Estimation of discretely observed Markov Jump Processes with applications in survival analysis

Salim Serhan

Technical University of Denmark (DTU)

DTU Compute
Department of Applied Mathematics and Computer Science

Outline

- Problem formulation
- Complete-data problem
- EM-algorithm
- Extensions
- Conclusion

Problem formulation

- Consider a Markov Jump Process, $\{X(t)\}_{t \geq 0}$, of dimension k, initial probability vector $\boldsymbol{\pi}$ and generator $\mathbf{Q}=\mathbf{C}+\mathbf{D}$.
- $X(t)$ generates a Markovian arrival process (MAP).
- We examine following estimation problem: We observe state of $X(t)$ at certain discrete time points, as well as at the time of all arrivals in the MAP.
- It follows that the states have a physical interpretation.
- We wish to estimate $\boldsymbol{\theta}=(\boldsymbol{\pi}, \mathbf{C}, \mathbf{D})$.

Illustration

Figure: An illustration of the discrete observation sampling scheme. The stars are arrivals while the crosses are discrete observations.

- Observations are labeled as discrete observations or arrivals.

An example from survival analysis

$\boldsymbol{\pi}=(1,0,0,0,0), \mathbf{C}=\left[\begin{array}{ccccc}. & c_{12} & c_{13} & 0 & 0 \\ 0 & . & 0 & c_{24} & 0 \\ 0 & 0 & . & c_{34} & 0 \\ 0 & 0 & 0 & . & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right], \mathbf{D}=\left[\begin{array}{ccccc}0 & 0 & 0 & 0 & d_{15} \\ 0 & 0 & 0 & 0 & d_{25} \\ 0 & 0 & 0 & 0 & d_{35} \\ 0 & 0 & 0 & 0 & d_{45} \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$.

Illustration

Figure: A complete sample path of the Markov jump process generating the MAP

Likelihood function

- The Complete-data likelihood function is

$$
L(\boldsymbol{\theta})=\prod_{i=1}^{k} \pi_{i}^{b_{i}} \cdot \prod_{i=1}^{k} \prod_{j \neq i} c_{i j}^{n_{i j}} \exp \left(-c_{i j} z_{i}\right) \cdot \prod_{i=1}^{k} \prod_{j=1}^{k} d_{i j}^{\bar{n}_{i j}} \exp \left(-d_{i j} z_{i}\right)
$$

- Where
- b_{i}, the number of processes that start in state i,
- z_{i}, the total time spent in state i,
- $n_{i j}$, the total number of transitions from state i to state j not associated with an arrival,
- $\bar{n}_{i j}$, the total number of transitions from state i to state j associated with an arrival,
- The maximum likelihood estimators are

$$
\begin{equation*}
\hat{\pi}_{i}=b_{i}, \quad \hat{c}_{i j}=\frac{n_{i j}}{z_{i}}, \quad \hat{d}_{i j}=\frac{\bar{n}_{i j}}{z_{i}} \tag{1}
\end{equation*}
$$

EM-algorithm

- Now consider the case of incomplete-data.
- We observe a vector of states $\mathbf{X}=\left(x_{t_{1}}, x_{t_{2}}, \ldots, x_{t_{n}}\right)$, where $t_{1}<t_{2}<\ldots<t_{n}$.
- We also observe a vector of indicators $\mathbf{I}=\left(i_{t_{1}}, i_{t_{2}}, \ldots, i_{t_{n}}\right) . i_{t_{h}}$ equals 1 if the h 'th observation is an arrival, 0 otherwise.
- The pair (\mathbf{X}, \mathbf{I}) is the incomplete data.
- For the E-step, we need expressions for $E\left(Z_{k} \mid \mathbf{X}, \mathbf{I}\right), E\left(N_{i j} \mid \mathbf{X}, \mathbf{I}\right), E\left(\bar{N}_{i j} \mid \mathbf{X}, \mathbf{I}\right)$ and $E\left(B_{i} \mid \mathbf{X}, \mathbf{I}\right)$

Some notation

- First, some notation. Put $\Delta_{h}=t_{h}-t_{h-1}, h=2, \ldots,(n-1)$, with $\Delta_{h}=t_{1}$.
- $M_{i j}^{k}(h)=E\left(Z_{k} \mid X(0)=i, X\left(\Delta_{h}\right)=j\right)=$ the expected sojourn time in state k, given that the process was initialised in state i and is in state j at time t.
- $f_{i j}^{k l}(h)=E\left(N_{k l} \mid X(0)=i, X\left(\Delta_{h}\right)=j\right)=$ the expected number of jumps not caused by an event from k to l, given that X was initialised in state i and is in state j after time t.
- $\bar{f}_{i j}^{k l}(h)=E\left(\bar{N}_{k l} \mid X(0)=i, X\left(\Delta_{h}\right)=j\right)=$ same as for $f_{i j}^{k l}(t)$, but for the number of jumps caused by an event.

