A numerical framework for computing the limiting distribution of a stochastic fluid-fluid

Giang Nguyen
The University of Adelaide

Joint work with Nigel Bean, Malgorzata O'Reilly, and Vikram Sunkara

MAM9, Budapest, Tuesday 28 June, 2016

Two-buffer ON-OFF model

Input:

R_{2} when ON

$$
\begin{aligned}
O_{1}(t) & =\mathcal{C} \quad \text { for } \quad X_{t}>x^{*} \\
& =c_{1}<\mathcal{C} \quad \text { for } 0<X_{t} \leq x^{*} \\
& =0 \quad \text { for } X_{t}=0
\end{aligned}
$$

Stochastic fluid-fluid process $\left\{X_{t}, Y_{t}, \varphi_{t}\right\}_{t \geq 0}$

- φ_{t} is a Markov chain on a finite state space \mathcal{S} with generator T
- $X_{t} \in[0, \infty)$ is the first fluid:

$$
X_{t}:=X_{0}+\int_{0}^{t} c_{\varphi_{s}} \mathrm{~d} s
$$

- $Y_{t} \in[0, \infty)$ is the second fluid:

$$
Y_{t}:=Y_{0}+\int_{0}^{t} r_{\varphi_{s}}\left(X_{s}\right) \mathrm{d} s
$$

Y_{t} is a Markov process on $\mathcal{S} \times[0, \infty)$.

Stochastic fluid-fluid process $\left\{X_{t}, Y_{t}, \varphi_{t}\right\}_{t \geq 0}$

- φ_{t} is a Markov chain on a finite state space \mathcal{S} with generator T
- $X_{t} \in[0, \infty)$ is the first fluid:

$$
X_{t}:=X_{0}+\int_{0}^{t} c_{\varphi_{s}} \mathrm{~d} s
$$

- $Y_{t} \in[0, \infty)$ is the second fluid:

$$
Y_{t}:=Y_{0}+\int_{0}^{t} r_{\varphi_{s}}\left(X_{s}\right) \mathrm{d} s
$$

Y_{t} is a Markov process on $\mathcal{S} \times[0, \infty)$.

- For each $i \in \mathcal{S}$, consider a partition of the state space $\mathcal{F}:=[0, \infty)$ of $\left\{X_{t}\right\}$ such that

$$
\begin{aligned}
\mathcal{F}_{i}^{+} & :=\left\{u \in \mathcal{F}: r_{i}(u)>0\right\} \\
\mathcal{F}_{i}^{-} & :=\left\{u \in \mathcal{F}: r_{i}(u)<0\right\} \\
\mathcal{F}_{i}^{0} & :=\left\{u \in \mathcal{F}: r_{i}(u)=0\right\} .
\end{aligned}
$$

Operator matrices $\mathbb{V}(t), \mathbb{B}, \mathbb{U}(y, s)$, and $\mathbb{D}(s)$

$$
\mu_{i}^{\ell} \nabla_{i j}^{\ell m}(t)(\mathcal{A}):=\int_{x \in \mathcal{F}_{i}^{\ell}} \mathrm{d} \mu_{i}^{\ell}(x) \mathbb{P}\left[\varphi_{t}=j, X_{t} \in \mathcal{A} \mid \varphi_{0}=i, X_{0}=x\right] .
$$

- $\mathbb{V}(t):=\left[\mathbb{V}_{i j}^{\ell m}(t)\right]$, and let \mathbb{B} be its generator: $\mathbb{V}(t)=\mathrm{e}^{\mathbb{B} t}$ for $t \geq 0$.
- $\mathbb{U}(y, s)$ is the matrix of operators recording the LST of the first time that the total in-out fluid amount of $\left\{Y_{t}\right\}$ reaches level y, and we can write

$$
\mathbb{U}(y, s)=\mathrm{e}^{\mathbb{D}(s) y}
$$

Operator matrices $\mathbb{V}(t), \mathbb{B}, \mathbb{U}(y, s)$, and $\mathbb{D}(s)$

$$
\mu_{i}^{\ell} \mathbb{V}_{i j}^{\ell m}(t)(\mathcal{A}):=\int_{x \in \mathcal{F}_{i}^{\ell}} \mathrm{d} \mu_{i}^{\ell}(x) \mathbb{P}\left[\varphi_{t}=j, X_{t} \in \mathcal{A} \mid \varphi_{0}=i, X_{0}=x\right]
$$

