On a class of dependent Sparre Andersen risk models with application.

F.Avram, A.Badescu, M.Pistorius and L.Rabehasaina

Laboratory of Mathematics, Besançon, University of Franche Comté, France.

MAM Conference, Budapest, 28th-30th June 2016

Model	and	Notation	

Model and Notation

The fixed point equation

Model	and	Notation	
000			

Content

Model and Notation

The fixed point equation

Model and Notation ○●○ The fixed point equation 00000

Two applications

Risk process $\{X(t), t \ge 0\}$

$$X(t)=u+ct-\sum_{i=1}^{N(t)}J_k,\quad t\geq 0.$$

- N(t) = max {n ∈ N : ∑_{k=1}ⁿ T_k ≤ t} number of claims up to time t, T_k interclaim, J_k claim size,
- $u \ge 0$ initial capital, c > 0 premium rate, $c\mathbb{E}[T_1] > \mathbb{E}[J_1]$,
- $\{(T_k, J_k), k \in \mathbb{N}\}$ i.i.d. with dependence structure, defined by

 $\mathbb{P}(T_k \in \mathrm{d}t, J_k \in \mathrm{d}x) = \alpha(\mathrm{d}t) e^{Rx} \underline{r} \,\mathrm{d}x \quad t, x \in \mathbb{R}_+,$

where $\alpha(dt) \in \mathbb{R}^{1 \times m}$, is a $1 \times m$ distribution vector, $R \in \mathbb{R}^{m \times m}$ sub-generator matrix, $\underline{r} = (-R)\underline{1}$.

Ruin probability

We let $\tau := \{t \ge 0, X(t) < 0\}$ the ruin time and its Laplace Transform

$$\hat{\psi}(q,u) := \mathbb{E}_u \left[e^{-q\tau} \right], \quad q \ge 0, \quad u \ge 0.$$

 \longrightarrow **Goal**: Compute $\hat{\psi}(q, u)$ with efficient algorithm, with LT $\hat{\alpha}(-q) := \int_0^\infty e^{-qt} \alpha(\mathrm{d}t) \in \mathbb{R}^{1 \times m}$, $q \in \mathbb{R}_+$, available.

Notation : If $Q \in \mathbb{R}^{m \times m}$ negative-definite, we extend definition of LT :

$$\hat{lpha}(Q) := \int_0^\infty lpha(\mathrm{d} t) e^{Qt} \in \mathbb{R}^{1 imes m}.$$

 $\hat{\alpha}(-qI)$ available for all $q \in \mathbb{R}_+$, but $\hat{\alpha}(Q)$ not explicitly computable in practice for general Q!

Model	and	Notation	

Content

Model and Notation

The fixed point equation

Fixed point equation

Theorem

Laplace transform $\hat{\psi}(q, u)$ verifies

$$\hat{\psi}(q,u) = \hat{\rho}(q)e^{[R+\underline{r}\,\hat{
ho}(q)]u}\underline{1}, \quad u \ge 0, \ q \ge 0,$$
 (1)

where $\hat{\rho}(q)$ is a $1\times m$ sub-probability vector satisfying the fixed point equation

$$\hat{\rho}(\boldsymbol{q}) = \hat{\alpha}(\boldsymbol{c}\boldsymbol{R} + \boldsymbol{c}\,\underline{\boldsymbol{r}}\,\hat{\rho}(\boldsymbol{q}) - \boldsymbol{q}\boldsymbol{I}), \quad \boldsymbol{q} > 0. \tag{2}$$

If q = 0 there exists a $1 \times m$ sub-probability vector $\hat{\rho}(0)$ verifying (2) such that expression (1) holds for $\hat{\psi}(0, u)$.

Model	and	Notation	

Example and issues

Main issue is solving (2), i.e.

$$\hat{\rho}(\boldsymbol{q}) = \hat{\alpha}(cR + c \underline{r} \hat{\rho}(\boldsymbol{q}) - qI),$$

with unknown $\hat{\rho}(q) \in \mathbb{R}^{1 \times m}$ subprobability vector. E.g.