Some notation

- Assuming homogeneity, we may then write
- $E\left(Z_{k} \mid \mathbf{X}\right)=M_{\pi x_{t_{1}}}^{k}(1)+\sum_{h=2}^{n} M_{x_{t_{h-1} x_{t_{h}}}}^{k}(h)$.
- $E\left(N_{i j} \mid \mathbf{X}\right)=f_{\pi x_{t_{1}}}^{i j}(1)+\sum_{h=2}^{n} f_{x_{t_{h-1}} x_{t_{h}}}^{i j}(h)$.
- $E\left(\bar{N}_{i j} \mid \mathbf{X}\right)=\bar{f}_{\boldsymbol{\pi} x_{t_{1}}}^{i j}(1)+\sum_{h=2}^{n} \bar{f}_{x_{t_{h-1}} x_{t_{h}}}^{j}(h)$.
- $E\left(B_{i} \mid \mathbf{X}\right)=E\left(B_{i} \mid X\left(t_{1}\right)=x_{t_{1}}, I\left(t_{1}\right)=i_{t_{1}}\right)$.
- Thus, the problem is reduced to finding expressions for M, f, \bar{f} and $E\left(B_{i} \mid X_{t_{1}}, I_{t_{1}}\right)$.

Integral calculation

- Define the matrices
- $\mathbf{M}^{k k^{\prime}}(h)=\int_{0}^{\Delta_{h}} \exp (\mathbf{C} u) \mathbf{e}_{k} \mathbf{e}_{k}^{\prime} \exp \left(\mathbf{C}\left(\Delta_{h}-u\right)\right) \mathrm{d} u$.
- $\mathbf{M}^{k l^{\prime}}(h)=\int_{0}^{\Delta_{h}} \exp (\mathbf{C} u) \mathbf{e}_{k} \mathbf{e}_{l}^{\prime} \exp \left(\mathbf{C}\left(\Delta_{h}-u\right)\right) \mathrm{d} u$.
- Where \mathbf{e}_{i} is the i 'th unit vector of appropriate dimension.
- A way to calculate the integrals is

$$
\mathbf{M}^{k l^{\prime}}(t)=\left(\begin{array}{ll}
I & \mathbf{0}
\end{array}\right) \exp \left(\left[\begin{array}{cc}
\mathbf{C} & \mathbf{e}_{k} \mathbf{e}_{l}^{\prime} \\
\mathbf{0} & \mathbf{C}
\end{array}\right] t\right)\binom{\mathbf{0}}{I}
$$

- where I is the identity matrix of dimension $k \times k$ and $\mathbf{0}$ is a matrix of zeroes of dimension $k \times k$.

E-step formulas

- The E-step formulas are as follows, when $h \geq 2$

$$
\begin{aligned}
M_{i j}^{k}(h) & =\frac{\mathbf{e}_{i} \mathbf{M}^{k k^{\prime}}(h) \mathbf{D}^{i_{t_{h}}} \mathbf{e}_{j}}{\mathbf{e}_{i} \exp \left(\mathbf{C} \Delta_{h}\right) \mathbf{D}^{i_{t_{h}}} \mathbf{e}_{j}}, \quad f_{i j}^{k l}(h)=c_{k l} \frac{\mathbf{e}_{i} \mathbf{M}^{k l^{\prime}}(h) \mathbf{D}^{i_{t_{h}}} \mathbf{e}_{j}}{\mathbf{e}_{i} \exp \left(\mathbf{C} \Delta_{h}\right) \mathbf{D}^{i_{t_{h}}} \mathbf{e}_{j}} \\
\bar{f}_{i j}^{k l}(h) & =0 \text { for } l \neq j, \quad \bar{f}_{i j}^{k l}(h)=d_{k j} \frac{\mathbf{e}_{i} \exp \left(\mathbf{C} \Delta_{h}\right) \mathbf{D}^{i_{t_{h}}} \mathbf{e}_{k}}{\mathbf{e}_{i} \exp \left(\mathbf{C} \Delta_{h}\right) \mathbf{D}^{i_{t_{h}}} \mathbf{e}_{j}} \text { for } l=j
\end{aligned}
$$

