Algorithms for Stationary Distributions of Fluid Queues: Interpretations and Re-interpretations

Giang Nguyen
The University of Adelaide
Joint work with Nigel Bean and Federico Poloni

MAM9, Budapest, Wednesday 29 June, 2016

Algorithms for solving for the return probability matrix Ψ

Ψ is the minimal nonnegative solution to

$$
C_{+}^{-1} T_{+-}+X\left|C_{-}\right|^{-1} T_{--}+C_{+}^{-1} T_{++} X+X\left|C_{-}\right|^{-1} T_{-+} X=0 .
$$

- Asmussen (1995): three iterative schemes
- Guo (2001): fixed-point iterations and Newton's method
- Ramaswami (1999), da Silva Soares and Latouche (2002):
- approximating fluids using QBDs
- thus allowing algorithms originally developed for QBDs - such as Logarithmic Reduction (Latouche and Ramaswami, 1993) and Cyclic Reduction (Bini and Meini, 2009) - to be used for solving for Ψ
- Bean, O'Reilly, Taylor (2005): First-Exit, Last-Entrance, etc

Doubling Algorithms: for solving NARE

A nonsymmetric algebraic Riccati equation (NARE) has the form

$$
B-A X-X D+X C X=0 .
$$

- Guo, Lin, Xu (2006): Structure-Preserving DA (SDA)
- Bini, Meini, Poloni (2010): SDA Shrink-and-Shift (SDA-ss)
- Wang, Wang, Li (2012): Alternating-Directional DA (ADDA)

These algorithms are known to be more computationally efficient than all the previously mentioned algorithms.

Doubling Algorithms: for solving NARE

- An initial matrix

$$
\left.P_{0}:=\begin{array}{cc}
+ \\
+ & - \\
E & G \\
H & F
\end{array}\right]
$$

- A doubling map

$$
\mathcal{F}\left(P_{0}\right):=\left[\begin{array}{cc}
E(I-G H)^{-1} E & G+E(I-G H)^{-1} G F \\
H+F(I-H G)^{-1} H E & F(I-H G)^{-1} F
\end{array}\right]
$$

- For $k \geq 0$, let

$$
P_{k}:=\left[\begin{array}{ll}
E_{k} & G_{k} \\
H_{k} & F_{k}
\end{array}\right]:=\mathcal{F}^{k}\left(P_{0}\right)>0
$$

then

$$
\lim _{k \rightarrow \infty}\left[\begin{array}{ll}
E_{k} & G_{k} \\
H_{k} & F_{k}
\end{array}\right]=\left[\begin{array}{cc}
0 & \Psi \\
\widehat{\Psi} & F_{\infty}
\end{array}\right]
$$

Initial matrix P_{0}

- Let

$$
\alpha_{\mathrm{opt}}:=\min _{i \in \mathcal{S}_{-}}\left|\frac{C_{i i}}{T_{i i}}\right| \quad \text { and } \quad \beta_{\mathrm{opt}}:=\min _{i \in \mathcal{S}_{+}}\left|\frac{C_{i i}}{T_{i i}}\right|
$$

- Choose $0 \leq \alpha \leq \alpha_{\mathrm{opt}}$ and $0 \leq \beta \leq \beta_{\mathrm{opt}}$, not both being zero.

Initial matrix P_{0}

- Let

$$
\alpha_{\mathrm{opt}}:=\min _{i \in \mathcal{S}_{-}}\left|\frac{C_{i i}}{T_{i i}}\right| \quad \text { and } \quad \beta_{\mathrm{opt}}:=\min _{i \in \mathcal{S}_{+}}\left|\frac{C_{i i}}{T_{i i}}\right| .
$$

- Choose $0 \leq \alpha \leq \alpha_{\text {opt }}$ and $0 \leq \beta \leq \beta_{\mathrm{opt}}$, not both being zero.

$$
P_{0}:=\left[\begin{array}{cc}
C_{+}-\alpha T_{++} & -\beta T_{+-} \\
-\alpha T_{-+} & \left|C_{-}\right|-\beta T_{--}
\end{array}\right]^{-1}\left[\begin{array}{cc}
C_{+}+\beta T_{++} & \alpha T_{+-} \\
\beta T_{-+} & \left|C_{-}\right|+\alpha T_{--}
\end{array}\right]
$$