- $\mathbb{V}(t):=\left[\mathbb{V}_{i j}^{\ell m}(t)\right]$, and let \mathbb{B} be its generator: $\mathbb{V}(t)=\mathrm{e}^{\mathbb{B} t}$ for $t \geq 0$.
- $\mathbb{U}(y, s)$ is the matrix of operators recording the LST of the first time that the total in-out fluid amount of $\left\{Y_{t}\right\}$ reaches level y, and we can write

$$
\mathbb{U}(y, s)=\mathrm{e}^{\mathbb{D}(s) y}
$$

Lemma (Bean and O'Reilly (2014))
For $y \geq 0, s \in \mathbb{C}$ with $\operatorname{Re}(s) \geq 0$, and $\ell, m \in\{+,-\}$,

$$
\mathbb{D}^{\ell m}(s)=\left[\mathbb{R}^{\ell}\left(\mathbb{B}^{\ell m}-s \rrbracket+\mathbb{B}^{\ell 0}\left(s \rrbracket-\mathbb{B}^{00}\right)^{-1} \mathbb{B}^{0 m}\right)\right]
$$

where $\quad \mathbb{R}^{\ell}:=\operatorname{diag}\left(\mathbb{R}_{i}^{\ell}\right)_{i \in \mathcal{S}_{\ell}}, \quad \mu_{i}^{\ell} \mathbb{R}_{i}^{\ell}(\mathcal{A}):=\int_{x \in \mathcal{A} \cap \mathcal{F}_{i}^{\ell}} \frac{1}{r_{i}(x)} \mathrm{d} \mu_{i}^{\ell}(x)$.

Operator matrix $\Psi(s)$

- $\Psi(s)=\left[\Psi_{i j}(s)\right]$ is the matrix of operators recording the LST of the time for $\left\{Y_{t}\right\}$ to return, for the first time, to the initial level of zero.

Theorem (Bean and O'Reilly, 2014)
For $\operatorname{Re}(s) \geq 0$,

$$
\mathbb{D}^{+-}(s)+\Psi(s) \mathbb{D}^{-+}(s) \Psi(s)+\mathbb{D}^{++}(s) \Psi(s)+\Psi(s) \mathbb{D}^{--}(s)=0 .
$$

Furthermore, if s is real then $\Psi(s)$ is the minimal nonnegative solution.

Operator matrix $\Psi(s)$

- $\Psi(s)=\left[\Psi_{i j}(s)\right]$ is the matrix of operators recording the LST of the time for $\left\{Y_{t}\right\}$ to return, for the first time, to the initial level of zero.

Theorem (Bean and O'Reilly, 2014)

For $\operatorname{Re}(s) \geq 0$,

$$
\mathbb{D}^{+-}(s)+\Psi(s) \mathbb{D}^{-+}(s) \Psi(s)+\mathbb{D}^{++}(s) \Psi(s)+\Psi(s) \mathbb{D}^{--}(s)=0 .
$$

Furthermore, if s is real then $\Psi(s)$ is the minimal nonnegative solution.

We construct a Discontinuous Galerkin method to approximate the operators \mathbb{B} and $\Psi(0)$ - key components of the stationary distribution of a stochastic fluid-fluid process $\left\{X_{t}, Y_{t}, \varphi_{t}\right\}$.

Discontinuous Galerkin: approximate solutions to PDEs

- $\left\{x_{1}:=0, x_{2}, \ldots, x_{K}:=\mathcal{I}\right\}: K$ nodal points on an interval $[0, \mathcal{I}]$
- $\left\{\mathcal{D}_{1}, \ldots, \mathcal{D}_{K-1}\right\}$: the sequence of corresponding meshes

Discontinuous Galerkin: approximate solutions to PDEs

- $\left\{x_{1}:=0, x_{2}, \ldots, x_{K}:=\mathcal{I}\right\}: K$ nodal points on an interval $[0, \mathcal{I}]$
- $\left\{\mathcal{D}_{1}, \ldots, \mathcal{D}_{K-1}\right\}$: the sequence of corresponding meshes

(a) Within each mesh, there is a finite-element approximation, which - chooses appropriate piecewise polynomial basis functions, and then
- projects the PDEs onto the space constructed by these functions
\rightarrow a new system of equations \equiv a weak form of the original PDEs.

