
Performance Modeling of 
Delay-based Dynamic Speed Scaling

Systems

Caglar Tunc Nail Akar
caglar@ee.bilkent.edu.tr akar@ee.bilkent.edu.tr

Bilkent University
Deparment of Electrical and Electronics Engineering

Ankara, Turkey

June 28, 2016



Performance Modeling of Delay-based Dynamic Speed Scaling 2

Outline

• Introduction

• Problem Definition

• Markov Fluid Queues

• Delay-based Dynamic Speed Scaling Model

• Numerical Examples

• Conclusion



Performance Modeling of Delay-based Dynamic Speed Scaling 3

Single Server Speed Scaling

• Speed scaling: Adapting the speed of a computer or

communication system to tradeoff energy and

performance

i. Static speed scaling: System is busy ⇒ single speed,

System is idle ⇒ sleep mode

ii. Dynamic speed scaling: Speed is continuously adapted

based on the system state, i.e., the number of jobs in the

system, delay experienced by jobs, etc.
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Single Server Speed Scaling

• Low speed ↔ low power

• Takes longer to finish a task with lower speed, BUT

generally less energy is consumed

• How to adapt the speed according to the system state

in order to obtain energy savings?



[1]

[2]
.

F. Yao, A. Demers, and S. Shenker. A Scheduling Model for Reduced CPU Energy. In Proceedings
of FOCS '95, pages 374-, Washington, DC, USA, 1995. IEEE Computer Society.
C. Gunaratne, K. Christensen, B. Nordman, and S. Suen. Reducing the Energy Consumption of
Ethernet with Adaptive Link Rate (ALR). Computers, IEEE Trans on, 57(4):448-461, April 2008.

Motivating Application Areas
o Adaptive speed in processors and computer systems

 Change the speed of a processor according to the number

of jobs waiting in the system to save energy [1]

o Adaptive link rate (ALR) schemes in Ethernet links

 Change the rate of an Ethernet link according to the link

utilization to obtain energy savings (not standardized) [2]

 Data rate =�100 Mbps, if link utilization < 10%
1 Gbps, if link utilization ≥ 10%



Performance Modeling of Delay-based Dynamic Speed Scaling 6

Motivating Future Applications

o Wireless link that supports different power levels and

adaptive coding and modulation (ACM) techniques

o Adjust the link rate according to delays of the jobs in the

system

o Save from the power while satisfying QoS constraints
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Delay-based Dynamic Speed Scaling

• Assign a service rate for the head-of-the-line (HOL) job of a

FIFO queue according to the total delay it has experienced

in the system

• Jobs may have strict deadlines

 Jobs with delays greater than the deadline abandon the

system without service

Low service rate Low power→ Energy saving→



Performance Modeling of Delay-based Dynamic Speed Scaling 8

Markov Fluid Queues (MFQs)
• Background process determines the rate of change (drift) of a 

buffer

• Finite state space Continuous Time Markov Chain (CTMC)

• Each state has its own drift value

• Infinitesimal generator and drift values

• Multi-Regime (Multi-Layer/Multi-Threshold) MFQ (MRMFQ)

 Buffer is divided into a finite number of regimes

 Each regime has own infinitesimal generator and drift values



Sample Evolution of an MRMFQ

1 2

Time

State 1
Regime 1

State 1
Regime 2

State 2
Regime 2

State 2
Regime 1

𝑿𝑿(𝒕𝒕)

𝑻𝑻(𝟐𝟐) = 𝑩𝑩

𝑻𝑻(𝟏𝟏)

𝒖𝒖

𝑻𝑻(𝟎𝟎) = 𝟎𝟎

𝐙𝐙(𝒕𝒕)



[1] -r fl
-

H. E. Kankaya and N. Akar. Solving multi egime feedback uid queues. Stochastic Models,
24(3):425 450, 2008.

• 𝑍𝑍(𝑡𝑡): 𝑁𝑁-state CTMC, 𝑁𝑁 < ∞
• 𝑄𝑄 𝑘𝑘 : Infinitesimal generator of 𝑍𝑍(𝑡𝑡) for 1 ≤ 𝑘𝑘 ≤ 𝐾𝐾

