On a class of dependent Sparre Andersen risk models with application.

F.Avram, A.Badescu, M.Pistorius and L.Rabehasaina

Laboratory of Mathematics, Besançon, University of Franche Comté, France.

MAM Conference, Budapest, 28th-30th June 2016

Content

Model and Notation

The fixed point equation

Two applications

Content

Model and Notation

The fixed point equation

Two applications

Risk process $\{X(t), t \geq 0\}$

$$
X(t)=u+c t-\sum_{i=1}^{N(t)} J_{k}, \quad t \geq 0
$$

- $N(t)=\max \left\{n \in \mathbb{N}: \sum_{k=1}^{n} T_{k} \leq t\right\}$ number of claims up to time t, T_{k} interclaim, J_{k} claim size,
- $u \geq 0$ initial capital, $c>0$ premium rate, $c \mathbb{E}\left[T_{1}\right]>\mathbb{E}\left[J_{1}\right]$,
- $\left\{\left(T_{k}, J_{k}\right), k \in \mathbb{N}\right\}$ i.i.d. with dependence structure, defined by

$$
\mathbb{P}\left(T_{k} \in \mathrm{~d} t, J_{k} \in \mathrm{~d} x\right)=\alpha(\mathrm{d} t) e^{R x} \underline{r} \mathrm{~d} x \quad t, x \in \mathbb{R}_{+},
$$

where $\alpha(\mathrm{d} t) \in \mathbb{R}^{1 \times m}$, is a $1 \times m$ distribution vector, $R \in \mathbb{R}^{m \times m}$ sub-generator matrix, $\underline{r}=(-R) \underline{1}$.

Ruin probability

We let $\tau:=\{t \geq 0, X(t)<0\}$ the ruin time and its Laplace Transform

$$
\hat{\psi}(q, u):=\mathbb{E}_{u}\left[e^{-q \tau}\right], \quad q \geq 0, \quad u \geq 0
$$

\longrightarrow Goal : Compute $\hat{\psi}(q, u)$ with efficient algorithm, with LT $\hat{\alpha}(-q):=\int_{0}^{\infty} e^{-q t} \alpha(\mathrm{~d} t) \in \mathbb{R}^{1 \times m}, \boldsymbol{q} \in \mathbb{R}_{+}$, available.

Notation : If $Q \in \mathbb{R}^{m \times m}$ negative-definite, we extend definition of LT :

$$
\hat{\alpha}(Q):=\int_{0}^{\infty} \alpha(\mathrm{d} t) e^{Q t} \in \mathbb{R}^{1 \times m} .
$$

$\hat{\alpha}(-q /)$ available for all $q \in \mathbb{R}_{+}$, but $\hat{\alpha}(Q)$ not explicitly computable in practice for general Q !

Model and Notation

The fixed point equation

Two applications

Fixed point equation

Theorem

Laplace transform $\hat{\psi}(q, u)$ verifies

$$
\begin{equation*}
\hat{\psi}(q, u)=\hat{\rho}(q) e^{[R+\underline{r} \hat{\rho}(q)] u} \underline{1}, \quad u \geq 0, \quad q \geq 0 \tag{1}
\end{equation*}
$$

where $\hat{\rho}(q)$ is a $1 \times m$ sub-probability vector satisfying the fixed point equation

$$
\begin{equation*}
\hat{\rho}(q)=\hat{\alpha}(c R+c \underline{r} \hat{\rho}(q)-q l), \quad q>0 . \tag{2}
\end{equation*}
$$

If $q=0$ there exists a $1 \times m$ sub-probability vector $\hat{\rho}(0)$ verifying (2) such that expression (1) holds for $\hat{\psi}(0, u)$.

Example and issues

Main issue is solving (2), i.e.

$$
\hat{\rho}(q)=\hat{\alpha}(c R+c \underline{r} \hat{\rho}(q)-q I),
$$

with unkwown $\hat{\rho}(q) \in \mathbb{R}^{1 \times m}$ subprobability vector. E.g.