ADDA: P_{0}

Initial matrix P_{0}

- Let

$$
\alpha_{\mathrm{opt}}:=\min _{i \in \mathcal{S}_{-}}\left|\frac{C_{i i}}{T_{i i}}\right| \quad \text { and } \quad \beta_{\mathrm{opt}}:=\min _{i \in \mathcal{S}_{+}}\left|\frac{C_{i i}}{T_{i i}}\right| .
$$

- Choose $0 \leq \alpha \leq \alpha_{\text {opt }}$ and $0 \leq \beta \leq \beta_{\mathrm{opt}}$, not both being zero.

$$
P_{0}:=\left[\begin{array}{cc}
C_{+}-\alpha T_{++} & -\beta T_{+-} \\
-\alpha T_{-+} & \left|C_{-}\right|-\beta T_{--}
\end{array}\right]^{-1}\left[\begin{array}{cc}
C_{+}+\beta T_{++} & \alpha T_{+-} \\
\beta T_{-+} & \left|C_{-}\right|+\alpha T_{--}
\end{array}\right]
$$

ADDA: P_{0}
SDA: $\quad P_{0}$ with $\alpha=\beta:=\min \left(\alpha_{\text {opt }}, \beta_{\mathrm{opt}}\right)$
SDA-ss: P_{0} with $\alpha:=0$

Probabilistically speaking, why do they work?

- For simplicity, assume that the fluid has unit rates:

$$
P_{0}=\left[\begin{array}{cc}
I-\alpha T_{++} & -\beta T_{+-} \\
-\alpha T_{-+} & I-\beta T_{--}
\end{array}\right]^{-1}\left[\begin{array}{cc}
I+\beta T_{++} & \alpha T_{+-} \\
\beta T_{-+} & I+\alpha T_{--}
\end{array}\right] .
$$

- Applying a doubling algorithm to

$$
P_{0}=\left[\begin{array}{ll}
E & G \\
H & F
\end{array}\right]
$$

is equivalent to applying the Cyclic Reduction algorithm to the QBD

$$
D_{-1}=\left[\begin{array}{cc}
0 & 0 \\
0 & F
\end{array}\right], \quad D_{0}=\left[\begin{array}{cc}
0 & G \\
H & 0
\end{array}\right], \quad D_{1}=\left[\begin{array}{cc}
E & 0 \\
0 & 0
\end{array}\right],
$$

with

$$
G_{D}=\left[\begin{array}{cc}
0 & \Psi \\
0 & W
\end{array}\right] .
$$

The return probability matrix Ψ

The return probability matrix Ψ

- If we decompose sample paths using y, then

$$
\Psi=\int_{0}^{\infty} \exp \left(T_{++} y\right) T_{+-} \exp (U y) \mathrm{d} y
$$

where $U:=T_{--}+T_{-+} \Psi=$ generator of downward record process.

da Silva Soares and Latouche (2002) (almost)

- Uniformize fluid process over $[0, y]-P_{\lambda}:=I+\lambda^{-1} T$
- Uniformize downward record process over $[y, 2 y]-V_{\mu}:=I+\mu^{-1} U$

da Silva Soares and Latouche (2002) (almost)

- Uniformize fluid process over $[0, y]-P_{\lambda}:=I+\lambda^{-1} T$
- Uniformize downward record process over $[y, 2 y]-V_{\mu}:=I+\mu^{-1} U$

$\Psi=\sum_{k, n=0}^{\infty} \gamma_{k, n} P_{\lambda++}^{k} P_{\lambda+-} V_{\mu}^{n} \quad$ where $\gamma_{k n}:=\frac{(k+n)!}{k!n!} \frac{\lambda^{k+1} \mu^{n}}{(\lambda+\mu)^{k+n+1}}$

Other expressions for Ψ

Theorem (Bean, N., Poloni (2016))

$$
\begin{aligned}
\Psi & =\sum_{k=0}^{\infty} P_{\lambda++}^{k} P_{\lambda+-}\left(I-\lambda^{-1} U\right)^{-k-1} \\
& =\sum_{n=0}^{\infty}\left(I-\mu^{-1} T_{++}\right)^{-n-1} P_{\mu+-} V_{\mu}^{n} \\
& =\sum_{m=0}^{\infty}\left(I+\lambda^{-1} T_{++}\right)^{m}\left(I-\mu^{-1} T_{++}\right)^{-m-1}\left(P_{\lambda+-} W+P_{\mu+-}\right) W^{m}
\end{aligned}
$$

where

$$
W:=\left(I+\mu^{-1} U\right)\left(I-\lambda^{-1} U\right)^{-1} .
$$

First Sum

$$
\Psi=\sum_{k=0}^{\infty} P_{\lambda++}^{k} P_{\lambda+-}\left(I-\lambda^{-1} U\right)^{-k-1}
$$

Let k be the number of uniformization steps in $[0, y)$.

