
Introduction Model Model analysis Main theorem Boundary behavior Final remarks

Matrix-analytic solution of second order Markov
fluid models by using matrix-quadratic equations
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Outline

There are efficient numerical methods for regular (first order)
Markov fluid models.
Can we use them for second order Markov fluid models?
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Fluid models

Fluid models
Fluid flows in to and out from an infinite buffer.
Fluid flow is modulated by a background Markov chain.

first order: fluid level changes at a constant rate

Z(t + ∆)−Z(t) = ri ∆ in state i .

second order: normal distributed fluid increment

Z(t + ∆)−Z(t) = N (ri ∆, σ
2
i ∆) in state i .
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First order fluid models

Nice special cases allow symbolic solutions (Anick,Mitra,Sondhi).

Numerical methods

Spectral decomposition based methods (Kulkarni)

Ricatti equation based solutions (Ahn-Ramaswami,
Soares-Latouche)

Quadratic matrix equation based solution (Ramaswami)

Gábor Horváth, Miklós Telek Matrix-analytic solution of second order Markov fluid models



Introduction Model Model analysis Main theorem Boundary behavior Final remarks

Second order fluid models

Numerical methods
Spectral decomposition based methods
(Karandikar-Kulkarni)
Transformation to first order differential equation with larger
state space (Kulkarni)
Quadratic matrix equation based solution
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Second order Markov Fluid model

Main characterization of the stochastic processes:
infinite buffer with lower boundary at level 0.
Z(t): fluid level process.
fluid increment process is characterized by

X (t): modulating CTMC with state space S = {1, . . . ,L}
and generator Q,
fluid rates, rj , j ∈ {1, . . . ,L} described by diagonal matrix
R = diag(r1, . . . , rL).
variance parameter, σj , j ∈ {1, . . . ,L} described by diagonal
matrix S = diag(σ2

1/2, . . . , σ
2
L/2)
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Second order Markov Fluid model

Performance measures of interest:
stationary fluid level distribution

fi(x) = lim
t→∞

d
dx

P(X (t) < x ,Z(t) = i),

stationary buffer empty probability

pi = lim
t→∞

P(X (t) = 0,Z(t) = i).
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Analytical description

f (x) satisfies the following differential and boundary equations

d
dx

f (x)R − d2

dx2 f (x)S = f (x)Q, (1)

f (0)R − f ′(0)S = pQ, (2)

where f ′(0) = d
dx f (x)|x=0.
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State classification

The states in S are divided into
first order states with σ2

i = 0 and
second order states (σ2

i > 0)
with reflecting boundary.
with absorbing boundary.

Properties
In first order states:

pi > 0, ∀i : ri < 0 and pi = 0, ∀i : ri > 0.

In second order
reflecting states:

pi = 0, ∀i : σ2
i > 0,

absorbing states:

fi (0) = 0, ∀i : σ2
i > 0.
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State classification

The state space S is partitioned according to the sign of the
rates and variances as follows:

S+ = {i : ri > 0, σ2
i = 0}, S− = {i : ri < 0, σ2

i = 0},
Sσ+ = {i : ri > 0, σ2

i > 0}, Sσ− = {i : ri < 0, σ2
i > 0}.

The set of states is decomposed as
S = S+ ∪ Sσ+ ∪ Sσ− ∪ S− = S• ∪ S−, where
S• = S+ ∪ Sσ+ ∪ Sσ−.
We assume that the states are numbered according to the
S+,Sσ+,Sσ−,S− order of subsets.

We exclude ri = 0 !!!
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Solution of the differential equation

Similar to first order models, f (x) can be expressed in a
matrix-exponential form (Karandikar-Kulkarni)

f (x) = πeK x [I Ψ
]
, (3)

where
π is a row vector of size |S•|,
the size of K is |S•| × |S•|
and the size of Ψ is |S•| × |S−|.

It remains to solve
matrices K and Ψ,
vector π,
and the vector of probability masses at level 0 p.
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Quadratic equations

Substituting (3) into the differential equation (1) gives

KR• − K 2S• = Q•• + ΨQ−•,

K ΨR− − K 2ΨS−︸ ︷︷ ︸
0

= Q•− + ΨQ−−,

where S− = 0 has been exploited.