• 𝑟𝑟𝑖𝑖
(𝑘𝑘) : Net drift of the buffer for 0 ≤ 𝑖𝑖 ≤ 𝑁𝑁 − 1 and 1 ≤ 𝑘𝑘 ≤ 𝐾𝐾

• 𝑅𝑅 𝑘𝑘 : 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 𝑟𝑟0
(𝑘𝑘) 𝑟𝑟1

(𝑘𝑘) … 𝑟𝑟𝑁𝑁−1
(𝑘𝑘) , for 1 ≤ 𝑘𝑘 ≤ 𝐾𝐾

𝑑𝑑
𝑑𝑑𝑑𝑑
𝑓𝑓 𝑘𝑘 (𝑥𝑥)𝑅𝑅 𝑘𝑘 = 𝑓𝑓 𝑘𝑘 (𝑥𝑥)𝑄𝑄 𝑘𝑘 .→

𝑐𝑐 𝑘𝑘 = 𝑐𝑐0
𝑘𝑘 𝑐𝑐1

𝑘𝑘 … 𝑐𝑐𝑁𝑁−1
𝑘𝑘 ,

𝑐𝑐𝑖𝑖
𝑘𝑘 = lim

𝑡𝑡→∞
Pr 𝑋𝑋(𝑡𝑡) = 𝑇𝑇 𝑘𝑘 , 𝑍𝑍(𝑡𝑡) = 𝑖𝑖 ,

𝑓𝑓𝑖𝑖
𝑘𝑘 (𝑥𝑥) = lim

𝑡𝑡→∞

𝑑𝑑
𝑑𝑑𝑥𝑥 Pr 𝑋𝑋(𝑡𝑡) ≤ 𝑥𝑥, 𝑍𝑍(𝑡𝑡) = 𝑖𝑖 ,

𝑓𝑓 𝑘𝑘 (𝑥𝑥) = �𝑓𝑓0
𝑘𝑘 (𝑥𝑥) 𝑓𝑓1

𝑘𝑘 (𝑥𝑥) … 𝑓𝑓𝑁𝑁−1
𝑘𝑘 (𝑥𝑥 ,

Multi-Regime Markov Fluid Queues
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• 𝑇𝑇 0 𝑇𝑇 1 …𝑇𝑇 𝐾𝐾 : Boundary points, 𝑇𝑇 0 =0, 𝑇𝑇 𝐾𝐾 =∞
• �𝑄𝑄 𝑘𝑘 : Infinitesimal generator at boundary 𝑘𝑘 for 0 ≤ 𝑘𝑘 < 𝐾𝐾