- $\alpha(\mathrm{d} t) \in \mathbb{R}$ scalar, J_{k} exponentially distributed : Malinovskii (1998), $\hat{\rho}(q)$ scalar,
- $\alpha(\mathrm{d} t) \in \mathbb{R}$ scalar, $J_{k} \sim P H(\underline{r}, R)$: Asmussen and Albrecher (2010), $\hat{\rho}(q)$ scalar.

Issues here :
(1) (2) does not necessarily have a unique solution,
(2) $\alpha(\mathrm{d} t)$ vector,
(3) need to be able to compute $\hat{\alpha}(M)$ where M is a matrix : no explicit form.

Algorithm for fixed point equation

Idea : Approximating $\hat{\rho}(q)$ by $\hat{\rho}^{N}(q), N \in \mathbb{N}$, solution to

$$
\hat{\rho}^{N}(q)=\hat{\alpha}^{N}\left(c R+c \underline{r} \hat{\rho}^{N}(q)-q I\right),
$$

where $\hat{\alpha}^{N}(Q):=\sum_{k=0}^{N} M_{k}(\delta) \frac{(Q+\delta I)^{k}}{k!}, \delta>0$ large enough, and

$$
M_{k}(\delta):=\int_{0}^{\infty} t^{k} e^{-\delta t} \alpha(\mathrm{~d} t) \in \mathbb{R}^{1 \times m}
$$

Algorithm for fixed point equation

Advantages :
$\longrightarrow \hat{\alpha}^{N}(Q)$ computable if the $M_{k}(\delta)$'s, $k \in \mathbb{N}$, are computable,
\longrightarrow Convergence :

Theorem

One has $\hat{\rho}^{N}(q) \longrightarrow \hat{\rho}(q)$ as $N \rightarrow \infty$ for all $q \geq 0$. Besides, for q large enough :

$$
\left|\hat{\rho}(q)-\hat{\rho}^{N}(q)\right|_{m} \leq C\left[\hat{\alpha}(0) \cdot \underline{1}-\sum_{k=0}^{N} \frac{\left|M_{k}(\delta)\right|_{m}}{k!} \delta^{k}\right]
$$

with explicit C, and $\hat{\alpha}(0)$ explicit.

Model and Notation
 The fixed point equation

Two applications

Bailout problem

Figure: Sample path with proportional and fixed cost.

Bailout problem

Goal : Determine LT of ruin time τ of $\left\{U_{0}(t), t \geq 0\right\}$ (Central Branch) starting from $u_{0} \geq 0$, when claims and interclaims for $\left\{U_{1}(t), t \geq 0\right\}$ (subsidiary) are $P H$ distributed.

Step 1 : Identify dependence structure $\alpha(\mathrm{d} t)$ and matrix R :
$\alpha(\mathrm{d} t) \sim$ ruin time distribution of τ_{1} jointly to phase at ruin, $R \sim$ same as claims of $U_{1}(t)+$ independent $P H(\underline{k}, K)$,
$\longrightarrow \hat{\alpha}(-q), q \in \mathbb{R}_{+}$, available.
Step 2 : Compute the $M_{k}(\delta)$'s, $k \in \mathbb{N}:$ Ren and Stanford (2012).

Step 3 : Run the algorithm.

Queues and flushes (in progress)

Figure: Flush from queue 1 to 0 .

Queues and flushes

Fluid queues $\left\{U_{0}(t), t \geq 0\right\}$ and $\left\{U_{1}(t), t \geq 0\right\}$ fluid queues, fed at constant rate c_{0} and c_{1}.

- $U_{1}(t)$ served with priority over $U_{0}(t)$, instantaneously, according to $P H$ services,
- Content of $U_{1}(t)$ is occasionally flushed into $U_{0}(t)$ at time according to a Poisson process.

Goal : Determine LT of ruin time τ of $U_{0}(t)=$ busy period of $U_{0}(t)$.

Steps: Identify dependence structure $\alpha(\mathrm{d} t)$ and matrix R, and compute the $M_{k}(\delta)$'s, $k \in \mathbb{N}$.

Thank you!

