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Introduction

Motivating example

State i = 1,2, 3 is a customer class.



Introduction

SFM definition

Continuous-time process {(y(t), X(t)) : t > 0} with

phase variable ¢(t) and unbounded level variable X(t) € R
such that

e phase process {¢(t) : t > 0} is an irreducible CTMC with
generator T and some finite-state space S

e the rate of change of X(t) at time tis ¢; = dX(t)/at
whenever p(t) = Ii.



Introduction

Motivating example - continued

State space: S ={1,2,3} where 1, 2, 3 are customer
classes.

Fluid X(t):  Amount of energy in the grid.

Ratesci: ¢4 >0,c, <0,and c3 =0.



Introduction

Sample path




Introduction

Some notation

S={ieS:¢>0}
S_={ieS:c <0}
So={ieS:c =0}

T, =[TjforallicS,jeS-
T, =[TjforallicS_,jeSy
To=[TjlforallicS;,jeSy
etc.

C. =diag(c) forall i € S;
C_ =diag(|cj|) foralli € S_



Introduction

Motivation

In the literature so far, we have

e Laplace-Stieltjes Transforms (LSTs) of the time taken to
complete a sample path in {((t), X(t)) : t > 0} using fluid
generator Q(s)

e LSTs of the shift in X accumulated during a sample path in
Y in {(p(t), X(), Y(t)) : t > 0} using fluid generator W(s),
where X(t) € R is unbounded.

Here, we wish to model, individually,

e /-type rewards accumulated at rates r; per unit time spent
in i during a sample path in {(¢(t), X(t)) : t > 0}
where X(t) may be bounded/unbounded.



Generalised reward matrix Z(s)

In-out fluid h(t)

In-out fluid:

t
h(t) = / PNEN
u

=0

Time at which h(t) hits level y:

w(y) =inf{t > 0: h(t) = y}.



Generalised reward matrix Z(s)

Evolution of in-out fluid h(t)
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Generalised reward matrix Z(s)

Total i-type reward

Assume j-type reward is generated at r; per unit time spent in i.

Total i-type reward accumulated during [z, t] is defined as

Wiz )= [ nlletu) = Dot

=Z

where [(-) is an indicator function.

A set of total i-type rewards can be expressed as a vector
(Wi(z,t),..., Wh(z,1)).
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Generalised reward matrix Z(s)

Phase i reward W;(0,t), fori=1,2,3
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Generalised reward matrix Z(s)

Laplace-Stieltjes transforms (LSTs) of interest

Let Ay(§) be a multi-dimensional LST matrix such that,
forany y > 0, any vectors = [sj],and any i,j € S; US_,
[A7(s); = E(e”MOuUIT5s 0O (p(w(y)) = j) | ¢(0) = i)

is the LST of the distribution of

(Wi(0,w(¥)); - -, Wa(0,w(y))) and p(w(y)) = J;

given ¢(0) = i.
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Generalised reward matrix Z(s)

Key result

Theorem (2)

Foranyy > 0, A”(s) exists and

A (s) = e,
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Generalised reward matrix Z(s)

Generalised reward generator Z(s)

Assuming x(Too — DgRg) < 0, define

where s =s;] and

Z,,(s) = C'[Tys — DRy —Tyo(Too — DoRo) 'To,]
Z (s) = 1[T__ —~D_R_ —T_(Too — DgRg) ' To_]
Z, (s) = C'[T+ —T,0(Too — DoRo) ' To_]
Z (s) = C'[T, T_o(Too — DoRo) ' To4].
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Generalised reward matrix Z(s)

Some more notation

Recall
S ={ieS:¢>0}
S_={ieS:c<0}
SoZ{iESZC,’ZO}.

Let, for complex s;,
D, = diag(s;) forallie S1
D_ =diag(sj) forallie S_
Dy = diag(s;) for all i € Sy

R, =diag(r;) forallie S;
R_ =diag(r;) forallie S_
Ro = diag(r;) for all i € Sp.
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Projections of Z(s)

Total reward W(z, t)

Total reward accumulated during [z, t] is defined as

W(z,t) =) Wzt).

i€eS
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Projections of Z(s)

Total reward W(O0, t)
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Projections of Z(s)

Projections of Z(s)

e Replace rewards W(z, t) with total reward W(z, t).

e Replace vector s with scalar s € C.

« Derive corresponding fluid generators.

