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Outline
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Conclusion
Order statistics of two independent discrete phase-type distributions

The Maximum and Minimum

Let’s consider two Markov chains:{
X1

n

}
n∈N and

{
X2

n

}
n∈N .

The space of states are given by E1 and E2, respectively. In both of
them it is suppose that the states are transient, except one, which is
absorbing.
Let α1 and α2, be the initial distributions of the corresponding
Markov chains.
Let

Λ1 =
(

S1 s1
0 1

)
, Λ2 =

(
S2 s2
0 1

)
,

be the transition probability matrices of the corresponding Markov
chains, where

si = e− Sie, i = 1, 2.
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Let
Y1 ∼ DPH (α1,S1) and Y2 ∼ DPH (α2,S2) ,

which are independent.
Denote

Y(1) = mı́n (Y1, Y2) ,

Y(2) = máx (Y1, Y2) ,

the first and the second order statistics.
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Multivariable Markov chain

Consider the multivariable Markov chain

{Xn} =
(
X1

n, X
2
n

)
, n ∈ N.

Suppose that E1 = {1, 2, 3} and E2 = {1, 2, 3} are the space of
states of the corresponding Markov chains.
Consequently, the space of state of the multivariable Markov chain
is:

{(1, 1), (1, 2), (2, 1), (2, 2), (3, 1), (3, 2), (1, 3), (2, 3), (3, 3)} .
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n

Xn

(1,1)
(1,2)
(2,1)
(2,2)

(3,1)
(3,2)

(1,3)
(2,3)

(3,3)

Y(1) Y(2)
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Probabilistic interpretation
The initial distribution of the multivariable Markov chain {Xn} is
given by

(α1 ⊗ α2,0) .
The transition probability matrix is

S1 ⊗ S2 s1 ⊗ S2 S1 ⊗ s2 s1 ⊗ s2
0 S2 0 s2
0 0 S1 s1
0 0 0 1

 .

Sub-transition probability matrix for the minimum Y(1):

A(1) = S1 ⊗ S2.

Sub-transition probability matrix for the maximum Y(2):

A(2) =

 S1 ⊗ S2 s1 ⊗ S2 S1 ⊗ s2
0 S2 0
0 0 S1

 .
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Representation for the minimum Y(1)

Denote α2 = α1 ⊗ α2.
Let m ∈ N. Then the product

α2Am
(1)e

is the survival function of Y(1).

α2Am
(1)e = (α1 ⊗ α2) (S1 ⊗ S2)m e

= (α1Sm
1 e) (α2Sm

2 e)
= P (Y1 > m)P (Y2 > m)
= P (Y1 > m,Y2 > m)
= P

(
Y(1) > m

)
.

Consequently, by the Kronecker product properties and
independence of the variables, we conclude that

Y(1) ∼ DPH
(
α2,A(1)

)
.
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Representation for the maximum Y(2)

Recall

A(2) =

 S1 ⊗ S2 s1 ⊗ S2 S1 ⊗ s2
0 S2 0
0 0 S1

 .

We are going to verify that the product

(α2,0) Am
(2)e, m ∈ N,

is the survival function of Y(2).

Let us denote

B(1) = (s1 ⊗ S2 S1 ⊗ s2) and C(1) =
(

S2 0
0 S1

)
.

Then, we have that

A(2) =
(

A(1) B(1)
0 C(1)

)
.
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Observe that

Am
(2) =

(
Am

(1) B(1,m)
0 Cm

(1)

)
, m ≥ 2,

and

(α2,0) Am
(2)e = α2Am

(1)e + α2B(1,m)e.

Since we already have that

α2Am
(1)e = P

(
Y(1) > m

)
.

then, we just need to make the product α2B(1,m)e
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One way to calculate that is by the following product:

Am
(2) = Am−1

(2) A(2) =
(

Am−1
(1) B(1,m−1)

0 Cm−1
(1)

)(
A(1) B(1)

0 C(1)

)
.

B(1,m) = Am−1
(1) B(1) + B(1,m−1)C(1).

.
It can be proved by induction that

α2B(1,m)e = P
(
Y(1) ≤ m,Y(2) > m

)
, for all m ∈ N.

11 / 20
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Then,

(α2,0) Am
(2)e = α2Am

(1)e + α2B(1,m)e
= P

(
Y(1) > m

)
+ P

(
Y(1) ≤ m,Y(2) > m

)
= P

(
Y(2) > m

)
.

Therefore, (
(α2,0) ,A(2)

)
is a representation for the distribution of Y(2).

12 / 20
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Representation for the third order statistic

Representation for the maximum

Let Y1, Y2 and Y3 be three independent Matrix-geometric distributed
random variables with the following representations.

