# Performance Modeling of Delay-based Dynamic Speed Scaling Systems

Caglar Tunc caglar@ee.bilkent.edu.tr

Nail Akar akar@ee.bilkent.edu.tr

Bilkent University Deparment of Electrical and Electronics Engineering Ankara, Turkey

June 28, 2016

# Outline

- Introduction
- Problem Definition
- Markov Fluid Queues
- Delay-based Dynamic Speed Scaling Model
- Numerical Examples
- Conclusion

# **Single Server Speed Scaling**

- Speed scaling: Adapting the speed of a computer or communication system to tradeoff energy and performance
- *i.* Static speed scaling: System is busy  $\Rightarrow$  single speed, System is idle  $\Rightarrow$  sleep mode
- *ii. Dynamic speed scaling*: Speed is continuously adapted based on the system state, i.e., the number of jobs in the system, delay experienced by jobs, etc.

# **Single Server Speed Scaling**

- Low speed  $\leftrightarrow$  low power
- Takes longer to finish a task with lower speed, BUT generally less energy is consumed
- How to adapt the speed according to the system state in order to obtain energy savings?

# **Motivating Application Areas**

- Adaptive speed in processors and computer systems
  - Change the speed of a processor according to the number of jobs waiting in the system to save energy <sup>[1]</sup>
- Adaptive link rate (ALR) schemes in Ethernet links
  - Change the rate of an Ethernet link according to the link utilization to obtain energy savings (not standardized) <sup>[2]</sup>

• Data rate = 
$$\begin{cases} 100 \text{ Mbps, if link utilization} < 10\% \\ 1 \text{ Gbps, if link utilization} \ge 10\% \end{cases}$$

- [1] F. Yao, A. Demers, and S. Shenker. A Scheduling Model for Reduced CPU Energy. In Proceedings of FOCS '95, pages 374-, Washington, DC, USA, 1995. IEEE Computer Society.
- [2] C. Gunaratne, K. Christensen, B. Nordman, and S. Suen. Reducing the Energy Consumption of Ethernet with Adaptive Link Rate (ALR). *Computers, IEEE Trans. on*, 57(4):448-461, April 2008.

# **Motivating Future Applications**

- Wireless link that supports different power levels and adaptive coding and modulation (ACM) techniques
- Adjust the link rate according to delays of the jobs in the system
- Save from the power while satisfying QoS constraints

# **Delay-based Dynamic Speed Scaling**

- Assign a service rate for the head-of-the-line (HOL) job of a FIFO queue according to the total delay it has experienced in the system
- Jobs may have strict deadlines
  - Jobs with delays greater than the deadline abandon the system without service

Low service rate  $\rightarrow$  Low power  $\rightarrow$  Energy saving

# Markov Fluid Queues (MFQs)

- Background process determines the rate of change (*drift*) of a buffer
- Finite state space Continuous Time Markov Chain (CTMC)
- Each state has its own drift value
- Infinitesimal generator and drift values
- Multi-Regime (Multi-Layer/Multi-Threshold) MFQ (MRMFQ)
  - Buffer is divided into a finite number of regimes
  - Each regime has own infinitesimal generator and drift values

### Sample Evolution of an MRMFQ



### **Multi-Regime Markov Fluid Queues**

$$\begin{split} f_i^{(k)}(x) &= \lim_{t \to \infty} \frac{d}{dx} \Pr\{X(t) \le x, Z(t) = i\}, \\ f^{(k)}(x) &= \left[ f_0^{(k)}(x) \ f_1^{(k)}(x) \ \dots \ f_{N-1}^{(k)}(x) \right], \\ c_i^{(k)} &= \lim_{t \to \infty} \Pr\{X(t) = T^{(k)}, Z(t) = i\}, \\ c^{(k)} &= \left[ c_0^{(k)} \ c_1^{(k)} \ \dots \ c_{N-1}^{(k)} \right], \\ & \longrightarrow \frac{d}{dx} f^{(k)}(x) R^{(k)} = f^{(k)}(x) Q^{(k)}. \end{split}$$

- Z(t): *N*-state CTMC,  $N < \infty$
- $Q^{(k)}$ : Infinitesimal generator of Z(t) for  $1 \le k \le K$
- $r_i^{(k)}$ : Net drift of the buffer for  $0 \le i \le N 1$  and  $1 \le k \le K$
- $R^{(k)}$ :  $diag\left(r_0^{(k)} r_1^{(k)} \dots r_{N-1}^{(k)}\right)$ , for  $1 \le k \le K$

[1] H. E. Kankaya and N. Akar. Solving multi-regime feedback fluid queues. *Stochastic Models*, 24(3):425-450, 2008.