• �̃�𝑟𝑖𝑖
(𝑘𝑘) : Net drift of the buffer at boundary 𝑘𝑘 for 0 ≤ 𝑘𝑘 < 𝐾𝐾

• �𝑅𝑅 𝑘𝑘 : 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 𝑟𝑟0
(𝑘𝑘) 𝑟𝑟1

(𝑘𝑘) … 𝑟𝑟𝑁𝑁−1
(𝑘𝑘) , for 1 ≤ 𝑘𝑘 < 𝐾𝐾

𝑑𝑑
𝑑𝑑𝑑𝑑
𝑓𝑓 𝑘𝑘 (𝑥𝑥)𝑅𝑅 𝑘𝑘 = 𝑓𝑓 𝑘𝑘 (𝑥𝑥)𝑄𝑄 𝑘𝑘 .→

𝑐𝑐 𝑘𝑘 = 𝑐𝑐0
𝑘𝑘 𝑐𝑐1

𝑘𝑘 … 𝑐𝑐𝑁𝑁−1
𝑘𝑘 ,

𝑐𝑐𝑖𝑖
𝑘𝑘 = lim

𝑡𝑡→∞
Pr 𝑋𝑋(𝑡𝑡) = 𝑇𝑇 𝑘𝑘 , 𝑍𝑍(𝑡𝑡) = 𝑖𝑖 ,

𝑓𝑓𝑖𝑖
𝑘𝑘 (𝑥𝑥) = lim

𝑡𝑡→∞

𝑑𝑑
𝑑𝑑𝑥𝑥 Pr 𝑋𝑋(𝑡𝑡) ≤ 𝑥𝑥, 𝑍𝑍(𝑡𝑡) = 𝑖𝑖 ,

𝑓𝑓 𝑘𝑘 (𝑥𝑥) = �𝑓𝑓0
𝑘𝑘 (𝑥𝑥) 𝑓𝑓1

𝑘𝑘 (𝑥𝑥) … 𝑓𝑓𝑁𝑁−1
𝑘𝑘 (𝑥𝑥 ,

Multi-Regime Markov Fluid Queues
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Boundary Conditions of MRMFQs



[1] fi t
fl

M. A. Yazici and N. Akar. The nite/innite horizon ruin problem with multi- hreshold premiums: a
Markov uid queue approach. Annals of Operations Research, 2016.

• An 𝑁𝑁-state 𝐾𝐾-regime MFQ system requires

 a Schur decomposition and a pair of Sylvester

equations for each regime: 𝑂𝑂(𝑁𝑁3𝐾𝐾)

 the solution of a linear matrix equation of at most size

𝑁𝑁 2𝐾𝐾 + 1

 Exploiting the block tridiagonal form of the linear

matrix equation reduces the computational

complexity to 𝑶𝑶(𝑵𝑵𝟑𝟑𝑲𝑲) [1]

Computational Complexity
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• Server has 𝐾𝐾 + 1 available service rates to select

• Exponentially distributed service times with rate 𝜇𝜇𝑘𝑘, 𝑘𝑘 = 1, … ,𝐾𝐾 + 1

• Poisson job arrivals with rate 𝜆𝜆

• 𝐷𝐷(𝑡𝑡): Delay already experienced by the HOL job at service start time 𝑡𝑡

• 𝐴𝐴(𝑡𝑡): Unfinished work (process) in the system at time 𝑡𝑡

• 𝑋𝑋(𝑡𝑡): Fluid level at time 𝑡𝑡, obtained by replacing abrupt jumps in 𝑆𝑆 𝑡𝑡

by linear decrements

System Model
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• Regime boundaries of the MRMFQ model

0 = 𝑇𝑇(0) < 𝑇𝑇(1) < ⋯ < 𝑇𝑇 𝐾𝐾 < 𝑇𝑇 𝐾𝐾+1 = ∞

• When 𝑇𝑇 𝑘𝑘−1 ≤ 𝐷𝐷 𝑡𝑡 < 𝑇𝑇 𝑘𝑘 , the HOL job is served with rate 𝜇𝜇𝑘𝑘
• Service rate is fixed during the service of the HOL job.

• Operating power at rate 𝜇𝜇𝑘𝑘 is 𝑃𝑃𝑘𝑘.

• If 𝑇𝑇 𝐾𝐾 ≤ 𝐷𝐷 𝑡𝑡 , the job is either: i) served with rate 𝜇𝜇𝐾𝐾+1, or ii) blocked.

• 𝑇𝑇 𝐾𝐾 is called the deadline or delay threshold.

System Model
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Sample Paths
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o 𝐼𝐼𝑘𝑘: Service state in regime 𝑘𝑘, 𝑘𝑘 = 1,2, … ,𝐾𝐾 + 1

 𝐼𝐼𝑘𝑘→𝜇𝜇𝑘𝑘
 𝑋𝑋 𝑡𝑡 is increased with a drift of 1.

o D: State representing the inter-arrival times

 𝑋𝑋 𝑡𝑡 is decreased with a drift of 1.