We
a. make a uniformization step with $P_{\lambda++}$ at u_{i}, for $i=1, \ldots, k$, and then do a uniformization step with $P_{\lambda+-}$ at u_{k+1}
b. observe the downward record process at $y+u_{i}$, for $i=1, \ldots, k+1$:

$$
\left(I-\lambda^{-1} U\right)^{-1}=\int_{0}^{\infty} \lambda \mathrm{e}^{-\lambda x} \mathrm{e}^{U x} \mathrm{~d} x
$$

Second Sum

$$
\Psi=\sum_{n=0}^{\infty}\left(I-\mu^{-1} T_{++}\right)^{-n}\left(I-\mu^{-1} T_{++}\right)^{-1} P_{\mu+-} V_{\mu}^{n}
$$

Let n be the number of uniformization steps in $[y, 2 y)$.

We
a. observe the process at $d_{i}-y, i=1, \ldots, n$, with $\left(I-\mu^{-1} T_{++}\right)^{-1}$, perform some magic, and then
b. make a uniformization step at each d_{i} with V_{μ}.

Third Sum

$$
\Psi=\sum_{m=0}^{\infty}\left(I+\lambda^{-1} T_{++}\right)^{m}\left(I-\mu^{-1} T_{++}\right)^{-m-1}\left(P_{\lambda+-} W+P_{\mu+-}\right) W^{m}
$$

where $W:=\left(I+\mu^{-1} U\right)\left(I-\lambda^{-1} U\right)^{-1}$.
Define a new sequence $\left\{c_{i}\right\}$ based on $\left\{u_{i}\right\}$ and $\left\{d_{i}\right\}$:

Third Sum

$$
\Psi=\sum_{m=0}^{\infty}\left(I+\lambda^{-1} T_{++}\right)^{m}\left(I-\mu^{-1} T_{++}\right)^{-m-1}\left(P_{\lambda+-} W+P_{\mu+-}\right) W^{m}
$$

where $W:=\left(I+\mu^{-1} U\right)\left(I-\lambda^{-1} U\right)^{-1}$.
Define a new sequence $\left\{c_{i}\right\}$ based on $\left\{u_{i}\right\}$ and $\left\{d_{i}\right\}$:

We alternate between observing and doing a uniformization step, both on the way up and on the way down.

QBD \#1

$$
\begin{aligned}
\Psi & =\sum_{m=0}^{\infty}\left(I+\lambda^{-1} T_{++}\right)^{m}\left(I-\mu^{-1} T_{++}\right)^{-m-1}\left(P_{\lambda+-} W+P_{\mu+-}\right) W^{m} \\
& =\sum_{m=0}^{\infty}\left(I-\mu^{-1} T_{++}\right)^{-m} P_{\lambda++}^{m}\left(I-\mu^{-1} T_{++}\right)^{-1} P_{\lambda+-} W^{m+1} \\
& +\sum_{m=0}^{\infty}\left(I-\mu^{-1} T_{++}\right)^{-m} P_{\lambda++}^{m}\left(I-\mu^{-1} T_{++}\right)^{-1} P_{\mu+-} W^{m}
\end{aligned}
$$

$$
\begin{gathered}
C_{-1}^{\prime}:=\left[\begin{array}{ccc}
0 & \left(I-\mu^{-1} T_{++}\right)^{-1} P_{\mu+-} \\
0 & W
\end{array}\right] \\
C_{0}^{\prime}:=\left[\begin{array}{ccc}
0 & \left(I-\mu^{-1} T_{++}\right)^{-1} P_{\lambda+-} \\
0 & 0
\end{array}\right], C_{1}^{\prime}:=\left[\begin{array}{cc}
\left(I-\mu^{-1} T_{++}\right)^{-1} P_{\lambda++} & 0 \\
0 & 0
\end{array}\right] \\
\Rightarrow G_{C^{\prime}}=\left[\begin{array}{cc}
0 & \Psi \\
0 & W
\end{array}\right] .
\end{gathered}
$$