- When $h=1$, replace all the \mathbf{e}_{i} vectors by $\boldsymbol{\pi}$. Also,

$$
E\left(B_{i} \mid X\left(t_{1}\right), I_{t_{1}}\right)=\frac{\boldsymbol{\pi}_{i} \mathbf{e}_{i}^{\prime} \exp \left(\mathbf{C} t_{1}\right) \mathbf{D}^{i_{1}} \mathbf{e}_{x_{t_{1}}}}{\boldsymbol{\pi} \exp \left(\mathbf{C} t_{1}\right) \mathbf{D}^{i_{1}} \mathbf{e}_{x_{t_{1}}}}
$$

Covariates

- We can parameterize the transition intensities using covariates.
- Let \mathbf{Z} denote the covariaties.
- A popular model in survival analysis is the Cox proportional hazards model

$$
\lambda(t \mid \mathbf{Z})=\lambda_{0}(t) \exp (\beta \mathbf{Z}) .
$$

- This gives an inhomogeneous model, unless we put $\lambda_{0}(t)=\lambda$.

Phase-type sojourn times

- Exponential sojourn times may be unrealistic.
- Consider the Markov jump process $Y(t)$ with an expanded state space

$$
\left\{1_{1}, \ldots, 1_{m_{1}}\right\} \cup\left\{2_{1}, \ldots, 2_{m_{2}}\right\} \cup \ldots \cup\left\{k_{1}, \ldots, k_{m_{k}}\right\}
$$

- Where $m_{i}, i=1,2, \ldots, k$ is the number of sub-states for the i 'th batch state. Let $m=m_{1}+m_{2}+\ldots+m_{k}$ denote the dimension of the expanded state space.
- Canonical representations should be used. That is, Coxian structures with increasing mean sojourn times.
- The sub-states do not have a physical interpretation, i.e. we cannot observe them.
- $Y(t)$ is a semi-Markov jump process with the following relation to $X(t)$.

$$
P\left(X(t)=r \mid Y(t)=r_{i}\right)=1
$$

- This is a hidden Markov model with deterministic state-dependent distributions.

Estimation with Phase-type sojourn times

- The likelihood function is

$$
L(\boldsymbol{\theta})=\boldsymbol{\pi}\left(\prod_{h=1}^{n} \boldsymbol{\Gamma}(h) \boldsymbol{P}\left(x_{t_{h}}\right)\right)
$$

- Where $\boldsymbol{\Gamma}(h)$ is an $m \times m$ matrix, where the (i, j)-th element is $P\left(X\left(\Delta_{h}\right)=j \mid X(0)=i, I_{t_{h}}=i_{t_{h}}\right)$. We find these by

$$
\frac{\mathbf{e}_{i} \exp \left(\mathbf{C} \Delta_{h}\right) \mathbf{D}^{i_{t_{h}}} \mathbf{e}_{\mathbf{j}}}{\mathbf{e}_{i} \exp \left(\mathbf{C} \Delta_{h}\right) \mathbf{D}^{i_{t_{h}}} \mathbf{1}}
$$

- Where $\mathbf{1}$ is a vector of ones of appropriate dimension.
- $\mathbf{P}\left(x_{t_{h}}\right)$ is an $m \times m$ diagonal matrix, where the i 'th diagonal elements is $P\left(X\left(t_{h}\right)=x_{t_{h}} \mid Y\left(t_{h}\right)=i\right)$

Misclassification models

- With a Hidden Markov Model defined, we can easily include the possibility of misclassification.
- This can be the case when there is uncertainty on the state observations.
- In survival analysis, this is known as a censored state.
- Let $e_{r s}$ denote the probability of wrongly classifying $X(t)$ in batch-state s, when the true batch-state is r. We can write this as

$$
P\left(X\left(t_{h}\right)=r \mid Y\left(t_{h}\right)=s\right)=e_{r s}
$$

- This gives categorical state-dependent distributions, and we may use the previous likelihood function.

Conclusion

- We have extended some EM-algorithms from the literature to account for different observation types.
- We have shown how these models may be applied to a certain model from survival analysis.
- Covariates can be included, with certain limitations.
- We can have phase-type sojourn times at the cost of a harder estimation problem.
- And finally, we can allow uncertainty on the state observations.

Further Work

- Derive formulas for the Fisher information matrix.
- Study the large sample properties of the algorithm.
- Develop estimators for non-homogeneous Markov processes.