### **Multi-Regime Markov Fluid Queues**

$$\begin{split} f_i^{(k)}(x) &= \lim_{t \to \infty} \frac{d}{dx} \Pr\{X(t) \le x, Z(t) = i\}, \\ f^{(k)}(x) &= \left[ f_0^{(k)}(x) \ f_1^{(k)}(x) \ \dots \ f_{N-1}^{(k)}(x) \right], \\ c_i^{(k)} &= \lim_{t \to \infty} \Pr\{X(t) = T^{(k)}, Z(t) = i\}, \\ c^{(k)} &= \left[ c_0^{(k)} \ c_1^{(k)} \ \dots \ c_{N-1}^{(k)} \right], \\ & \longrightarrow \frac{d}{dx} f^{(k)}(x) R^{(k)} = f^{(k)}(x) Q^{(k)}. \end{split}$$

- $[T^{(0)} T^{(1)} ... T^{(K)}]$ : Boundary points,  $T^{(0)}=0$ ,  $T^{(K)}=\infty$
- $\tilde{Q}^{(k)}$ : Infinitesimal generator at boundary k for  $0 \le k < K$
- $\tilde{r}_i^{(k)}$ : Net drift of the buffer at boundary k for  $0 \le k < K$
- $\tilde{R}^{(k)}$ :  $diag\left(r_0^{(k)} r_1^{(k)} \dots r_{N-1}^{(k)}\right)$ , for  $1 \le k < K$

#### **Boundary Conditions of MRMFQs**

$$c_i^{(0)} = 0, \quad \forall i \in S_+^{(1)}$$

$$\begin{split} c_i^{(k)} &= 0, \quad \forall i \in \left(S_+^{(k)} \cap S_+^{(k+1)}\right) \cup \left(S_-^{(k)} \cap S_-^{(k+1)}\right) \\ c_i^{(k)} &= 0, \quad \forall i \in \left(S_-^{(k)} \cap S_+^{(k+1)}\right) \cap \left(\tilde{S}_+^{(k)} \cup S_-^{(k)}\right) \\ f^{(1)}(0+)R^{(1)} &= c^{(0)}\tilde{Q}^{(0)} \\ f^{(k+1)}(T^{(k)}+)R^{(k+1)} - f^{(k)}(T^{(k)}-)R^{(k)} &= c^{(k)}\tilde{Q}^{(k)} \\ f_i^{(k)}(T^{(k)}-) &= 0 \quad \forall i \in S_-^{(k)} \cup \left(\tilde{S}_0^{(k)} \cap \tilde{S}_+^{(k)}\right) \\ f_i^{(k+1)}(T^{(k)}+) &= 0 \quad \forall i \in \left(\tilde{S}_0^{(k)} \cap \tilde{S}_-^{(k)}\right) \cup S_+^{(k+1)} \\ \left(\sum_{k=1}^K \int_{T^{(k)-1}}^{T^{(k)-1}} f^{(k)}(x)dx + \sum_{k=0}^{K-1} c^{(k)}\right) \mathbf{1} = 1 \end{split}$$

Performance Modeling of Delay-based Dynamic Speed Scaling

# **Computational Complexity**

- An *N*-state *K*-regime MFQ system requires
  - a Schur decomposition and a pair of Sylvester equations for each regime:  $O(N^3K)$
  - the solution of a linear matrix equation of at most size N(2K + 1)
  - Exploiting the block tridiagonal form of the linear matrix equation reduces the computational complexity to  $O(N^3K)$ <sup>[1]</sup>
- [1] M. A. Yazici and N. Akar. The finite/innite horizon ruin problem with multi-threshold premiums: a Markov fluid queue approach. *Annals of Operations Research*, 2016.

# System Model

- Server has K + 1 available service rates to select
- Exponentially distributed service times with rate  $\mu_k$ , k = 1, ..., K + 1
- Poisson job arrivals with rate  $\lambda$
- D(t): Delay already experienced by the HOL job at service start time t
- A(t): Unfinished work (process) in the system at time t
- X(t): Fluid level at time t, obtained by replacing abrupt jumps in S(t) by linear decrements

# System Model

• Regime boundaries of the MRMFQ model

$$0 = T^{(0)} < T^{(1)} < \dots < T^{(K)} < T^{(K+1)} = \infty$$

- When  $T^{(k-1)} \leq D(t) < T^{(k)}$ , the HOL job is served with rate  $\mu_k$
- Service rate is fixed during the service of the HOL job.
- Operating power at rate  $\mu_k$  is  $P_k$ .
- If  $T^{(K)} \leq D(t)$ , the job is either: i) served with rate  $\mu_{K+1}$ , or ii) blocked.
- $T^{(K)}$  is called the *deadline* or *delay threshold*.

