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Problem formulation
Problem formulation

• Consider a Markov Jump Process, {X(t)}t≥0, of dimension k, initial probability
vector π and generator Q = C + D.

• X(t) generates a Markovian arrival process (MAP).

• We examine following estimation problem: We observe state of X(t) at certain
discrete time points, as well as at the time of all arrivals in the MAP.

• It follows that the states have a physical interpretation.

• We wish to estimate θ = (π,C,D).
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Problem formulation
Illustration
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Figure: An illustration of the discrete observation sampling scheme. The stars are
arrivals while the crosses are discrete observations.

• Observations are labeled as discrete observations or arrivals.
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Problem formulation
An example from survival analysis

π = (1, 0, 0, 0, 0),C =


. c12 c13 0 0
0 . 0 c24 0
0 0 . c34 0
0 0 0 . 0
0 0 0 0 0

 ,D =


0 0 0 0 d15
0 0 0 0 d25
0 0 0 0 d35
0 0 0 0 d45
0 0 0 0 0

 .

5 of 18



Complete-data problem
Illustration
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Figure: A complete sample path of the Markov jump process generating the MAP
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Complete-data problem
Likelihood function
• The Complete-data likelihood function is

L(θ) =
k∏

i=1
πbi

i ·
k∏

i=1

∏
j 6=i

c
nij

ij exp(−cijzi) ·
k∏

i=1

k∏
j=1

d
nij

ij exp(−dijzi).

• Where
• bi, the number of processes that start in state i,
• zi, the total time spent in state i,
• nij , the total number of transitions from state i to state j not associated
with an arrival,

• nij , the total number of transitions from state i to state j associated with
an arrival,

• The maximum likelihood estimators are

π̂i = bi, ĉij = nij

zi
, d̂ij = nij

zi
. (1)
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EM-algorithm
EM-algorithm

• Now consider the case of incomplete-data.

• We observe a vector of states X = (xt1 , xt2 , . . . , xtn), where t1 < t2 < . . . < tn.

• We also observe a vector of indicators I = (it1 , it2 , . . . , itn
). ith

equals 1 if the
h’th observation is an arrival, 0 otherwise.

• The pair (X, I) is the incomplete data.

• For the E-step, we need expressions for E(Zk|X, I), E(Nij |X, I), E(N ij |X, I)
and E(Bi|X, I)
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EM-algorithm
Some notation

• First, some notation. Put ∆h = th − th−1, h = 2, . . . , (n− 1), with ∆h = t1.

• Mk
ij(h) = E(Zk|X(0) = i,X(∆h) = j) = the expected sojourn time in state k,

given that the process was initialised in state i and is in state j at time t.

• fkl
ij (h) = E(Nkl|X(0) = i,X(∆h) = j) = the expected number of jumps not
caused by an event from k to l, given that X was initialised in state i and is in
state j after time t.

• fkl

ij (h) = E(Nkl|X(0) = i,X(∆h) = j) = same as for fkl
ij (t), but for the

number of jumps caused by an event.
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EM-algorithm
Some notation

• Assuming homogeneity, we may then write
• E(Zk|X) = Mk

πxt1
(1) +

∑n
h=2M

k
xth−1 xth

(h).
• E(Nij |X) = f ij

πxt1
(1) +

∑n
h=2 f

ij
xth−1 xth

(h).

• E(N ij |X) = f
ij

πxt1
(1) +

∑n
h=2 f

ij

xth−1 xth
(h).

• E(Bi|X) = E(Bi|X(t1) = xt1 , I(t1) = it1).

• Thus, the problem is reduced to finding expressions for M,f, f and
E(Bi|Xt1 , It1).
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EM-algorithm
Integral calculation

• Define the matrices
• Mkk′(h) =

∫∆h

0 exp(Cu)eke′k exp(C(∆h − u))du.
• Mkl′(h) =

∫∆h

0 exp(Cu)eke′l exp(C(∆h − u))du.

• Where ei is the i’th unit vector of appropriate dimension.

• A way to calculate the integrals is

Mkl′(t) =
(
I 0

)
exp

([
C eke′l
0 C

]
t

)(
0
I

)
,

• where I is the identity matrix of dimension k × k and 0 is a matrix of zeroes of
dimension k × k.
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EM-algorithm
E-step formulas

• The E-step formulas are as follows, when h ≥ 2

Mk
ij(h) = eiMkk′(h)Dith ej

ei exp(C∆h)Dith ej

, fkl
ij (h) = ckl

eiMkl′(h)Dith ej

ei exp(C∆h)Dith ej

,

f
kl

ij (h) = 0 for l 6= j, f
kl

ij (h) = dkj
ei exp(C∆h)Dith ek

ei exp(C∆h)Dith ej

for l = j.

• When h = 1, replace all the ei vectors by π. Also,

E(Bi|X(t1), It1) =
πie′i exp(Ct1)Di1ext1

π exp(Ct1)Di1ext1

.
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Extensions
Covariates

• We can parameterize the transition intensities using covariates.

• Let Z denote the covariaties.

• A popular model in survival analysis is the Cox proportional hazards model

λ(t|Z) = λ0(t) exp (βZ) .

• This gives an inhomogeneous model, unless we put λ0(t) = λ.

13 of 18



Extensions
Phase-type sojourn times

• Exponential sojourn times may be unrealistic.

• Consider the Markov jump process Y (t) with an expanded state space

{11, . . . , 1m1} ∪ {21, . . . , 2m2} ∪ . . . ∪ {k1, . . . , kmk
}

• Where mi, i = 1, 2, . . . , k is the number of sub-states for the i’th batch state.
Let m = m1 +m2 + . . .+mk denote the dimension of the expanded state space.

• Canonical representations should be used. That is, Coxian structures with
increasing mean sojourn times.

• The sub-states do not have a physical interpretation, i.e. we cannot observe
them.

• Y (t) is a semi-Markov jump process with the following relation to X(t).

P (X(t) = r|Y (t) = ri) = 1

• This is a hidden Markov model with deterministic state-dependent distributions.
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Extensions
Estimation with Phase-type sojourn times

• The likelihood function is

L(θ) = π

(
n∏

h=1
Γ(h)P (xth

)
)

• Where Γ(h) is an m×m matrix, where the (i, j)-th element is
P (X(∆h) = j|X(0) = i, Ith

= ith
). We find these by

ei exp(C∆h)Dith ej

ei exp(C∆h)Dith 1
.

• Where 1 is a vector of ones of appropriate dimension.

• P(xth
) is an m×m diagonal matrix, where the i’th diagonal elements is

P (X(th) = xth
|Y (th) = i)
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Extensions
Misclassification models

• With a Hidden Markov Model defined, we can easily include the possibility of
misclassification.

• This can be the case when there is uncertainty on the state observations.

• In survival analysis, this is known as a censored state.

• Let ers denote the probability of wrongly classifying X(t) in batch-state s, when
the true batch-state is r. We can write this as

P (X(th) = r|Y (th) = s) = ers.

• This gives categorical state-dependent distributions, and we may use the previous
likelihood function.
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Conclusion
Conclusion

• We have extended some EM-algorithms from the literature to account for
different observation types.

• We have shown how these models may be applied to a certain model from
survival analysis.

• Covariates can be included, with certain limitations.

• We can have phase-type sojourn times at the cost of a harder estimation problem.

• And finally, we can allow uncertainty on the state observations.
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Conclusion
Further Work

• Derive formulas for the Fisher information matrix.

• Study the large sample properties of the algorithm.

• Develop estimators for non-homogeneous Markov processes.
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