From QBD \#1 to QBD \#2

$$
\begin{aligned}
C_{-1}^{\prime} & :=\left[\begin{array}{cc}
0 & \left(I-\mu^{-1} T_{++}\right)^{-1} P_{\mu+-} \\
0 & W
\end{array}\right] \\
C_{0}^{\prime} & :=\left[\begin{array}{cc}
0 & \left(I-\mu^{-1} T_{++}\right)^{-1} P_{\lambda+-} \\
0 & 0
\end{array}\right], C_{1}^{\prime}:=\left[\begin{array}{cc}
\left(I-\mu^{-1} T_{++}\right)^{-1} P_{\lambda++} & 0 \\
0 & 0
\end{array}\right]
\end{aligned}
$$

$$
\left(I-\mu^{-1} T_{++}\right)^{-1} P_{\lambda++}=\sum_{n=0}^{\infty}\left(\frac{1}{2} P_{\mu++}\right)^{n} \frac{1}{2} P_{\lambda++}
$$

$$
C_{-1}^{\prime \prime}:=\left[\begin{array}{cc}
0 & \left(I-\mu^{-1} T_{++}\right)^{-1} P_{\mu+-} \\
0 & W
\end{array}\right]
$$

$$
C_{0}^{\prime \prime}:=\left[\begin{array}{cc}
\frac{1}{2} P_{\mu++} & \left(I-\mu^{-1} T_{++}\right)^{-1} P_{\lambda+-} \\
0 & 0
\end{array}\right], \quad C_{1}^{\prime \prime}:=\left[\begin{array}{cc}
\frac{1}{2} P_{\lambda++} & 0 \\
0 & 0
\end{array}\right]
$$

From QBD $\# 2$ to QBDs $\# 3, \# 4, \# 5, \# 6, \# 7$

From QBD $\# 7$ to QBD $\# 8$

$$
\begin{aligned}
C_{-1}^{(7)} & :=\left[\begin{array}{ll}
0 & \frac{1}{2} P_{\mu+-} \\
0 & \frac{1}{2} P_{\mu--}
\end{array}\right] \\
C_{0}^{(7)} & :=\left[\begin{array}{ll}
\frac{1}{2} P_{\mu++} & \frac{1}{2} P_{\lambda+-} \\
\frac{1}{2} P_{\mu-+} & \frac{1}{2} P_{\lambda--}
\end{array}\right], \quad C_{1}^{(7)}:=\left[\begin{array}{ll}
\frac{1}{2} P_{\lambda++} & 0 \\
\frac{1}{2} P_{\lambda-+} & 0
\end{array}\right]
\end{aligned}
$$

- Observe the QBD only at times τ_{i} where there are level changes

$$
\begin{aligned}
& C_{-1}^{(8)}:=\left(I-C_{0}^{(7)}\right)^{-1} C_{-1}^{(7)}=\left[\begin{array}{cc}
0 & G \\
0 & F
\end{array}\right] \\
& C_{0}^{(8)}:=0, \quad C_{1}^{(8)}:=\left(I-C_{0}^{(7)}\right)^{-1} C_{1}^{(7)}=\left[\begin{array}{ll}
E & 0 \\
H & 0
\end{array}\right]
\end{aligned}
$$

- What we really need:

$$
D_{-1}=\left[\begin{array}{ll}
0 & 0 \\
0 & F
\end{array}\right], \quad D_{0}=\left[\begin{array}{cc}
0 & G \\
H & 0
\end{array}\right], \quad D_{1}=\left[\begin{array}{cc}
E & 0 \\
0 & 0
\end{array}\right]
$$