### **Sample Paths**



#### **State Space**

- $I_k$ : Service state in regime k, k = 1, 2, ..., K + 1
  - $I_k \rightarrow \mu_k$
  - X(t) is increased with a drift of 1.
- $\circ \mathcal{D}$ : State representing the inter-arrival times



#### **State Transitions**

• Regime-*k* 



• X(t) = 0

Performance Modeling of Delay-based Dynamic Speed Scaling

#### **Infinitesimal Generator and Drift Matrices**

 $\tilde{Q}^{(j)} = Q^{(j+1)}$ , except that there is no transition from  $I_1$  to  $\mathcal{D}$  in  $\tilde{Q}^{(0)}$ 

$$R^{(k)} = diag(I, -1), \ 1 \le k \le K + 1, \quad \tilde{R}^{(k)} = \begin{cases} R^{(k+1)}, & 1 \le k \le K \\ \max(0, R^{(1)}), & k = 0 \end{cases}$$

# **The Delay Distribution**

- A(t) determines the amount of delay that newly arriving jobs will experience.
- By PASTA property, average system power, blocking probability and the delay distribution can be calculated from the steady-state probability distribution of state  $\mathcal{D}$ .

$$\lim_{t \to \infty} \Pr\{A(t) \le x\} = \lim_{t \to \infty} \frac{\Pr\{X(t) \le x, Z(t) = \mathcal{D}\}}{\Pr\{Z(t) = \mathcal{D}\}}$$

### **Average Operating Power**

- $p_k$ : probability that a newly arriving job finds the system in regime k
- $p_0$ : probability that a newly arriving job finds the system empty

$$p_k = \lim_{t \to \infty} \Pr\{T^{(k-1)} < A(t) < T^{(k)}\}, \ 1 \le k \le K+1$$
$$p_0 = \lim_{t \to \infty} \Pr\{A(t) = 0\}$$

•  $q_k$ : probability that a job is served with rate  $\mu_k$ 

$$q_{k} = \begin{cases} p_{k}, & k \ge 2, \\ p_{0} + p_{1}, & k = 1. \end{cases}$$
$$P_{avg} = p_{0}P_{I} + (1 - p_{0})\sum_{k=1}^{K+1} \frac{q_{k}}{\sum_{i=1}^{K+1} \frac{q_{i}}{\mu_{i}}} P_{k}$$

## **Blocking Probability**

- For the case of abandonments:  $\mu_{K+1} \rightarrow \infty$ , no energy is consumed
- $p_b$ : blocking probability

$$p_b = \lim_{\mu_{K+1}\to\infty} p_{K+1} = \lim_{t\to\infty} \lim_{\mu_{K+1}\to\infty} \Pr\{A(t) \ge T^{(K)}\}.$$

#### **Numerical Examples**

### **Example I – Case of Abondonments**

- $K = 2, T^{(1)} = 10, T^{(2)} = 20, \mu_1 = 0.5, \mu_2 = 1, \eta = \lambda/\mu_2$
- Jobs with delays greater than  $T^{(2)} = 20$  abandon the system
- $P_I = 0, P_k = {\mu_k}^2$
- Increase  $\mu_3$  in order to model abandonments

| $\mu_3$ | $p_b~(\%)$   |              | $P_{avg}$    |              |
|---------|--------------|--------------|--------------|--------------|
|         | $\eta = 0.4$ | $\eta = 0.8$ | $\eta = 0.4$ | $\eta = 0.8$ |
| 1e2     | 0.1123       | 3.0429       | 0.2238       | 0.6662       |
| 1e4     | 0.1118       | 3.0196       | 0.2238       | 0.6664       |
| 1e6     | 0.1118       | 3.0193       | 0.2238       | 0.6664       |
| 1e8     | 0.1118       | 3.0193       | 0.2238       | 0.6664       |
| Sim     | 0.1118       | 3.0185       | 0.2238       | 0.6664       |

Table 1: Blocking probability  $p_b$  and average system power  $P_{avg}$  compared with simulation results for two values of  $\eta = 0.4, 0.8$ .