Discontinuous Galerkin: approximate solutions to PDEs

- $\left\{x_{1}:=0, x_{2}, \ldots, x_{K}:=\mathcal{I}\right\}: K$ nodal points on an interval $[0, \mathcal{I}]$
- $\left\{\mathcal{D}_{1}, \ldots, \mathcal{D}_{K-1}\right\}$: the sequence of corresponding meshes

(a) Within each mesh, there is a finite-element approximation, which - chooses appropriate piecewise polynomial basis functions, and then - projects the PDEs onto the space constructed by these functions \rightarrow a new system of equations \equiv a weak form of the original PDEs.
(b) Between adjacent meshes, there is a flux operator moving probability from one mesh to another.

Approximate density $f_{i}(x, t)=\frac{\partial}{\partial x} \mathbb{P}\left[X_{t} \leq x, \varphi_{t}=i\right]$

- For each mesh k, we choose N_{k} polynomial basis functions $\phi_{n}^{k}: \mathcal{D}_{k} \mapsto[0, \infty)$, which spans our approximation space

$$
V_{K}:=\oplus_{k=1}^{K-1}\left\{\phi_{1}^{k}, \ldots, \phi_{N_{k}}^{k}\right\} .
$$

- A function $u_{i}(\cdot, \cdot) \in V_{K}$ has the form:

$$
u_{i}(x, t)=\sum_{k=1}^{K-1} \sum_{n=1}^{N_{k}} \alpha_{i, n}^{k}(t) \phi_{n}^{k}(x) \quad \text { for } x \in[0, \mathcal{I}] \text { and } t \geq 0
$$

for some coefficient functions $\alpha_{i, n}^{k}(t)$.

Approximate density $f_{i}(x, t)=\frac{\partial}{\partial x} \mathbb{P}\left[X_{t} \leq x, \varphi_{t}=i\right]$

$$
\begin{equation*}
\frac{\partial}{\partial t} f_{i}(x, t)=\sum_{j \in \mathcal{S}} f_{j}(x, t) T_{j i}-c_{i} \frac{\partial}{\partial x} f_{i}(x, t) . \tag{1}
\end{equation*}
$$

Theorem (Bean, N., O'Reilly, Sunkara (2016))
The weak formulation of (1) is the system of ODEs

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \boldsymbol{\alpha}_{i}(t)=\sum_{j \in \mathcal{S}} \boldsymbol{\alpha}_{j}(t) T_{j i}+c_{i} \boldsymbol{\alpha}_{i}(t)\left(G+F_{i}\right) M^{-1} \quad \text { for } i \in \mathcal{S}
$$

$$
\begin{gathered}
M:=\left[\begin{array}{lll}
M^{(1)} & & \\
& \ddots & \\
& & M^{(K-1)}
\end{array}\right], \quad G:=\left[\begin{array}{lll}
G^{(1)} & & \\
& \ddots & \\
& & G^{(K-1)}
\end{array}\right], \\
{\left[M^{(k)}\right]_{m n}:=\int_{\mathcal{D}_{k}} \phi_{m}^{k}(x) \phi_{n}^{k}(x) \mathrm{d} x, \quad\left[G^{(k)}\right]_{m n}:=\int_{\mathcal{D}_{k}} \phi_{m}^{k}(x)\left[\frac{\partial}{\partial x} \phi_{n}^{k}(x)\right] \mathrm{d} x .}
\end{gathered}
$$

Flux operator $f_{i}^{*}(x, t)$ and the matrix F_{i}

- When $c_{i}<0$, the flux direction is

$$
f_{i}^{*}\left(x_{k}^{L}, t\right):=u_{i}\left(x_{k}^{L}, t\right), \quad f_{i}^{*}\left(x_{k}^{R}, t\right):=\eta_{k+1, k} u_{i}\left(x_{k+1}^{L}, t\right) .
$$

- When $c_{i}>0$, the flux direction is \longrightarrow

$$
f_{i}^{*}\left(x_{k}^{L}, t\right):=\eta_{k-1, k} u_{i}\left(x_{k-1}^{R}, t\right), \quad f_{i}^{*}\left(x_{k}^{R}, t\right):=u_{i}\left(x_{k}^{R}, t\right)
$$