Finally, from QBD \#8 to QBD \#9

$$
C_{-1}^{(8)}:=\left[\begin{array}{ll}
0 & G \\
0 & F
\end{array}\right], \quad C_{0}^{(8)}:=0, \quad C_{1}^{(8)}:=\left[\begin{array}{cc}
E & 0 \\
H & 0
\end{array}\right]
$$

$$
\begin{array}{rllllllll}
X_{C^{(8)}}\left(\tau_{i}\right) & 1 & 2 & 1 & 2 & 3 & 2 & 1 & 0 \\
X_{D}\left(\tau_{i}\right) & 1 & 1 & 1 & 2 & 2 & 1 & 0 & 0
\end{array}
$$

$$
D_{-1}=\left[\begin{array}{cc}
0 & 0 \\
0 & F
\end{array}\right], \quad D_{0}=\left[\begin{array}{cc}
0 & G \\
H & 0
\end{array}\right], \quad D_{1}=\left[\begin{array}{cc}
E & 0 \\
0 & 0
\end{array}\right]
$$

In a nutshell

- We have a probablistic proof/interpretation for Doubling Algorithms.

From QBD \#2 to QBD \#3

$$
\begin{aligned}
& C_{-1}^{\prime \prime}:= \\
& C_{0}^{\prime \prime}:=\left[\begin{array}{cc}
0 & \left(I-\mu^{-1} T_{++}\right)^{-1} P_{\mu+-} \\
0 & W
\end{array}\right] \\
&\left.C_{2}^{\frac{1}{2} P_{\mu++}} \begin{array}{c}
\left(I-\mu^{-1} T_{++}\right)^{-1} P_{\lambda+-} \\
0
\end{array}\right], \quad C_{1}^{\prime \prime}:=\left[\begin{array}{cc}
\frac{1}{2} P_{\lambda++} & 0 \\
0 & 0
\end{array}\right]
\end{aligned}
$$

$$
C_{-1}^{\prime \prime \prime}:=\left[\begin{array}{cc}
0 & \frac{1}{2} P_{\mu+-} \\
0 & W
\end{array}\right]
$$

$$
C_{0}^{\prime \prime \prime}:=\left[\begin{array}{cc}
\frac{1}{2} P_{\mu++} & \left(I-\mu^{-1} T_{++}\right)^{-1} P_{\lambda+-} \\
0 & 0
\end{array}\right], \quad C_{1}^{\prime \prime \prime}:=\left[\begin{array}{cc}
\frac{1}{2} P_{\lambda++} & 0 \\
0 & 0
\end{array}\right]
$$

From QBD \#3 to QBD \#4

$$
\begin{aligned}
& C_{-1}^{\prime \prime \prime}:= {\left[\begin{array}{cc}
0 & \frac{1}{2} P_{\mu+-} \\
0 & W
\end{array}\right], } \\
& C_{0}^{\prime \prime \prime}:= {\left[\begin{array}{cc}
\frac{1}{2} P_{\mu++} & \left(I-\mu^{-1} T_{++}\right)^{-1} P_{\lambda+-} \\
0 & 0
\end{array}\right], \quad C_{1}^{\prime \prime \prime}:=\left[\begin{array}{cc}
\frac{1}{2} P_{\lambda++} & 0 \\
0 & 0
\end{array}\right] } \\
&\left(I-\mu^{-1} T_{++}\right)^{-1} P_{\lambda+-}=\sum_{n=0}^{\infty}\left(\frac{1}{2} P_{\mu++}\right)^{n} \frac{1}{2} P_{\lambda+-}
\end{aligned}
$$

$$
C_{-1}^{(4)}:=\left[\begin{array}{cc}
0 & \frac{1}{2} P_{\mu+-} \\
0 & W
\end{array}\right]
$$

$$
C_{0}^{(4)}:=\left[\begin{array}{cc}
\frac{1}{2} P_{\mu++} & \frac{1}{2} P_{\lambda+-} \\
0 & 0
\end{array}\right], \quad C_{1}^{(4)}:=\left[\begin{array}{cc}
\frac{1}{2} P_{\lambda++} & 0 \\
0 & 0
\end{array}\right]
$$

