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Model: two fluid queues driven by ϕ(t)

CTMC ϕ(t) with finite state space S, generator T
Two fluid queues, contents X (t) and Y (t), both ∈ [0,∞)
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First queue X (t) driven by ϕ(t)

(ϕ(t),X (t)) is standard fluid queue
Fluid rates in R = diag(ri)i∈S

d
dt

X (t) = rϕ(t) when X (t) > 0,

d
dt

X (t) = max(0, rϕ(t)) when X (t) = 0.

S = S+ ∪ S− ∪ S#, e.g. S+ = {i ∈ S : ri > 0}
(upstates, downstates, zero-states)
also: S	 = S− ∪ S# (“zero-states at X (t) = 0”)
after ordering,

T =

 T++ T+− T+#
T−+ T−− T−#
T#+ T#− T##

 .
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Second queue Y (t) driven by (ϕ(t),X (t))

Y (t) increases when X (t) > 0, at rate ĉi > 0
Y (t) decreases when X (t) = 0, at rate ĉ i < 0
(unless Y (t) = 0)
So

d
dt

Y (t) = ĉϕ(t) > 0 when X (t) > 0,

d
dt

Y (t) = ĉϕ(t) < 0 when X (t) = 0,Y (t) > 0,

d
dt

Y (t) = ĉϕ(t) · 1{ϕ(t) ∈ S+} when X (t) = 0,Y (t) = 0.

Ĉ = diag(ĉi)i∈S and Ĉ = diag(ĉ i)i∈S
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Special case: S# = ∅, |S+| = |S−| = 1, Ĉ = −Ĉ = I

ri>0 ri<0

Ci>0
^ Ci<0

v

t

t

X(t)

Y(t)

X(t)

Y(t)

[Kroese and Scheinhardt. Joint Distributions for Interacting
Fluid Queues, Queueing Systems, 2001]
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Qualitative behaviour

ri>0 ri<0

Ci>0
^ Ci<0

v

t

t

X(t)

Y(t)

X(t)

Y(t)

Assuming stability (see paper) process (ϕ(t),X (t),Y (t))
alternates between:

(i) periods on x = 0
(ii) periods on x > 0
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Qualitative behaviour (i) on x = 0

ri>0 ri<0

Ci>0
^ Ci<0

v

t

t

X(t)

Y(t)

X(t)

Y(t)

(i) periods on x = 0
Y (t) decreasing, unless at x = 0, y = 0
ϕ(t) in S	
starts at x = 0, y > 0, with ϕ(t) in S−
ends at x = 0, y ≥ 0, with ϕ(t) jumping from S	 to S+
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Qualitative behaviour (ii) on x > 0

ri>0 ri<0

Ci>0
^ Ci<0

v

t

t

X(t)

Y(t)

X(t)

Y(t)

(ii) periods on x > 0
Y (t) increasing (while X (t) can either increase or decrease)
ϕ(t) in S (any phase)
starts at x = 0, y ≥ 0, with ϕ(t) ∈ S+

ends at x = 0, y > 0, with ϕ(t) ∈ S−
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Stationary distribution

has following form (all vectors with |S| components):

(i) 1-dimensional densities π(0, y)
at x = 0, y > 0

point masses p(0,0)
at (0,0)

(ii) 2-dimensional densities π(x , y)
on {(x , y) : x > 0, y > x ·mini∈S+

{ĉi/ri}}
1-dimensional density πi (x , xĉi/ri )

on line y = xĉi/ri , i ∈ S+
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Approach

Several steps:
Introduce embedded discrete-time process Jk

Find its stationary distribution ξy

Take a deep breath...
Express π(0, y) and p(0,0) in ξy , using down-shift in Y
Normalise based on knowledge of (ϕ(t),X (t))

Express π(x , y) in π(0, y) and p(0,0), using up-shift in Y
Express πi(x , xĉi/ri) in p(0,0)

Mostly as LST’s (but not always)
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Intermezzo (i) on down-shift: Q̂		 and Q̂	+

Define generator matrix

Q̂		 = (|Ĉ	|)−1T		,

then for i , j ∈ S	, and z > 0,

[eQ̂		z ]ij = P(ϕ(tz) = j , ϕ(u) ∈ S	,0 ≤ u ≤ tz | ϕ(0) = i ,X (0) = 0)

Also,
Q̂	+ = (|Ĉ	|)−1T	+,

is a matrix of transition rates (w.r.t. level) to phases in S+

(for times at which X and Y start increasing)

[Bean, O’Reilly and Taylor. Hitting probabilities and hitting times
for stochastic fluid flows, SPA 2005]
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Intermezzo (ii) on up-shift: Q̂(s) and Ψ̂(s)