Flux operator $f_{i}^{*}(x, t)$ and the matrix F_{i}

- When $c_{i}<0$, the flux direction is

$$
f_{i}^{*}\left(x_{k}^{L}, t\right):=u_{i}\left(x_{k}^{L}, t\right), \quad f_{i}^{*}\left(x_{k}^{R}, t\right):=\eta_{k+1, k} u_{i}\left(x_{k+1}^{L}, t\right) .
$$

- When $c_{i}>0$, the flux direction is \longrightarrow

$$
f_{i}^{*}\left(x_{k}^{L}, t\right):=\eta_{k-1, k} u_{i}\left(x_{k-1}^{R}, t\right), \quad f_{i}^{*}\left(x_{k}^{R}, t\right):=u_{i}\left(x_{k}^{R}, t\right)
$$

- The matrix F_{i} is such that $\left[\boldsymbol{\alpha}_{i}(t) F_{i}\right]_{k, m}=\left[f_{i}^{*}(x, t) \phi_{m}^{k}(x)\right]_{x_{k}^{L}}^{x_{k}^{R}}$.

DG infinitesimal operator \mathcal{Q}_{i} and DG approximations

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \boldsymbol{\alpha}_{i}(t)=\sum_{j \in \mathcal{S}} \boldsymbol{\alpha}_{j}(t) T_{j i}+\boldsymbol{\alpha}_{i}(t) \underbrace{c_{i}\left(G+F_{i}\right) M^{-1}}_{\mathcal{Q}_{i}} \quad \text { for } i \in \mathcal{S} .
$$

- Using \mathcal{Q}_{i}, we can construct DG approximations \mathcal{B} and $\mathcal{D}(s)$ for the generators \mathbb{B} and $\mathbb{D}(s)$, respectively.
- An approximation $\psi(s)$ of operator $\Psi(s)$ is a solution to

$$
\mathcal{D}^{+-}(s)+\psi(s) \mathcal{D}^{-+}(s) \psi(s)+\mathcal{D}^{++}(s) \psi(s)+\psi(s) \mathcal{D}^{--}(s)=0 .
$$

Numerical experiments: two-buffer ON-OFF model

Input:

Output:

Numerical experiments

(1) Run Monte Carlo simulations to verify the DG approximation $\psi(s)$.
(2) Using $\psi(s)$, evaluate the limiting joint density of $\left\{X_{t}, \varphi_{t}\right\}$ and then compare it against the analytical density.
(3) Sensitivity analysis: vary the parameters related to $\left\{Y_{t}\right\}$.
(9) Consider different choices for the level of spatial discretisation and the degree of polynomial basis functions, with respect to the order of convergence in approximation errors.

Monte Carlo simulations: cumulative distributions

Figure 1: OFF and ON cumulative distributions of $\left\{X_{t}\right\}$ at the time $\left\{Y_{t}\right\}$ returns to level 0

- solid blue - piecewise linear DG approximation
- the dashed red - empirical cumulative distribution

Monte Carlo simulations: density functions

Figure 2: OFF and ON densities of $\left\{X_{t}\right\}$ at the time $\left\{Y_{t}\right\}$ returns to 0

- solid blue - piecewise linear DG approximation

DG approximations versus analytic density for $\left\{X_{t}\right\}$

Figure 3: Approximations of the OFF and ON stationary densities of $\left\{X_{t}\right\}$

- red crosses - analytical solution
- green horizontal - piecewise constant approximation
- solid blue - piecewise linear approximation

All Discontinuous Galerkin approximations were evaluated using $\psi(s)$.

Varying rates for Buffer 2

$$
\begin{aligned}
\chi^{0}(x) & :=\lim _{t \rightarrow \infty} \frac{\partial}{\partial x} \mathbb{P}\left[X_{t} \leq x, Y_{t}=0\right] \\
\chi^{+}(x) & :=\lim _{t \rightarrow \infty} \frac{\partial}{\partial x} \mathbb{P}\left[X_{t} \leq x, Y_{t}>0\right]
\end{aligned}
$$

- Y_{t} switches OFF with rate α_{2}, and switches on with rate β_{2}.