State Space
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…

• 𝑋𝑋 𝑡𝑡 = 0

• Regime-𝑘𝑘

𝐼𝐼1

𝐼𝐼𝑘𝑘−1𝐼𝐼2 𝐼𝐼𝑘𝑘𝐼𝐼1

𝜆𝜆

𝜇𝜇1 𝜇𝜇2
𝜇𝜇𝑘𝑘𝜇𝜇𝑘𝑘−1

𝜆𝜆

D

State Transitions

D



Performance Modeling of Delay-based Dynamic Speed Scaling 19

Infinitesimal Generator and Drift Matrices

𝑄𝑄(𝑗𝑗) =

0 ⋯ 0 0 0 ⋯ 0 0
⋮
0
0
0
⋮
0
0

⋯
⋯
⋯

⋯
⋯

⋮
0
0
0
⋮
0
0

⋮
0
−𝜇𝜇𝑗𝑗

0
⋮
0
𝜆𝜆

⋮
0
0

−𝜇𝜇𝑗𝑗−1
⋮
0
0

⋯
⋯
⋯
⋱
⋯
⋯

⋮
0
0
0
⋮

−𝜇𝜇1
0

0
𝜇𝜇𝑗𝑗
𝜇𝜇𝑗𝑗−1
⋮
𝜇𝜇1
−𝜆𝜆

,

𝐼𝐼𝐾𝐾+1

𝐼𝐼𝑗𝑗+1
𝐼𝐼𝑗𝑗
𝐼𝐼𝑗𝑗−1

𝐼𝐼1
D

⋮

⋮

𝐼𝐼𝐾𝐾+1 D𝐼𝐼1𝐼𝐼𝑗𝑗−1𝐼𝐼𝑗𝑗𝐼𝐼𝑗𝑗+1⋯ ⋯

𝑅𝑅(𝑘𝑘) = 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅(𝑰𝑰,−1) , 1 ≤ 𝑘𝑘 ≤ 𝐾𝐾 + 1, �𝑅𝑅(𝑘𝑘) = �
𝑅𝑅(𝑘𝑘+1), 1 ≤ 𝑘𝑘 ≤ 𝐾𝐾
𝐦𝐦𝐦𝐦𝐦𝐦 0,𝑅𝑅 1 , 𝑘𝑘 = 0

�𝑄𝑄(𝑗𝑗) = 𝑄𝑄(𝑗𝑗+1), except that there is no transition from 𝐼𝐼1 to D in �𝑄𝑄(0)
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• 𝐴𝐴 𝑡𝑡 determines the amount of delay that newly arriving jobs will

experience.

• By PASTA property, average system power, blocking probability and

the delay distribution can be calculated from the steady-state

probability distribution of state D.

lim
𝑡𝑡→∞

Pr 𝐴𝐴(𝑡𝑡) ≤ 𝑥𝑥 = lim
𝑡𝑡→∞

Pr 𝑋𝑋 𝑡𝑡 ≤ 𝑥𝑥, 𝑍𝑍 𝑡𝑡 = D
Pr 𝑍𝑍 𝑡𝑡 = D

The Delay Distribution
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• 𝑝𝑝𝑘𝑘: probability that a newly arriving job finds the system in regime 𝑘𝑘

• 𝑝𝑝0: probability that a newly arriving job finds the system empty

𝑝𝑝𝑘𝑘 = lim
𝑡𝑡→∞

Pr 𝑇𝑇(𝑘𝑘−1) < 𝐴𝐴(𝑡𝑡) < 𝑇𝑇(𝑘𝑘) , 1 ≤ 𝑘𝑘 ≤ 𝐾𝐾 + 1

𝑝𝑝0 = lim
𝑡𝑡→∞

Pr 𝐴𝐴 𝑡𝑡 = 0

• 𝑞𝑞𝑘𝑘: probability that a job is served with rate 𝜇𝜇𝑘𝑘

𝑞𝑞𝑘𝑘 = � 𝑝𝑝𝑘𝑘 , 𝑘𝑘 ≥ 2,
𝑝𝑝0 + 𝑝𝑝1, 𝑘𝑘 = 1.

𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑝𝑝0𝑃𝑃𝐼𝐼 + (1 − 𝑝𝑝0) �
𝑘𝑘=1

𝐾𝐾+1 𝑞𝑞𝑘𝑘
𝜇𝜇𝑘𝑘

∑𝑖𝑖=1𝐾𝐾+1 𝑞𝑞𝑖𝑖
𝜇𝜇𝑖𝑖
𝑃𝑃𝑘𝑘

Average Operating Power



Performance Modeling of Delay-based Dynamic Speed Scaling 22

• For the case of abandonments: 𝜇𝜇𝐾𝐾+1 → ∞, no energy is consumed

• 𝑝𝑝𝑏𝑏: blocking probability

𝑝𝑝𝑏𝑏 = lim
𝜇𝜇𝐾𝐾+1→∞

𝑝𝑝𝐾𝐾+1 = lim
𝑡𝑡→∞

lim
𝜇𝜇𝐾𝐾+1→∞

Pr 𝐴𝐴(𝑡𝑡) ≥ 𝑇𝑇(𝐾𝐾) .

Blocking Probability
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Numerical Examples
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Example I – Case of Abondonments
• 𝐾𝐾 = 2, 𝑇𝑇(1) = 10, 𝑇𝑇(2) = 20, 𝜇𝜇1 = 0.5, 𝜇𝜇2 = 1, 𝜂𝜂 = 𝜆𝜆/𝜇𝜇2

• Jobs with delays greater than 𝑇𝑇(2) = 20 abandon the system

• 𝑃𝑃𝐼𝐼 = 0, 𝑃𝑃𝑘𝑘 = 𝜇𝜇𝑘𝑘2

• Increase 𝜇𝜇3 in order to model abandonments

Table 1: Blocking probability 𝑝𝑝𝑏𝑏 and average system power 𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎 compared with 
simulation results for two values of 𝜂𝜂 = 0.4, 0.8.
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Example II – Piecewise Linear Rate 
Adjustment Policy (PiLRAP)

• Selects service rates from piecewise linear functions of the

unfinished work process 𝐴𝐴(𝑡𝑡) from the interval 𝜇𝜇𝑚𝑚𝑖𝑖𝑚𝑚, 𝜇𝜇𝑚𝑚𝑎𝑎𝑑𝑑 .

• 𝜇𝜇𝐾𝐾= 𝜇𝜇𝑚𝑚𝑎𝑎𝑑𝑑

• Jobs with 𝐴𝐴 𝑡𝑡 ≥ 𝑇𝑇(𝐾𝐾) are blocked.

• (𝑥𝑥0,𝑦𝑦0) point determines the exact service rate function.
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Example II – Piecewise Linear Rate 
Adjustment Policy (PiLRAP)

Figure 1: Service rate function (dashed lines) and actual service rate 𝜇𝜇𝐾𝐾 (straight lines) 
as functions of 𝐴𝐴(𝑡𝑡) for 𝜇𝜇𝑚𝑚𝑖𝑖𝑚𝑚= 0, 𝜇𝜇𝑚𝑚𝑎𝑎𝑑𝑑= 1, 𝑇𝑇(𝐾𝐾) = 10, 𝐾𝐾 = 10.
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Figure 2: Average system power 𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎 and blocking probability 𝑝𝑝𝑏𝑏 as functions of parameters
𝑥𝑥0 and 𝑦𝑦0 for 𝐾𝐾 = 20.

Example II – Piecewise Linear Rate 
Adjustment Policy (PiLRAP)
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• 𝐾𝐾 = 1, 𝑇𝑇(1) = 20, 𝜇𝜇1 = 𝜇𝜇𝑚𝑚𝑎𝑎𝑑𝑑 = 1

• M/M/1 queue with load 𝜌𝜌 = 𝜆𝜆/𝜇𝜇𝑚𝑚𝑎𝑎𝑑𝑑 → 𝑃𝑃𝑓𝑓 = 1 − 𝜌𝜌 𝑃𝑃𝐼𝐼 + 𝜌𝜌𝑃𝑃1

• 𝐺𝐺 = 100 (𝑃𝑃𝑓𝑓−𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎)
𝑃𝑃𝑓𝑓

• Blocking probability should be less than 0.01

Example III – Comparison with
Static Speed Scaling
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Figure 3: Optimal values of 𝑥𝑥0 and 𝑦𝑦0, denoted by 𝑥𝑥0∗ and 𝑦𝑦0∗, as functions of 𝐾𝐾 for
𝜂𝜂 = 0.4, 0.6, 0.8.