- α(dt) ∈ ℝ scalar, J_k exponentially distributed : Malinovskii (1998), ρ̂(q) scalar,
- α(dt) ∈ ℝ scalar, J_k ~ PH(<u>r</u>, R) : Asmussen and Albrecher (2010), ρ̂(q) scalar.

Issues here :

- (2) does not necessarily have a unique solution,
- 2 $\alpha(dt)$ vector,
- need to be able to compute â(M) where M is a matrix : no explicit form.

Algorithm for fixed point equation

Idea : Approximating $\hat{\rho}(q)$ by $\hat{\rho}^N(q)$, $N \in \mathbb{N}$, solution to

$$\hat{\rho}^{N}(q) = \hat{\alpha}^{N}(cR + c \underline{r} \hat{\rho}^{N}(q) - qI),$$

where $\hat{\alpha}^{N}(Q) := \sum_{k=0}^{N} M_{k}(\delta) \frac{(Q+\delta I)^{k}}{k!}, \ \delta > 0$ large enough, and $M_{k}(\delta) := \int_{0}^{\infty} t^{k} e^{-\delta t} e^{(d+1)} \in \mathbb{D}^{1 \times m}$

$$\mathcal{M}_k(\delta) := \int_0 t^k e^{-\delta t} \alpha(\mathrm{d} t) \in \mathbb{R}^{1 \times m}.$$

Algorithm for fixed point equation

Advantages :

 $\longrightarrow \hat{lpha}^{N}(Q)$ computable if the $M_{k}(\delta)$'s, $k \in \mathbb{N}$, are computable,

\longrightarrow Convergence :

Theorem

One has $\hat{\rho}^N(q) \longrightarrow \hat{\rho}(q)$ as $N \to \infty$ for all $q \ge 0$. Besides, for q large enough :

$$\left|\hat{\rho}(q)-\hat{\rho}^{N}(q)\right|_{m}\leq C\left[\hat{lpha}(0).\underline{1}-\sum_{k=0}^{N}\frac{|M_{k}(\delta)|_{m}}{k!}\delta^{k}
ight]$$

with explicit C, and $\hat{\alpha}(0)$ explicit.

Model	and	Notation	

Content

Model and Notation

The fixed point equation

Model	and	Notation	

The fixed point equation 00000

Two applications

Bailout problem

FIGURE: Sample path with proportional and fixed cost.

Model and Notation	The fixed point equation	I wo applications
Bailout problem		

Goal : Determine LT of ruin time τ of $\{U_0(t), t \ge 0\}$ (*Central Branch*) starting from $u_0 \ge 0$, when claims and interclaims for $\{U_1(t), t \ge 0\}$ (*subsidiary*) are *PH* distributed.

Step 1 : Identify dependence structure $\alpha(dt)$ and matrix R :

 $\alpha(dt) \sim \text{ruin time distribution of } \tau_1 \text{ jointly to phase at ruin,}$ $R \sim \text{same as claims of } U_1(t) + \text{ independent } PH(k, K),$

 $\longrightarrow \hat{lpha}(-q), q \in \mathbb{R}_+$, available.

Step 2: Compute the $M_k(\delta)$'s, $k \in \mathbb{N}$: Ren and Stanford (2012).

Step 3 : Run the algorithm.

Model and Notation

The fixed point equation 00000

Two applications

Queues and flushes (in progress)

FIGURE: Flush from queue 1 to 0.

Queues and flushes

Fluid queues $\{U_0(t), t \ge 0\}$ and $\{U_1(t), t \ge 0\}$ fluid queues, fed at constant rate c_0 and c_1 .

- $U_1(t)$ served with priority over $U_0(t)$, instantaneously, according to *PH* services,
- Content of $U_1(t)$ is occasionally *flushed* into $U_0(t)$ at time according to a Poisson process.

Goal : Determine LT of ruin time τ of $U_0(t)$ = busy period of $U_0(t)$.

Steps : Identify dependence structure $\alpha(dt)$ and matrix R, and compute the $M_k(\delta)$'s, $k \in \mathbb{N}$.

Thank you!