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Two-buffer ON-OFF model

Input: R; when ON Ry when ON

pug s U,

Output: O1(1) Oz(t) = C — O1(2)

O:1(t)=C for Xy > 2"
=c;<C for0< X, <2a*
=0 forXtZO



Stochastic fluid-fluid process { X%, Y, ¢+ }i>0
@ (¢, is a Markov chain on a finite state space S with generator T'

e X, €[0,00) is the first fluid:
t
X=Xy —|—/ Ccp, ds.
0
e Y; € 0,00) is the second fluid:

¢
Y, =Y, —|—/ ro. (Xs) ds.
0

Y; is a Markov process on S x [0, c0).



Stochastic fluid-fluid process { X%, Y, ¢+ }i>0
@ (¢, is a Markov chain on a finite state space S with generator T'

e X, €[0,00) is the first fluid:

t
X=Xy —|—/ Ccp, ds.
0

e Y; € 0,00) is the second fluid:

¢
Y, =Y, —|—/ ro. (Xs) ds.
0

Y; is a Markov process on S x [0, c0).

@ For each i € S, consider a partition of the state space F := [0, o)
of {X;} such that
Fri={ueF:ru) >0}
Fi=A{ueF:ri(u) <0}
Fi={u € F:ri(u) =0}.



Operator matrices V(¢), B, U(y, s), and D(s)

Hfof(t)(A) = / . dpf(z)Plpy = j, Xy € Alpo = i, Xo = ).
TEF;

o V(t):= [V (t)], and let B be its generator: V(t) = €5 for t > 0.

e U(y, s) is the matrix of operators recording the LST of the first time
that the total in-out fluid amount of {Y;} reaches level y, and we

can write

U(y, s) = eP®)Y.



Operator matrices V(¢), B, U(y, s), and D(s)

Vi () (A) = / dpi (2)Plpy = j, Xi € Alpo = i, Xo = a].
meff

’L7,]

o V(t):= [V (t)], and let B be its generator: V(t) = €5 for t > 0.

e U(y, s) is the matrix of operators recording the LST of the first time
that the total in-out fluid amount of {Y;} reaches level y, and we

can write

U(y,s) = eP)v.

Lemma (Bean and O'Reilly (2014))
Fory >0, s € C with Re(s) >0, and ¢, m € {+, -},

DZm(S) _ [RK(Blm —sl+ BEO(Sl _ BOO)*IBOm)]’

1
where  R':=diag(R)ics,, m;Ri(A):= / dp; ().
TEANFY TZ(x)




Operator matrix W(s)

e U(s) = [T;;(s)] is the matrix of operators recording the LST of the
time for {Y;} to return, for the first time, to the initial level of zero.

Theorem (Bean and O'Reilly, 2014)
For Re(s) > 0,
DT (s) + ¥(s)D™T(s)W(s) + DT (s)¥(s) + ¥(s)D~"(s) = 0.

Furthermore, if s is real then W (s) is the minimal nonnegative solution.




Operator matrix W(s)

e U(s) = [T;;(s)] is the matrix of operators recording the LST of the
time for {Y;} to return, for the first time, to the initial level of zero.

Theorem (Bean and O'Reilly, 2014)
For Re(s) > 0,

DT (s) + ¥(s)D™T(s)W(s) + DT (s)¥(s) + ¥(s)D~"(s) = 0.

Furthermore, if s is real then W (s) is the minimal nonnegative solution.

v

We construct a Discontinuous Galerkin method to approximate the
operators B and ¥(0) — key components of the stationary distribution of
a stochastic fluid-fluid process { X, Y:, @1 }.



Discontinuous Galerkin: approximate solutions to PDEs

o {x1:=0,22,...,2x :=Z}: K nodal points on an interval [0,Z]
@ {Dy,...,Dk_1}: the sequence of corresponding meshes
Ty X2 T3 L4 Ts
0 o—e . ° *—

D, D, | Dy D,



Discontinuous Galerkin: approximate solutions to PDEs

o {x1:=0,22,...,2x :=Z}: K nodal points on an interval [0,Z]
@ {Dy,...,Dk_1}: the sequence of corresponding meshes
Ty X2 T3 L4 Ts
Vs -
Dy D, | Dy Dy

(a) Within each mesh, there is a finite-element approximation, which
- chooses appropriate piecewise polynomial basis functions, and then

- projects the PDEs onto the space constructed by these functions

— a new system of equations = a weak form of the original PDEs.



Discontinuous Galerkin: approximate solutions to PDEs

o {x1:=0,22,...,2x :=Z}: K nodal points on an interval [0,Z]
@ {Dy,...,Dk_1}: the sequence of corresponding meshes
Ty X2 T3 L4 Ts
Vs -
Dy D, | Dy Dy

(a) Within each mesh, there is a finite-element approximation, which
- chooses appropriate piecewise polynomial basis functions, and then

- projects the PDEs onto the space constructed by these functions

— a new system of equations = a weak form of the original PDEs.

(b) Between adjacent meshes, there is a flux operator moving probability
from one mesh to another.



Approximate density f;(z,t) = %IP (X; < 2,0 = 1]

X1 To T3 X4 Iy

0 e—e . s—o—

D, D, | Dy D,

@ For each mesh k, we choose Nj, polynomial basis functions
@ : Dy, +— [0,00), which spans our approximation space

VK _@k 11 {¢17"'7¢§€Vk}'

e A function u;(-,-) € Vi has the form:
N,
Z ()% (x) for x €[0,Z] and t >0,

for some coefficient functions o (¢).