From QBD $\# 4$ to QBD $\# 5$

$$
\begin{aligned}
& C_{-1}^{(4)}:= {\left[\begin{array}{cc}
0 & \frac{1}{2} P_{\mu+-} \\
0 & W
\end{array}\right] } \\
& C_{0}^{(4)}:=\left[\begin{array}{cc}
\frac{1}{2} P_{\mu++} & \frac{1}{2} P_{\lambda+-} \\
0 & 0
\end{array}\right], \quad C_{1}^{(4)}:=\left[\begin{array}{cc}
\frac{1}{2} P_{\lambda++} & 0 \\
0 & 0
\end{array}\right] \\
& W:=\left(I-\lambda^{-1} U\right)^{-1} V_{\mu}=\sum_{n=0}^{\infty}\left(\frac{1}{2} V_{\lambda}\right)^{n} \frac{1}{2} V_{\mu} \\
& C_{-1}^{(5)}:= {\left[\begin{array}{cc}
0 & \frac{1}{2} P_{\mu+-} \\
0 & \frac{1}{2} V_{\mu}
\end{array}\right] } \\
& C_{0}^{(5)}:= {\left[\begin{array}{cc}
\frac{1}{2} P_{\mu++} & \frac{1}{2} P_{\lambda+-} \\
0 & \frac{1}{2} V_{\lambda}
\end{array}\right], \quad C_{1}^{(5)}:=\left[\begin{array}{cc}
\frac{1}{2} P_{\lambda++} & 0 \\
0 & 0
\end{array}\right] }
\end{aligned}
$$

From QBD $\# 5$ to QBD $\# 6$

$$
\begin{aligned}
& C_{-1}^{(5)}::\left[\begin{array}{cc}
0 & \frac{1}{2} P_{\mu+-} \\
0 & \frac{1}{2} V_{\mu}
\end{array}\right] \\
& C_{0}^{(5)}:=\left[\begin{array}{cc}
\frac{1}{2} P_{\mu++} & \frac{1}{2} P_{\lambda+-} \\
0 & \frac{1}{2} V_{\lambda}
\end{array}\right], \quad C_{1}^{(5)}:=\left[\begin{array}{cc}
\frac{1}{2} P_{\lambda++} & 0 \\
0 & 0
\end{array}\right] \\
& \frac{1}{2} V_{\mu}=\frac{1}{2} P_{\mu--}+\frac{1}{2} P_{\mu-+} \Psi
\end{aligned}
$$

$$
\begin{aligned}
C_{-1}^{(6)} & :=\left[\begin{array}{ll}
0 & \frac{1}{2} P_{\mu+-} \\
0 & \frac{1}{2} P_{\mu--}
\end{array}\right] \\
C_{0}^{(6)} & :=\left[\begin{array}{cc}
\frac{1}{2} P_{\mu++} & \frac{1}{2} P_{\lambda+-} \\
\frac{1}{2} P_{\mu-+} & \frac{1}{2} V_{\lambda}
\end{array}\right], \quad C_{1}^{(6)}:=\left[\begin{array}{cc}
\frac{1}{2} P_{\lambda++} & 0 \\
0 & 0
\end{array}\right]
\end{aligned}
$$

From QBD $\# 6$ to QBD $\# 7$

$$
\begin{aligned}
C_{-1}^{(6)} & :=\left[\begin{array}{ll}
0 & \frac{1}{2} P_{\mu+-} \\
0 & \frac{1}{2} P_{\mu--}
\end{array}\right] \\
C_{0}^{(6)} & :=\left[\begin{array}{cc}
\frac{1}{2} P_{\mu++} & \frac{1}{2} P_{\lambda+-} \\
\frac{1}{2} P_{\mu-+} & \frac{1}{2} V_{\lambda}
\end{array}\right], \quad C_{1}^{(6)}:=\left[\begin{array}{cc}
\frac{1}{2} P_{\lambda++} & 0 \\
0 & 0
\end{array}\right]
\end{aligned}
$$

$$
\frac{1}{2} V_{\lambda}=\frac{1}{2} P_{\lambda--}+\frac{1}{2} P_{\lambda-+} \Psi
$$

$$
\begin{aligned}
& C_{-1}^{(7)}:=\left[\begin{array}{ll}
0 & \frac{1}{2} P_{\mu+-} \\
0 & \frac{1}{2} P_{\mu--}
\end{array}\right] \\
& C_{0}^{(7)}:=\left[\begin{array}{cc}
\frac{1}{2} P_{\mu++} \\
\frac{1}{2} P_{\mu-+} P_{\lambda+-} & \frac{1}{2} P_{\lambda--}
\end{array}\right], \quad C_{1}^{(7)}:=\left[\begin{array}{cc}
\frac{1}{2} P_{\lambda++} & 0 \\
\frac{1}{2} P_{\lambda++} & 0
\end{array}\right] .
\end{aligned}
$$

