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Problem formulation

e Consider a Markov Jump Process, {X (t)}+>0, of dimension k, initial probability
vector 7 and generator Q = C + D.

e X (t) generates a Markovian arrival process (MAP).

e We examine following estimation problem: We observe state of X (t) at certain
discrete time points, as well as at the time of all arrivals in the MAP.

o |t follows that the states have a physical interpretation.

e We wish to estimate 8 = (w,C, D).
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Hlustration
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Figure: An illustration of the discrete observation sampling scheme. The stars are
arrivals while the crosses are discrete observations.

e Observations are labeled as discrete observations or arrivals.
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An example from survival analysis
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Hlustration
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Figure: A complete sample path of the Markov jump process generating the MAP
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Likelihood function
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e The Complete-data likelihood function is

k k

k ok
L) =1] i 1111 CZ.“ exp(—cijz) - [ ] d%ij exp(—di;zi).

i=1 i=1j#i i=1j=1

e Where

e b;, the number of processes that start in state 4,

e 2;, the total time spent in state i,

e n;;, the total number of transitions from state 7 to state j not associated
with an arrival,

e m;;, the total number of transitions from state 7 to state j associated with
an arrival,

® The maximum likelihood estimators are
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EM-algorithm =
e Now consider the case of incomplete-data.

e We observe a vector of states X = (z1,, Ty, .-, Ty, ), Where t; < to < ... <tp.

e We also observe a vector of indicators I = (4,94, - - -, 1, ). %, equals 1 if the

h'th observation is an arrival, 0 otherwise.
e The pair (X,I) is the incomplete data.

e For the E-step, we need expressions for E(Z;|X,I), E(N;;|X,I), E(N;;|X,I)
and E(B;|X,I)
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Some notation
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e First, some notation. Put A, =t) —tp_1, h=2,...,(n—1), with A, =t;.

° Mi’;(h) = E(Z| X (0) =i, X(Ap) = j) = the expected sojourn time in state k,
given that the process was initialised in state 4 and is in state j at time t.

o fl(h) = E(Nu|X(0) =i, X(An) = j) = the expected number of jumps not
caused by an event from k to [, given that X was initialised in state ¢ and is in
state j after time t.

. ffjl(h) = E(Nu|X(0) =i, X(Ap) = j) = same as for f!(t), but for the

number of jumps caused by an event.
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Some notation

e Assuming homogeneity, we may then write

© B(ZuX) = Mb,, (U + Y5 ME, ., (B),
« BNGIX) = £, () + Xho £, 2, (1),
C B(NLX) =T (1) + S0 T L ()
e E(B;|X) = E(BZ-\X(tl) =y, I(t1) = ztl).
e Thus, the problem is reduced to finding expressions for M, f, f and
E(Bi| X4y, It,).
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Integral calculation

e Define the matrices
° Mkk' fo exp(Cu)eye) exp(C(Ap — u))du.
o MF'(h fo exp(Cu)eye; exp(C(A;, — u))du.

e Where e; is the i'th unit vector of appropriate dimension.

e A way to calculate the integrals is

M- (1 0o ([ € ) (0).

e where [ is the identity matrix of dimension k£ x k and 0 is a matrix of zeroes of
dimension k x k.
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E-step formulas

e The E-step formulas are as follows, when h > 2

oMY (DS gy o, MY (DM,
e;exp(CA,)Dne;” Y e;exp(CA,)Dne;’

—kl - e; exp(CA,)Ditney
“(h) =0 for I (h) = dy; :
Fij (h) orl#3, fij(h) kg e; exp(CAp,)D"ne;

Mi5(h) =

for I = j.

e When h = 1, replace all the e; vectors by 7. Also,

mi€; exp(Ct1)D" ey,

E(BilX(0), 1) = mexp(Cty)Dire
e,
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Covariates

e We can parameterize the transition intensities using covariates.
e Let Z denote the covariaties.

e A popular model in survival analysis is the Cox proportional hazards model
A(t|Z) = Ao(t) exp (BZ) .

e This gives an inhomogeneous model, unless we put Ag(t) = A.
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Phase-type sojourn times

e Exponential sojourn times may be unrealistic.

e Consider the Markov jump process Y (¢) with an expanded state space
{11, .., L, J U210, 20, f U ULk, ok,
e Where m;,i = 1,2,...,k is the number of sub-states for the i'th batch state.

Let m = my +mo + ...+ my denote the dimension of the expanded state space.

e Canonical representations should be used. That is, Coxian structures with
increasing mean sojourn times.

e The sub-states do not have a physical interpretation, i.e. we cannot observe
them.

e Y(t) is a semi-Markov jump process with the following relation to X (¢).
PXt)=rY(t)=r;) =1
e This is a hidden Markov model with deterministic state-dependent distributions.
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Estimation with Phase-type sojourn times

e The likelihood function is

L) = (H F(h)P(wth)>

h=1

e Where I'(h) is an m x m matrix, where the (i, j)-th element is
P(X(Ap) =j|X(0) =4, I, =1it,). We find these by

e; exp(CAp,)D"ne;
e; exp(CAp,)Dn 1’

e Where 1 is a vector of ones of appropriate dimension.

e P(x,,) is an m x m diagonal matrix, where the i'th diagonal elements is
P(X(tn) = w4, [Y (tn) = 0)
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Misclassification models

e With a Hidden Markov Model defined, we can easily include the possibility of
misclassification.

e This can be the case when there is uncertainty on the state observations.
e In survival analysis, this is known as a censored state.

o Let e, denote the probability of wrongly classifying X (¢) in batch-state s, when
the true batch-state is . We can write this as

P(X(tn) =r|Y(tp) = s) = eys.

e This gives categorical state-dependent distributions, and we may use the previous
likelihood function.
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Conclusion
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e We have extended some EM-algorithms from the literature to account for
different observation types.

e We have shown how these models may be applied to a certain model from
survival analysis.

e Covariates can be included, with certain limitations.
e We can have phase-type sojourn times at the cost of a harder estimation problem.

e And finally, we can allow uncertainty on the state observations.
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Further Work

e Derive formulas for the Fisher information matrix.
e Study the large sample properties of the algorithm.

e Develop estimators for non-homogeneous Markov processes.
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