Let θ = inf{t > 0 : X (t) = 0} and U(t) =
∫ t

u=0 ĉϕ(u)du, then
U(θ) is total up-shift in Y during Busy Period of X

Its |S+| × |S−| density matrix ψ̂(z) is given via LST

Ψ̂(s) =

∫ ∞
z=0

e−szψ̂(z)dz,

as

[Ψ̂(s)]ij = E(e−sU(θ)1{ϕ(θ) = j} | ϕ(0) = i ,X (0) = 0),

[Bean and O’Reilly. A stochastic two-dimensional fluid model,
Stochastic Models, 2013]
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Intermezzo (ii) on up-shift: Q̂(s) and Ψ̂(s)

To find Ψ̂(s) define Key generator matrix Q̂(s), as

Q̂(s) =

[
Q̂(s)++ Q̂(s)+−
Q̂(s)−+ Q̂(s)−−

]
Q̂(s)++ = (R+)−1

(
T++ − sĈ+ − T+#(T## − sĈ#)−1T#+

)
Q̂(s)+− = (R+)−1

(
T+− − T+#(T## − sĈ#)−1T#−

)
Q̂(s)−+ = (|R−|)−1

(
T−+ − T−#(T## − sĈ#)−1T#+

)
Q̂(s)−− = (|R−|)−1

(
T−− − sĈ− − T−#(T## − sĈ#)−1T#−

)
Then Ψ̂(s) is minimum nonnegative solution of Riccati eq.

Q̂(s)+− + Q̂(s)++Ψ̂(s) + Ψ̂(s)Q̂(s)−− + Ψ̂(s)Q̂(s)−+Ψ̂(s) = O,

[Bean and O’Reilly. A stochastic two-dimensional fluid model,
Stochastic Models, 2013]
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Back on track... Embedded process Jk

Let Jk = (ϕ(θk ),Y (θk )), with state space S− × (0,∞),
where θk is k -th time that (ϕ(t),X (t),Y (t)) hits x = 0

Lemma
The transition kernel of Jk is given by

Pz,y =

∫ z

u=[z−y ]+

[
I O

]
eQ̂		uQ̂	+ψ̂(y − z + u)du

+
[

I O
]

eQ̂		z(−Q̂		)−1Q̂	+ψ̂(y).

where [x ]+ denotes max(0, x), and
[

I O
]

is a |S−| × |S	|
matrix.
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Embedded process Jk

Proof. Based on Lindley-type recursion,

Y (θk+1) = [Y (θk )− Dk ]+ + Uk , (1)

where

Dk =

∫ τk

u=θk

|ĉϕ(u)|du, Uk =

∫ θk+1

u=τk

ĉϕ(u)du

So (i) Y (t) first has down-shift −D, as long as ϕ(t) ∈ S	
(ii) after jump S	 → S+, Y (t) has up-shift U, during busy period
of X .
Then use previous knowledge; note that Jk moves from (i , z) to
(j , y) without or with returning to 0 during (θk , θk+1).
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Embedded process Jk

Corollary
The Laplace-Stieltjes transform of Pz,y w.r.t. y is given by

Pz,·(s) =
[

I O
]

e−sz
(

Q̂		 + sI
)−1

(
e
(

Q̂		+sI
)

z − I
)

×Q̂	+Ψ̂(s)

+
[

I O
]

eQ̂		z(−Q̂		)−1Q̂	+Ψ̂(s).

Proof. Using lemma, or based on (1) directly
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Embedded process Jk – stationary distribution ξy

Stationary distribution of Jk is given by row vector
ξz = [ξi,z ]i∈S− of densities, satisfying

∫∞
z=0 ξzPz,ydz = ξy∫∞
y=0 ξydy1 = 1,

Will be solved numerically.

Next step (after deep breath):

Express stationary distribution of (ϕ(t),X (t),Y (t)) at level
x = 0 in terms of ξz .
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Expressing π(0, y) and p(0,0) in ξy

ri>0 ri<0

Ci>0
^ Ci<0

v

t

t

X(t)

Y(t)

X(t)

Y(t)
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Expressing π(0, y) and p(0,0) in ξy

Lemma

We have π(0, y) =
[

0 π(0, y)	
]
, where

π(0, y)	 = α

∫ ∞
z=y

[
ξz 0

]
eQ̂		(z−y)(|Ĉ	|)−1dz,

and p(0,0) =
[

0 p(0,0)	
]
, where

p(0,0)	 = α

∫ ∞
z=0

[
ξz 0

]
eQ̂		zdz(−T		)−1.

Here, α is a normalization constant
In fact α is the total rate of hitting x = 0.

Małgorzata O’Reilly, Werner Scheinhardt Analysis of tandem fluid queues
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Expressing π(0, y) and p(0,0) in ξy

Proof. Consider “cycles” defined by hitting times of x = 0, and
condition on where previous hit took place.

