e} + \overline{\alpha_3} \boldsymbol{B}_{(1,m)} \mathbf{e} = \mathbb{P}\left(Y_{(2)} > m\right)$$

by the second order statistic.

Since we are going to calculate

$$(\overline{\alpha_3}, \mathbf{0}) \mathbf{A}^m_{(3)} \mathbf{e},$$

we need to obtain an expression for $oldsymbol{A}_{(3)}^m.$ Observe that

$$m{A}^m_{(3)} \;\; = \; \left(egin{array}{ccc} m{A}^m_{(1)} & m{B}_{(1,m)} & m{B}_{(1,2,m)} \ m{0} & m{C}^m_{(1)} & m{C}_{(1,2,m)} \ m{0} & m{0} & m{C}^m_{(2)} \end{array}
ight)$$

Then,

$$(\overline{\alpha_3}, \mathbf{0}) \mathbf{A}_{(3)}^m \mathbf{e} = \overline{\alpha_3} \mathbf{A}_{(1)}^m \mathbf{e} + \overline{\alpha_3} \mathbf{B}_{(1,m)} \mathbf{e} + \overline{\alpha_3} \mathbf{B}_{(1,2,m)} \mathbf{e},$$

where

$$\overline{\alpha_3} \mathbf{A}_{(1)}^m \mathbf{e} + \overline{\alpha_3} \mathbf{B}_{(1,m)} \mathbf{e} = \mathbb{P}\left(Y_{(2)} > m\right)$$

by the second order statistic.

We can prove by induction, as in the second order statistics, that

$$\overline{\alpha_3}\boldsymbol{B}_{(1,2,m)}\mathbf{e} = \mathbb{P}\left(Y_{(1)} \le m, Y_{(2)} \le m, Y_{(3)} > m\right).$$

Consequently,

$$(\overline{\alpha_3}, \mathbf{0}) \mathbf{A}_{(3)}^m \mathbf{e}$$

$$= \overline{\alpha_3} \mathbf{A}_{(1)}^m \mathbf{e} + \overline{\alpha_3} \mathbf{B}_{(1,m)} \mathbf{e} + \overline{\alpha_3} \mathbf{B}_{(1,2,m)} \mathbf{e}$$

$$= \mathbb{P} \left(Y_{(2)} > m \right) + \mathbb{P} \left(Y_{(1)} \le m, Y_{(2)} \le m, Y_{(3)} > m \right)$$

$$= \mathbb{P} \left(Y_{(3)} > m \right).$$

Therefore,

$$ig(\overline{lpha_3},oldsymbol{A}_{(3)},oldsymbol{a}_{(3)}ig)\,,$$
 where $oldsymbol{a}_{(3)}=oldsymbol{e}-oldsymbol{A}_{(3)}oldsymbol{e},$

is a representation for the distribution of $Y_{(3)}$.

We can prove by induction, as in the second order statistics, that

$$\overline{\alpha_3}\boldsymbol{B}_{(1,2,m)}\mathbf{e} = \mathbb{P}\left(Y_{(1)} \le m, Y_{(2)} \le m, Y_{(3)} > m\right).$$

Consequently,

$$(\overline{\alpha_3}, \mathbf{0}) \mathbf{A}_{(3)}^m \mathbf{e}$$

$$= \overline{\alpha_3} \mathbf{A}_{(1)}^m \mathbf{e} + \overline{\alpha_3} \mathbf{B}_{(1,m)} \mathbf{e} + \overline{\alpha_3} \mathbf{B}_{(1,2,m)} \mathbf{e}$$

$$= \mathbb{P} \left(Y_{(2)} > m \right) + \mathbb{P} \left(Y_{(1)} \le m, Y_{(2)} \le m, Y_{(3)} > m \right)$$

$$= \mathbb{P} \left(Y_{(3)} > m \right).$$

Therefore,

$$ig(\overline{lpha_3},oldsymbol{A}_{(3)},oldsymbol{a}_{(3)}ig)\,,$$
 where $oldsymbol{a}_{(3)}=oldsymbol{e}-oldsymbol{A}_{(3)}oldsymbol{e},$

is a representation for the distribution of $Y_{(3)}$.