#### Example II – Piecewise Linear Rate Adjustment Policy (PiLRAP)

- Selects service rates from piecewise linear functions of the unfinished work process A(t) from the interval  $[\mu_{min}, \mu_{max}]$ .
- $\mu_K = \mu_{max}$
- Jobs with  $A(t) \ge T^{(K)}$  are blocked.
- $(x_0, y_0)$  point determines the exact service rate function.

#### Example II – Piecewise Linear Rate Adjustment Policy (PiLRAP)



Figure 1: Service rate function (dashed lines) and actual service rate  $\mu_K$  (straight lines) as functions of A(t) for  $\mu_{min} = 0$ ,  $\mu_{max} = 1$ ,  $T^{(K)} = 10$ , K = 10.

#### Example II – Piecewise Linear Rate Adjustment Policy (PiLRAP)



Figure 2: Average system power  $P_{avg}$  and blocking probability  $p_b$  as functions of parameters  $x_0$  and  $y_0$  for K = 20.

• 
$$K = 1, T^{(1)} = 20, \mu_1 = \mu_{max} = 1$$

- M/M/1 queue with load  $\rho = \lambda/\mu_{max} \rightarrow P_f = (1 \rho)P_I + \rho P_1$
- $G = 100 \frac{(P_f P_{avg})}{P_f}$
- Blocking probability should be less than 0.01



Figure 3: Optimal values of  $x_0$  and  $y_0$ , denoted by  $x_0^*$  and  $y_0^*$ , as functions of K for  $\eta = 0.4, 0.6, 0.8$ .

Performance Modeling of Delay-based Dynamic Speed Scaling



Figure 4: Attainable power gain, denoted by  $G^*$ , as a function of K for  $\eta = 0.4, 0.6, 0.8$ .



Figure 5: Attainable power gain, denoted by  $G^*$ , as a function of the load  $\eta$  for K=20.

### Conclusion

- We propose an MRMFQ model of a dynamic speed scaling system, in which a service rate is decided according to the delay of the HOL job.
- Piecewise Linear Rate Adjustment Policy (PiLRAP) is proposed which minimizes the power consumption under job blocking probability constraints.

#### **Future Work**

- More general arrival process such as MAP
- Other service time distributions, such Phase-type distribution
- Detailed analysis of a real life application
- Zero-drift states to model abandonments to deal with the case  $\mu_{K+1} \rightarrow \infty$
- Multi-server case

## Acknowledgment

 This study is funded by TÜBİTAK (The Scientific and Technological Research Council of Turkey) with ARDEB 1001 (under the project number 115E360) program.

# Thank you for your attention. Any questions?

# Markov Fluid Queues (MFQs)

- Single-Regime MFQ (SRMFQ)
  - Buffer considered as a single regime
  - Fixed infinitesimal generator and drift values
- Multi-Regime MFQ (MRMFQ)
  - Buffer is divided into a finite number of regimes
  - Each regime has own infinitesimal generator and drift values
- Continuous-Feedback MFQ (CFMFQ)
  - Infinitesimal generator and drift values as continuous functions of the buffer level

#### **Steady-state Solution of MRMFQs**

$$A^{(k)} = Q^{(k)} (R^{(k)})^{-1} \rightarrow A^{(k)} Y^{(k)} = Y^{(k)} \begin{bmatrix} 0 & & \\ & A^{(k)}_{-} & \\ & & A^{(k)}_{+} \end{bmatrix},$$

$$(Y^{(k)})^{-1} = \begin{bmatrix} L_0^{(k)} \\ L_-^{(k)} \\ L_+^{(k)} \end{bmatrix} \to f^{(k)}(x) = a^{(k)} \begin{bmatrix} L_0^{(k)} \\ e^{A_-^{(k)}(x-T^{(k-1)})} L_-^{(k)} \\ e^{-A_+^{(k)}(T^{(k)}-x)} L_+^{(k)} \end{bmatrix},$$

$$a^{(k)} = \begin{bmatrix} a_0^{(k)} & a_-^{(k)} & a_+^{(k)} \end{bmatrix}$$
: vector of unknown coefficients

## **Stability Conditions**

1. Mean drift in the last regime should be negative, i.e.,

 $\pi^{(K)}R^{(K)}\mathbf{1} < 0$ 

2.  $f^{(K)}(x)$  should be bounded, i.e.,

$$a_0^{(K)} = 0, a_+^{(K)} = 0,$$

#### **State Transitions**



Performance Modeling of Delay-based Dynamic Speed Scaling