Example III – Comparison with
Static Speed Scaling
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Figure 4: Attainable power gain, denoted by 𝐺𝐺∗, as a function of 𝐾𝐾 for 𝜂𝜂 = 0.4, 0.6, 0.8.

Example III – Comparison with
Static Speed Scaling
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Figure 5: Attainable power gain, denoted by 𝐺𝐺∗, as a function of the load 𝜂𝜂 for 𝐾𝐾=20.

Example III – Comparison with
Static Speed Scaling
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Conclusion

• We propose an MRMFQ model of a dynamic speed

scaling system, in which a service rate is decided

according to the delay of the HOL job.

• Piecewise Linear Rate Adjustment Policy (PiLRAP) is

proposed which minimizes the power consumption

under job blocking probability constraints.
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Future Work

• More general arrival process such as MAP

• Other service time distributions, such Phase-type

distribution

• Detailed analysis of a real life application

• Zero-drift states to model abandonments to deal

with the case 𝜇𝜇𝐾𝐾+1 → ∞

• Multi-server case
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Markov Fluid Queues (MFQs)

• Single-Regime MFQ (SRMFQ)
 Buffer considered as a single regime
 Fixed infinitesimal generator and drift values

• Multi-Regime MFQ (MRMFQ)
 Buffer is divided into a finite number of regimes
 Each regime has own infinitesimal generator and drift

values

• Continuous-Feedback MFQ (CFMFQ)
 Infinitesimal generator and drift values as continuous

functions of the buffer level
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𝐴𝐴(𝑘𝑘) = 𝑄𝑄 𝑘𝑘 𝑅𝑅(𝑘𝑘) −1
→ 𝐴𝐴(𝑘𝑘)𝑌𝑌(𝑘𝑘) = 𝑌𝑌(𝑘𝑘)

0
𝐴𝐴−(𝑘𝑘)

𝐴𝐴+
(𝑘𝑘)

,

𝑌𝑌(𝑘𝑘) −1 =
𝐿𝐿0

(𝑘𝑘)

𝐿𝐿−(𝑘𝑘)

𝐿𝐿+
(𝑘𝑘)

→ 𝑓𝑓 𝑘𝑘 𝑥𝑥 = 𝑑𝑑 𝑘𝑘

𝐿𝐿0
(𝑘𝑘)

𝑒𝑒𝐴𝐴−𝑘𝑘 (𝑑𝑑−𝑇𝑇(𝑘𝑘−1))𝐿𝐿−(𝑘𝑘)

𝑒𝑒−𝐴𝐴+
𝑘𝑘 (𝑇𝑇 𝑘𝑘 −𝑑𝑑)𝐿𝐿+

(𝑘𝑘)

,

𝑑𝑑 𝑘𝑘 = 𝑑𝑑0
(𝑘𝑘) 𝑑𝑑−(𝑘𝑘) 𝑑𝑑+

(𝑘𝑘) : vector of unknown coefficients

Steady-state Solution of MRMFQs
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1. Mean drift in the last regime should be negative, i.e.,

𝜋𝜋(𝐾𝐾)𝑅𝑅(𝐾𝐾)𝟏𝟏 < 0

2. 𝑓𝑓 𝐾𝐾 (𝑥𝑥) should be bounded, i.e.,

𝑑𝑑0
(𝐾𝐾) = 0, 𝑑𝑑+

(𝐾𝐾) = 𝟎𝟎,

Stability Conditions



Performance Modeling of Delay-based Dynamic Speed Scaling 39

State Transitions

0 2 4 6 8 12

𝑇𝑇(2) = 4

𝑇𝑇(1) = 2

3 9 13 16

𝑆𝑆(𝑡𝑡)
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