We can prove by induction, as in the second order statistics, that

$$\overline{\alpha_3}\boldsymbol{B}_{(1,2,m)}\mathbf{e} = \mathbb{P}\left(Y_{(1)} \le m, Y_{(2)} \le m, Y_{(3)} > m\right).$$

Consequently,

$$(\overline{\alpha_3}, \mathbf{0}) \mathbf{A}_{(3)}^m \mathbf{e}$$

$$= \overline{\alpha_3} \mathbf{A}_{(1)}^m \mathbf{e} + \overline{\alpha_3} \mathbf{B}_{(1,m)} \mathbf{e} + \overline{\alpha_3} \mathbf{B}_{(1,2,m)} \mathbf{e}$$

$$= \mathbb{P} \left(Y_{(2)} > m \right) + \mathbb{P} \left(Y_{(1)} \le m, Y_{(2)} \le m, Y_{(3)} > m \right)$$

$$= \mathbb{P} \left(Y_{(3)} > m \right).$$

Therefore,

$$\left(\overline{lpha_3}, oldsymbol{A}_{(3)}, \mathbf{a}_{(3)}
ight), \quad ext{where} \quad \mathbf{a}_{(3)} = \mathbf{e} - oldsymbol{A}_{(3)}\mathbf{e},$$

is a representation for the distribution of $Y_{(3)}$.

Representation for the r-th order statistics

Let Y_1, Y_2, \ldots, Y_n be independents Matrix-geometric distributed random variables, with representation

 $(\alpha_1, \mathbf{S}_i, \mathbf{s}_i), \text{ where } \mathbf{s}_i = \mathbf{e} - \mathbf{S}_i \mathbf{e}, i = 1, \dots, n.$

Denote $\overline{\alpha_n} = \alpha_1 \otimes \alpha_2 \otimes \cdots \otimes \alpha_n$. For r = 1. $Y_{(1)} \sim MG(\overline{\alpha_n}, A_{(1)}, \mathbf{a}_{(1)})$, where

 $A_{(1)} = S_1 \otimes S_2 \otimes \cdots \otimes S_n$ and $a_{(1)} = e - A_{(1)}e$.

Representation for the r-th order statistics

Let Y_1, Y_2, \ldots, Y_n be independents Matrix-geometric distributed random variables, with representation

 $(\alpha_1, \mathbf{S}_i, \mathbf{s}_i), \text{ where } \mathbf{s}_i = \mathbf{e} - \mathbf{S}_i \mathbf{e}, i = 1, \dots, n.$

Denote $\overline{\alpha_n} = \alpha_1 \otimes \alpha_2 \otimes \cdots \otimes \alpha_n$. For r = 1. $Y_{(1)} \sim MG(\overline{\alpha_n}, A_{(1)}, \mathbf{a}_{(1)})$, where

 $A_{(1)} = S_1 \otimes S_2 \otimes \cdots \otimes S_n$ and $a_{(1)} = e - A_{(1)}e$.

Representation for the r-th order statistics

Let Y_1, Y_2, \ldots, Y_n be independents Matrix-geometric distributed random variables, with representation

$$(\alpha_1, \mathbf{S}_i, \mathbf{s}_i)$$
, where $\mathbf{s}_i = \mathbf{e} - \mathbf{S}_i \mathbf{e}$, $i = 1, \dots, n$.

Denote $\overline{\alpha_n} = \alpha_1 \otimes \alpha_2 \otimes \cdots \otimes \alpha_n$. For r = 1. $Y_{(1)} \sim MG(\overline{\alpha_n}, A_{(1)}, \mathbf{a}_{(1)})$, where $A_{(1)} = S_1 \otimes S_2 \otimes \cdots \otimes S_n$ and $\mathbf{a}_{(1)} = \mathbf{e} - A_{(1)}\mathbf{e}$.