19/43



Projections of Z(s)

Interpretation of Q(s)

We want to know

E(e®Ui(p(w(y)) = j) | ¢(0) =)
which is the LST of the distribution of
time w(y),

and p(w(y)) = J;

given ¢(0) = /.
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Projections of Z(s)

Projection from Z(s) to Q(s)

Let
R, =1
R. =1
Ry = |

so that reward is r; = 1 per unit of time spent in phase /.
Then the total reward is the total elapsed time,

Wz t)=t-z.
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Projections of Z(s)

Fluid generator Q(s)

The i, j th entry of the LST of the distribution is [€®($)];, where

Q(S) — Q—H—(S) gi——(s)

Q_(s) (s)
where
Qi (s) = C'[Tiy —sl— T o(Too— sl) "Toy]
Q. (s) = CMT__ —sl—T_o(Too—sl)""To_]
Q. (s) = CI'[T.- — T10(Too — s1)""To_]
Q .(s) = c'[T_, T_o(Too — s1)™"To4].
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Projections of Z(s)

Interpretation of Q(s)

h(t
b o
,”, w(y)l — W(O7 t)
X(1)
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Projections of Z(s)

Interpretation of W(s)

We want to know
E (e (WO f(p(w(y)) = ) | 9(0) = i)

which is the LST of the distribution of the total shiftin v(.),
accumulated at the time w(y)

when the in-out fluid of the process X(-) first reaches level y,

and p(w(y)) =J given (0) = i.
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Projections of Z(s)

Projection from Z(s) to W(s)

Let
R, = R,
R. = R_
Ro = Rp

Then the total reward is the total shift in the second (reward)
fluid,
W(z,t)=Y(t) — Y(2).
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Projections of Z(s)

Fluid generator W(s) (most general projection)

The i, j th entry of the LST of the distribution is [eV($)Y];;, where

W, i(s) Wi(s)

W =1 wi(s) w (s)
with
W, (s) = C'[(Tyy —sRy) —Tyo(Too — SRo) ' Toy]
W__(s) = CZ'[(T__ —sR_)—T_o(Too — SRo) 'To_
W, _(s) = CI'[T,- —T0(Too — SRo) ™ 'To_]
W_,(s) = CI'[T_, —T_o(Too — SRo) ™ "To,]
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Projections of Z(s)

Interpretation of W(s)
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Projections of Z(s)

Interpretation of Z*(s)

Define total upward shift

t
het) = [ leyulia(u) € S:)au

We want to know
E(e mDi(p(w(y) =) | ¢(0) = i)
is the LST of the distribution of
the total upward shift in X(t)
accumulated at time w(y), and p(w(y)) =/,

given ¢(0) = /.
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Projections of Z(s)

Projection to track the total upward shift

Let
R+ == C+
R =0
Ro = 0,

so that the total reward is the total upward shift h(t) in X(t)

W(0, 1) = hy(t).
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Projections of Z(s)

The i, th entry of the LST of the distribution is [¢%"($)/]; where,

_ [ ZEi(s) Zi ()
Z'(s) = Zﬁ(s) ij,(s)
where
Zi,(s) = C{'[Tyyr —sCy —Tio(Too) "ol
Zt (s) = CT'[T__ —T_0(Too) 'To-]
Zi (s) = C'[T4- — T10(Too) 'To-]
Zt,(s) = CI'[T_, — T 0(Too) " Tos]
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Projections of Z(s)

Interpretation of Z*(s)

______
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New Riccati equation for W

Density f,(x)

For 0 < x <y, let f,(x); be the inverse of the LST [?"(5)];

so that

(i = ;(P(M(w(}/)) < X, p(w(y)) = jl X(0) = 0,9(0) =)

is the probability density that the total upward shift in X(.)
accumulated at time w(y) is Ny (w(y)) = X
and p(w(y)) = j, given ¢(0) = /.
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New Riccati equation for W

Consider f,(y/2)

fy(y/2)j

is the probability density that the total upward shift in X(-)
accumulated at time w(y) is N (w(y)) = y/2
and ¢(w(y)) = j, given x(0) = i.

Total upward shift = Total downward shift.
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New Riccati equation for W

Consider f,(y/2)

N I L
) TR ih+(t)

R T~ w(y) ,

X(1)
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New Riccati equation for W

Define M

Integrate f,(y/2);; over all possible y,

My= [ b/

which we interpret as
the expected number of visits to state (j, 0),
given that the process starts in state (/,0),

foralli,je S US_.
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New Riccati equation for W

Matrix M

Theorem (3)
We have

e

- [E(;'iMuE)—1 (|—Eu|(n5+)_—1w]'

where W, = are respective minimum nonnegative solutions to
Q+_ + Q++w + \UQ__ + \UQ_+W = 0,
Q;+Q _=+=Q;;+ +=Q;_==0.
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New Riccati equation for W

W s a solution to the Riccati equation

M, =W+WUM_,W.

W can be explicitly written as

=M, (I+M )"
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New Riccati equation for W

Work in progress

e Numerical examples.

e Algorithm for computing M efficiently.
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New Riccati equation for W

Conclusion

e Constructed generalised reward generator Z(s)
e considered various projections

e concentrated on Z*(s)

- inverted its corresponding LST
- integrated over all y to get M

- and created an explicit equation for Ww.
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New Riccati equation for W

Thank you for listening
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