	$\alpha_{2}=11, \beta_{2}=1$	$\alpha_{2}=16, \beta_{2}=1$	$\alpha_{2}=22, \beta_{2}=1$
$\int_{[0, \mathcal{I}]} \widehat{\chi}^{0}(x) \mathrm{d} x$	≈ 0.0	0.184	0.312
$\int_{[0, \mathcal{I}]} \widehat{\chi}^{+}(x) \mathrm{d} x$	≈ 1.0	0.816	0.688

Approximation errors

Figure 4a. Approximation error as a function of regular mesh size h

- dashed green - piecewise constant approximation
- solid blue - piecewise linear approximation

Figure 4b. Approximation error as a function of boundary mesh size Δ_{h}

In a nutshell

- We have a Discontinuous Galerkin method for approximating the stationary distribution of a stochastic fluid-fluid $\left\{X_{t}, Y_{t}, \varphi_{t}\right\}$.
- To explore: proofs of convergence, of convergence rates, of smoothness of approximations.

Case 1. When $i \neq j$, each $N_{k} \times N_{k}$ sub-block $\left[\mathcal{B}_{i j}^{\ell m}\right]_{k k}$ is given by

$$
\left[\mathcal{B}_{i j}^{\ell m}\right]_{k k}:=T_{i j} I_{N_{k}} \mathbb{1}_{\left\{k \in \gamma_{i i} \cap \gamma_{j m}\right\}} \quad \text { for } k=1, \ldots, K-1 .
$$

Case 2. When $i=j$ and $\ell \neq m$,

$$
\begin{array}{ll}
{\left[\mathcal{B}_{i i}^{\ell m}\right]_{k, k+1}:=\mathcal{Q}_{k, k+1}^{i} \mathbb{1}_{\left\{k \in \gamma_{i e}, k+1 \in \gamma_{j m}\right\}}} & \text { for } c_{i}>0, k=1, \ldots, K-2, \\
{\left[\mathcal{B}_{i i}^{\ell m}\right]_{k, k-1}:=\mathcal{Q}_{k, k-1}^{i} \mathbb{1}_{\left\{k \in \gamma_{i e}, k-1 \in \gamma_{j m}\right\}}} & \text { for } c_{i}<0, k=2, \ldots, K-1 .
\end{array}
$$

Case 3. When $i=j$ and $\ell=m$,

$$
\left[\mathcal{B}_{i i}^{\ell \ell}\right]_{k k}:=\left(T_{i i} I_{N_{k}}+\mathcal{Q}_{k k}^{i}\right) \mathbb{1}_{\left\{k \in \gamma_{i \ell}\right\}} \quad \text { for } k=1, \ldots, K-1,
$$

where $\gamma_{i \ell}$ is the set of meshes included in $\mathcal{F}_{i}^{\ell}, i \in \mathcal{S}, \ell \in\{+,-, 0\}$.

DG approximations $\mathcal{R}, \mathcal{D}, \psi$

- An approximation \mathcal{R}_{i}^{ℓ} of operator \mathbb{R}_{i}^{ℓ} is a block-diagonal matrix with

$$
\left[\mathcal{R}_{i}^{\ell}\right]_{k k}:=\operatorname{diag}\left[\left(\frac{1}{\left|\rho_{i,(k, n)}\right|}\right)_{n=1, \ldots, N_{k}}\right] \mathbb{1}_{\left\{k \in \gamma_{\imath}^{\ell}\right\}},
$$

where $\quad \rho_{i,(k, n)}:=\int_{\mathcal{D}_{k}} r_{i}(x) \phi_{n}^{k}(x) \mathrm{d} x \quad$ for $\varphi_{t}=i, X_{t}=x \in \mathcal{D}_{k}$.

- An approximation $\mathcal{D}^{\ell m}(s)$ of operator $\mathbb{D}^{\ell m}(s)$ is

$$
\mathcal{D}^{\ell m}(s):=\mathcal{R}^{\ell}\left(\mathcal{B}^{\ell m}-s I+\mathcal{B}^{\ell 0}\left(s I-\mathcal{B}^{00}\right)^{-1} \mathcal{B}^{0 m}\right)
$$

for $s \in \mathbb{C}$ with $\operatorname{Re}(s)>0$ and for $\ell, m \in\{+,-\}$.

- An approximation $\psi(s)$ of operator $\Psi(s)$ is a solution to

$$
\mathcal{D}^{+-}(s)+\psi(s) \mathcal{D}^{-+}(s) \psi(s)+\mathcal{D}^{++}(s) \psi(s)+\psi(s) \mathcal{D}^{--}(s)=0 .
$$