Let $2 \le r \le n$. The r-th order statistics of Y_1, Y_2, \ldots, Y_n has a Matrix-geometric representation given by

$$((\overline{\alpha_r}, \mathbf{0}), \mathbf{A}_{(r)}, \mathbf{a}_{(r)}), \quad \mathbf{a}_{(r)} = \mathbf{e} - \mathbf{A}_{(r)}\mathbf{e}.$$

where

$$m{A}_{(r)} = egin{pmatrix} m{A}_{(1)} & m{B}_{(1)} & m{B}_{(2)} & \cdots & m{B}_{(r-1)} \ m{0} & m{C}_{(1)} & m{C}_{(1,2)} & \cdots & m{C}_{(1,r-1)} \ m{0} & m{0} & m{C}_{(2)} & \cdots & m{C}_{(2,r-1)} \ dots & dots & dots & dots & dots \ m{0} & m{0} & m{0} & m{0} & \cdots & m{C}_{(r-1)} \ \end{pmatrix},$$

• B_j block of all the combinations with i exits, $1 \le j \le r-1$.

- C_(i) is a block diagonal matrix which consists on all the combinations formed with i − 1 elements of S₁, S₂,..., S_n, and depends of the block exit given by B_(i−1).
- $C_{(j,i)}$ is a exit block corresponding to the block matrices C_j and $B_{(i)}.$

Let $2 \le r \le n$. The r-th order statistics of Y_1, Y_2, \ldots, Y_n has a Matrix-geometric representation given by

$$((\overline{\alpha_r}, \mathbf{0}), \mathbf{A}_{(r)}, \mathbf{a}_{(r)}), \quad \mathbf{a}_{(r)} = \mathbf{e} - \mathbf{A}_{(r)}\mathbf{e}.$$

where

$$\boldsymbol{A}_{(r)} = \begin{pmatrix} \boldsymbol{A}_{(1)} & \boldsymbol{B}_{(1)} & \boldsymbol{B}_{(2)} & \cdots & \boldsymbol{B}_{(r-1)} \\ \boldsymbol{0} & \boldsymbol{C}_{(1)} & \boldsymbol{C}_{(1,2)} & \cdots & \boldsymbol{C}_{(1,r-1)} \\ \boldsymbol{0} & \boldsymbol{0} & \boldsymbol{C}_{(2)} & \cdots & \boldsymbol{C}_{(2,r-1)} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \boldsymbol{0} & \boldsymbol{0} & \boldsymbol{0} & \cdots & \boldsymbol{C}_{(r-1)} \end{pmatrix},$$

• B_j block of all the combinations with *i* exits, $1 \le j \le r - 1$.

- $C_{(i)}$ is a block diagonal matrix which consists on all the combinations formed with i-1 elements of S_1, S_2, \ldots, S_n , and depends of the block exit given by $B_{(i-1)}$.
- $C_{(j,i)}$ is a exit block corresponding to the block matrices C_j and $B_{(i)}.$

Let $2 \le r \le n$. The r-th order statistics of Y_1, Y_2, \ldots, Y_n has a Matrix-geometric representation given by

$$((\overline{\alpha_r}, \mathbf{0}), \mathbf{A}_{(r)}, \mathbf{a}_{(r)}), \quad \mathbf{a}_{(r)} = \mathbf{e} - \mathbf{A}_{(r)}\mathbf{e}.$$

where

$$\boldsymbol{A}_{(r)} = \begin{pmatrix} \boldsymbol{A}_{(1)} & \boldsymbol{B}_{(1)} & \boldsymbol{B}_{(2)} & \cdots & \boldsymbol{B}_{(r-1)} \\ \boldsymbol{0} & \boldsymbol{C}_{(1)} & \boldsymbol{C}_{(1,2)} & \cdots & \boldsymbol{C}_{(1,r-1)} \\ \boldsymbol{0} & \boldsymbol{0} & \boldsymbol{C}_{(2)} & \cdots & \boldsymbol{C}_{(2,r-1)} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \boldsymbol{0} & \boldsymbol{0} & \boldsymbol{0} & \cdots & \boldsymbol{C}_{(r-1)} \end{pmatrix},$$

• B_j block of all the combinations with *i* exits, $1 \le j \le r - 1$.