Approximate density f;(z,t) = 2P [X; < x, ¢ = i

Zf] €, t ji Cz fi(l‘vt)' (1)

JjES

Theorem (Bean, N., O'Reilly, Sunkara (2016))
The weak formulation of (1) is the system of ODEs

=Y o;()Tyi + cici(t)(G+ F)M ™ forieS.

jES
MO aw
M = 5 G := B}
M(E-1) GKE-1)
MOli= [ b @ohordn, (69 = [ o) | Lohio)] ao



Flux operator ff(z,t) and the matrix F;

L R
Lk Di Tk
'R L R
Lr—1 Tr-1 Lit1 Lit1

@ When ¢; < 0, the flux direction is «—

fi*(x£7t) = ui('réﬂf)? fi*(kaJt) = 7]k+1,k‘ui($£+1at)'

@ When ¢; > 0, the flux direction is —

fz*(l‘ﬁ,t) = 7]k71<k7ui(ka—1at)7 fz*(‘rkR7t) = ul(xk;th)



Flux operator ff(z,t) and the matrix F;

L R
Lk Di Tk
x oF x T
k-1 k-1 k+1 k+1

@ When ¢; < 0, the flux direction is «—

fi*(x£7t) = ui('réﬂf)? fi*(kaJt) = 7]k+1,k‘ui($£+1at)'

@ When ¢; > 0, the flux direction is —

fz*(l‘ﬁ,t) = 7]k71<k:ui(ka—1at)7 f (‘rk 7t) - ul(xk:th)

o The matrix F; is such that [a;(t)F]k,m = [f7 (@, t) ¢k, (2)] j:



DG infinitesimal operator Q; and DG approximations

d _ .
i) = > o ()T + o) ei(G+ F)M ™' fori € S.

jES
Q;

e Using Q;, we can construct DG approximations B and D(s) for the
generators B and D(s), respectively.

@ An approximation (s) of operator ¥(s) is a solution to

D () + W(s)D (s)7b(s) + DT (s)b(s) + (s)D ™~ (s) = 0.



Numerical experiments: two-buffer ON-OFF model

Input: Ry when ON Ry when ON

Output: O1(2) O2(t) =C — On(t)



Numerical experiments

© Run Monte Carlo simulations to verify the DG approximation {(s).

@ Using U (s), evaluate the limiting joint density of {X;, ¢:} and then
compare it against the analytical density.

@ Sensitivity analysis: vary the parameters related to {Y;}.
© Consider different choices for the level of spatial discretisation and

the degree of polynomial basis functions, with respect to the order of
convergence in approximation errors.



Monte Carlo simulations: cumulative distributions
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Figure 1: OFF and ON cumulative distributions of {X;} at the time {Y;}
returns to level 0

@ solid blue — piecewise linear DG approximation
@ the dashed red — empirical cumulative distribution



Monte Carlo simulations: density functions
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Figure 2: OFF and ON densities of {X,} at the time {Y;} returns to 0

@ solid blue — piecewise linear DG approximation
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DG approximations versus analytic density for {X;}

Xogs ()

Figure 3: Approximations of the OFF and ON stationary densities of {X;}
@ red crosses — analytical solution

@ green horizontal — piecewise constant approximation
@ solid blue — piecewise linear approximation

All Discontinuous Galerkin approximations were evaluated using 1 (s).



Varying rates for Buffer 2

xX%(z) := lim iIP

; o [X: <z,Y; =0]
0
+ — i
X (z) = thm 8:1:]1) (X <2,Y, >0

@ Y; switches OFF with rate as, and switches on with rate f35.

agill,ﬂzil 062:167[32:1 012:22,52:1
/ X°(z) dz ~ 0.0 0.184 0.312
[0.7]
~ 1.0 0.816 0.688




Approximation errors
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Figure 4a. Approximation error as a function of regular mesh size h

- lx = %l = 0 (n0-92)

Ix = %p,.lI1 =0 (n1®

107" F

Ix =% anl =0 (a}19) ||

Ay

@ dashed green — piecewise constant approximation

@ solid blue — piecewise linear approximation
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Figure 4b. Approximation error as a function of boundary mesh size Ay




In a nutshell

@ We have a Discontinuous Galerkin method for approximating the
stationary distribution of a stochastic fluid-fluid {X;, Y, ¢}

@ To explore: proofs of convergence, of convergence rates, of
smoothness of approximations.



Case 1. When i # j, each N;, x Nj, sub-block [ij’"]kk is given by
B, = Tl v U kerinng,y fork=1,..., K —1.
Case 2. When i = j and £ # m,
[Bf{"’]k’kﬂ = Qz,kﬂ]l{kew,kﬂewm} fore; >0,k=1,....K -2,
[Bfﬂk,k;—l = Qj 1 Likerirk—termy forei<0k=2,.. K-1L
Case 3. When i =j and £ =m,
Bi . = (Tiln, + Qi) Likey,y fork=1,... K —1,

where 7 is the set of meshes included in 7/, i € S, ¢ € {+,—,0}.



DG approximations R, D, 1

@ An approximation R of operator R is a block-diagonal matrix with

1

RY|,, = diag () 1 ,
[ :Ikk [ |p’1:7<k’rt)‘ n=1,...,Ng {kemf}

where  p; () = / rz(m)(bfl(x) dx for vy =1, Xy = x € Dy.

Dy

@ An approximation D" (s) of operator D™ (s) is
Dfm(S) = RE (Bém —sI+ BZO(SI _ BOO)—lgOm)

for s € C with Re(s) > 0 and for £,m € {+,—}.

o An approximation P (s) of operator ¥(s) is a solution to

D (s) +b(s)D ™ ()(s) + D (s)7b(s) + b(s)D ™ (s) = 0.