Yi ∼MG (αi,Si, si) , si = e− Sie, i = 1, 2, 3.

Denote
α3 = α1 ⊗ α2 ⊗ α3.
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Representation for the maximum

A(3) =


S1 ⊗ S2 ⊗ S3 s1 ⊗ S2 ⊗ S3 S1 ⊗ s2 ⊗ S3 S1 ⊗ S2 ⊗ s3 s1 ⊗ s2 ⊗ S3 s1 ⊗ S2 ⊗ s3 S1 ⊗ s2 ⊗ s3

0 S2 ⊗ S3 0 0 s2 ⊗ S3 S2 ⊗ s3 0
0 0 S1 ⊗ S3 0 s1 ⊗ S3 0 S1 ⊗ s3
0 0 0 S1 ⊗ S2 0 s1 ⊗ S2 S1 ⊗ s2
0 0 0 0 S3 0 0
0 0 0 0 0 S2 0
0 0 0 0 0 0 S1

 .

We are going to prove that(
(α3,0) ,A(3),a(3)

)
, a(3) = e−A(3)e.

is a representation for the maximum Y(3).
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S1 ⊗ S2 ⊗ S3 s1 ⊗ S2 ⊗ S3 S1 ⊗ s2 ⊗ S3 S1 ⊗ S2 ⊗ s3 s1 ⊗ s2 ⊗ S3 s1 ⊗ S2 ⊗ s3 S1 ⊗ s2 ⊗ s3

0 S2 ⊗ S3 0 0 s2 ⊗ S3 S2 ⊗ s3 0
0 0 S1 ⊗ S3 0 s1 ⊗ S3 0 S1 ⊗ s3
0 0 0 S1 ⊗ S2 0 s1 ⊗ S2 S1 ⊗ s2
0 0 0 0 S3 0 0
0 0 0 0 0 S2 0
0 0 0 0 0 0 S1

 .

We are going to prove that(
(α3,0) ,A(3),a(3)

)
, a(3) = e−A(3)e.

is a representation for the maximum Y(3).
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Since we are going to calculate

(α3,0) Am
(3)e,

we need to obtain an expression for Am
(3).

Observe that

Am
(3) =

 Am
(1) B(1,m) B(1,2,m)
0 Cm

(1) C(1,2,m)
0 0 Cm

(2)

 .

Then,

(α3,0) Am
(3)e = α3Am

(1)e + α3B(1,m)e + α3B(1,2,m)e,

where
α3Am

(1)e + α3B(1,m)e = P
(
Y(2) > m

)
by the second order statistic.
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We can prove by induction, as in the second order statistics, that

α3B(1,2,m)e = P
(
Y(1) ≤ m,Y(2) ≤ m,Y(3) > m

)
.

Consequently,

(α3,0) Am
(3)e

= α3Am
(1)e + α3B(1,m)e + α3B(1,2,m)e

= P
(
Y(2) > m

)
+ P

(
Y(1) ≤ m,Y(2) ≤ m,Y(3) > m

)
= P

(
Y(3) > m

)
.

Therefore, (
α3,A(3),a(3)

)
, where a(3) = e−A(3)e,

is a representation for the distribution of Y(3).
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Representation for the r-th order statistics

Let Y1, Y2, . . . , Yn be independents Matrix-geometric distributed
random variables, with representation

(α1,Si, si) , where si = e− Sie, i = 1, . . . , n.

Denote αn = α1 ⊗ α2 ⊗ · · · ⊗ αn.

For r = 1. Y(1) ∼MG
(
αn,A(1),a(1)

)
, where

A(1) = S1 ⊗ S2 ⊗ · · · ⊗ Sn and a(1) = e−A(1)e.
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Let 2 ≤ r ≤ n. The r-th order statistics of Y1, Y2, . . . , Yn has a
Matrix-geometric representation given by

((αr,0) ,A(r),a(r)), a(r) = e−A(r)e.

where

A(r) =


A(1) B(1) B(2) · · · B(r−1)

0 C(1) C(1,2) · · · C(1,r−1)
0 0 C(2) · · · C(2,r−1)
...

...
...

...
...
...

...
0 0 0 · · · C(r−1)

 ,

Bj block of all the combinations with i exits, 1 ≤ j ≤ r − 1.
C(i) is a block diagonal matrix which consists on all the
combinations formed with i− 1 elements of S1,S2, . . . ,Sn, and
depends of the block exit given by B(i−1).

C(j,i) is a exit block corresponding to the block matrices Cj and
B(i).
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Questions??

Thanks for your attention.
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