- C_(i) is a block diagonal matrix which consists on all the combinations formed with i − 1 elements of S₁, S₂,..., S_n, and depends of the block exit given by B_(i−1).
- $C_{(j,i)}$ is a exit block corresponding to the block matrices C_j and $B_{(i)}.$

Let $2 \le r \le n$. The r-th order statistics of Y_1, Y_2, \ldots, Y_n has a Matrix-geometric representation given by

$$((\overline{\alpha_r}, \mathbf{0}), \mathbf{A}_{(r)}, \mathbf{a}_{(r)}), \quad \mathbf{a}_{(r)} = \mathbf{e} - \mathbf{A}_{(r)}\mathbf{e}.$$

where

$$\boldsymbol{A}_{(r)} = \begin{pmatrix} \boldsymbol{A}_{(1)} & \boldsymbol{B}_{(1)} & \boldsymbol{B}_{(2)} & \cdots & \boldsymbol{B}_{(r-1)} \\ \boldsymbol{0} & \boldsymbol{C}_{(1)} & \boldsymbol{C}_{(1,2)} & \cdots & \boldsymbol{C}_{(1,r-1)} \\ \boldsymbol{0} & \boldsymbol{0} & \boldsymbol{C}_{(2)} & \cdots & \boldsymbol{C}_{(2,r-1)} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \boldsymbol{0} & \boldsymbol{0} & \boldsymbol{0} & \cdots & \boldsymbol{C}_{(r-1)} \end{pmatrix},$$

• B_j block of all the combinations with i exits, $1 \le j \le r-1$.

• $C_{(i)}$ is a block diagonal matrix which consists on all the combinations formed with i-1 elements of S_1, S_2, \ldots, S_n , and depends of the block exit given by $B_{(i-1)}$.

• $C_{(j,i)}$ is a exit block corresponding to the block matrices C_j and $B_{(i)}$.

Let $2 \le r \le n$. The r-th order statistics of Y_1, Y_2, \ldots, Y_n has a Matrix-geometric representation given by

$$((\overline{\alpha_r}, \mathbf{0}), \mathbf{A}_{(r)}, \mathbf{a}_{(r)}), \quad \mathbf{a}_{(r)} = \mathbf{e} - \mathbf{A}_{(r)}\mathbf{e}.$$

where

$$\boldsymbol{A}_{(r)} = \begin{pmatrix} \boldsymbol{A}_{(1)} & \boldsymbol{B}_{(1)} & \boldsymbol{B}_{(2)} & \cdots & \boldsymbol{B}_{(r-1)} \\ \boldsymbol{0} & \boldsymbol{C}_{(1)} & \boldsymbol{C}_{(1,2)} & \cdots & \boldsymbol{C}_{(1,r-1)} \\ \boldsymbol{0} & \boldsymbol{0} & \boldsymbol{C}_{(2)} & \cdots & \boldsymbol{C}_{(2,r-1)} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \boldsymbol{0} & \boldsymbol{0} & \boldsymbol{0} & \cdots & \boldsymbol{C}_{(r-1)} \end{pmatrix},$$

• B_j block of all the combinations with i exits, $1 \le j \le r - 1$.

C_(i) is a block diagonal matrix which consists on all the combinations formed with *i* − 1 elements of S₁, S₂,..., S_n, and depends of the block exit given by B_(i−1).

• $C_{(j,i)}$ is a exit block corresponding to the block matrices C_j and $B_{(i)}$.

Questions??

Thanks for your attention.

Questions??

Thanks for your attention.