[Latouche and Taylor. A stochastic fluid model for an ad hoc
mobile network, Queueing Systems, 2009]
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Expressing π(0, y) and p(0,0) in ξy

LST of density part: let

π(0, ·)(s) =

∫ ∞
z=0

e−syπ(0, y)dy

Corollary

We have π(0, ·)(s) =
[

0 π(0, ·)(s)	
]
, where

π(0, ·)(s)	 = α

∫ ∞
z=0

[
ξz 0

]
eQ̂		z(Q̂		 + sI)−1

×
(

I− e−(Q̂		+sI)z
)

(|Ĉ	|)−1dz.

Proof. Straightforward.

Małgorzata O’Reilly, Werner Scheinhardt Analysis of tandem fluid queues
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Normalise, based on 1-dim fluid queue (ϕ(t),X (t))

Lemma
The normalisation constant α is given by

α =

{[
ξ 0

]
(−T		)−1

(
1

+T	+K−1 [ (R+)−1 Ψ(|R−|)−1
]

×
(

1 + T±#(−T##)−11
))}−1

,

where, ξ =
∫∞

z=0 ξzdz, Ψ = Ψ̂(s)|s=0 and K = K̂(s)|s=0 with

K̂(s) = Q̂(s)++ + Ψ̂(s)Q̂(s)−+.

Małgorzata O’Reilly, Werner Scheinhardt Analysis of tandem fluid queues
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Normalise, based on 1-dim fluid queue (ϕ(t),X (t))

Proof. Integrating π(0, y) and adding p(0,0) yields the
probability mass vector of ϕ(t) at x = 0, which is also known
from 1-dim fluid queue:[

p− p#
]

= α
[
ξ 0

]
(−T		)−1

Similarly, we have expression for density π(x) at x > 0.

Now solve α from

p1 +

∫ ∞
x=0

π(x)dx1 = 1

Małgorzata O’Reilly, Werner Scheinhardt Analysis of tandem fluid queues
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Expressing π(x , y) in π(0, y) and p(0,0)

Lemma

We have

π(x , ·)(s) =
[
π(x , ·)(s)+ π(x , ·)(s)− π(x , ·)(s)#

]
with [

π(x , ·)(s)+ π(x , ·)(s)−
]

= (π(0, ·)(s)	 + p(0,0)	)

×T	+eK̂(s)x ×
[

(R+)−1 Ψ̂(s)(|R−|)−1
]
,

and

π(x , ·)(s)# =
[
π(x , ·)(s)+ π(x , ·)(s)−

]
×T±#(sĈ# − T##)−1.

Małgorzata O’Reilly, Werner Scheinhardt Analysis of tandem fluid queues
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Expressing π(x , y) in π(0, y) and p(0,0)

Let π(·, ·)(v , s) =
∫∞

x=0 e−vxπ(x , ·)(s)dx .

Corollary

We have

π(·, ·)(v , s) =
[
π(·, ·)(v , s)+ π(·, ·)(v , s)− π(·, ·)(s)#

]
with[

π(·, ·)(v , s)+ π(·, ·)(v , s)−
]

= (π(0, ·)(s)	 + p(0,0)	)

×
[

T−+

T#+

]
(−K̂(s) + v I)−1

[
(R+)−1 Ψ̂(s)(|R−|)−1

]
and

π(·, ·)(s)# =
[
π(·, ·)(s)+ π(·, ·)(s)−

]
T±#

×(sĈ# − T##)−1.
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Expressing πi(x , xĉi/ri) in p(0,0)

Lemma

For all i ∈ S+,

πi(x , xĉi/ri) =
∑
j∈S	

pj(0,0)Tji exp(−(Tii/ri)x)/ri

Proof. Consider “cycle” starting when (0,0) is left, and
consider expected number of visits to (i , x , xĉi/ri) before return
to (0,0).
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Main result

Theorem
Stationary distribution of (ϕ(t),X (t),Y (t)) is found, as mixture
of densities and LSTs.
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Numerical scheme

Discretize the DTMC Jk and truncate its state space:

P̃`m =

∫ (m+1)∆u

y=m∆u
P`∆u,ydy , `,m = 0,1,2, . . .L

Normalize this to obtain P`m with
∑L

m=0 P`m1 = 1.
Find ξ̄` = [ξ̄j;`]j∈S− by solving ξ̄P = ξ̄, ξ̄1 = 1.
Use this to approximate e.g.

p(0,0)	 = α

∫ ∞
z=0

ξzeQ̂		zdz(−T		)−1

≈ α

L∑
`=0

ξ̄`e
Q̂		`∆u(−T		)−1.

Similar for π(0, y) etc; invert using Abate and Whitt
Work in progress
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Numerical scheme

Ψ̂(s)

↓

Pz,·(s) ξ(s) π(0, ·)(s) → π(x , ·)(s)

↓ ↑ ↓

Pz,y → ξz → π(0, y) π(x , y)

Małgorzata O’Reilly, Werner Scheinhardt Analysis of tandem fluid queues
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Conclusions and future work

Stationary distribution found, as mixture of densities and
LSTs (as opposed to closed form LST in special case)
Finish numerical scheme
Consider dual model
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