Our goal is to transform this set of quadratic equations into a
single one of size |S| with proper signs of the coefficients.
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Main theorem

Theorem
The minimal non-negative solution of the matrix-quadratic
equation F + RL + R2B = 0 defined by the QBD with forward,
local and backward matrix blocks

F =

[
Q̂•• + Î• + Ŝ• Q̂•−

0 0

]
,L =

[
−Î• − 2Ŝ• 0

Q̂−• Q̂−− − I−

]
,

B =

[
Ŝ• 0
0 I−

]
is R =

[
K̂ + I• Ψ̂

0 0

]
.
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Main theorem

Where the notations with ˆ denotes properly scaled quantities

C• =

R+

Rσ+

−Rσ−

 and C− = −R−,

c > max

max
i∈S+

−qii

ri
, max

i∈Sσ−⋃
Sσ+

−ri +
√

r2
i − 2σ2

i qii

σ2
i

 ,

K̂ = 1
c C−1
• KC•, Ψ̂ = 1

c C−1
• ΨC−, Ŝ• = cC−1

• S•, Q̂ = 1
c C−1Q,

and Î• = C−1
• R• =

I+
Iσ+

−Iσ−

.
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Main theorem

The elements of the proof:

Simple substitution provides the identity with the differential
equation.
The scaling ensures that B, L and F are proper QBD
matrix blocks.
The QBD solution ensured the (minimal non-negative)
solution with the proper eigenvalues.
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Reflecting boundary at second order states

In all second order states then p• = 0
Inserting the matrix-exponential solution into (2) leads to

πR• − πKS• = p−Q−•, (4)
πΨR− = p−Q−−, (5)

since S− = 0.
From (5) and (4)

π(R• − KS• −ΨR−(Q−−)−1Q−•) = 0,

p− = πΨR−(Q−−)−1,

where R−(Q−−)−1 is a non-negative matrix.
The normalization condition (

∫
x f (x)1 + p−1 = 1), is

π
(

(−K )−1 [I Ψ
]
1 + R−(Q−−)−11

)
= 1.
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Absorbing boundary at second order states

fσ+(0) = 0 and fσ−(0) = 0.
f (0) = π

[
I Ψ

]
implies that πσ+ = 0 and πσ− = 0.

Substituting it into (2) gives

f (0)R =
[
π+R+ 0 0 π+Ψ+−R−

]
,

f ′(0)S =
[
0 π+K +,σ+Sσ+ π+K +,σ−Sσ− 0

]
,

since S+ = S− = 0.
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Absorbing boundary at second order states

For the partitioned vectors and block matrices (2) can be
rewritten as

π+R+ = pσ+Qσ+,+ + pσ−Qσ−,+ + p−Q−,+,
−π+K +,σ+Sσ+ = pσ+Qσ+,σ+ + pσ−Qσ−,σ+ + p−Q−,σ+ ,

−π+K +,σ−Sσ− = pσ+Qσ+,σ− + pσ−Qσ−,σ− + p−Q−,σ− ,
π+Ψ+−R− = pσ+Qσ+,− + pσ−Qσ−,− + p−Q−,−,

which gives the linear system[
π+ pσ+ pσ− p−

]
·

−R+ K +,σ+Sσ+ K +,σ+Sσ− −Ψ+−R−
Qσ+,+ Qσ+,σ+ Qσ+,σ− Qσ+,−
Qσ−,+ Qσ−,σ+ Qσ−,σ− Qσ−,−
Q−,+ Q−,σ+ Qσ−,− Q−,−

 = 0.
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Absorbing boundary at second order states

Whose normalization condition is

[
π+ pσ+ pσ− p−

]
·


(−K )−1

+•
[
I Ψ

]
1

1

1

1

 = 1.
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Final remarks

Summary

1 It was possible to recycle the methodology developed for first
order fluid models for the analysis of second order fluid models.

2 The proof is based on known properties of QBD quadratic matrix
equations.

3 Similar to first order fluid models, based on K and Ψ the
boundary conditions are obtained from the solution of a linear
system.

Plans

1 analysis of further second order fluid models.
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