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Background
 Service rate control of queuing systems

 M/M/1, tandem queue, cyclic queue, Jackson 
network, …

 Poisson arrival  general arrival
 Markovian arrival process (MAP)

 approximate almost all arrival process at the cost of 
increasing model complexity

 Coefficient of variation of MAP could be any positive #

 In this paper, we study service rate control of 
MAP/M/1 queue
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Background
 Main difficulty

 Increase the model complexity
 State: (customer#, phase#)
 Complicated Bellman equation

 Our idea
 MAM (matrix analytic method)

 Numerical algorithm to study QBD structure 
 SBO (sensitivity based optimization)

 Difference formula provides a new perspective for 
optimization, utilize the problem structure

 MAM + SBO: efficient way to compute value 
function; derive optimality property; algorithm
 Promote: MAM community  optimization 
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Problem formulation
 MAP/M/1

 MAP with 𝑚𝑚 phases: 𝐷𝐷0, 𝐷𝐷1
 Equivalent arrival rate: 𝜆𝜆 = 𝜔𝜔𝐷𝐷1𝑒𝑒
 System state: (𝑁𝑁 𝑡𝑡 , 𝐽𝐽 𝑡𝑡 )
 Service rate: 𝜇𝜇𝑛𝑛,𝑗𝑗, state-dependent
 Cost function: 𝑓𝑓 𝑛𝑛, 𝑗𝑗 = 𝜙𝜙 𝑛𝑛, 𝑗𝑗 + 𝑏𝑏 𝜇𝜇𝑛𝑛,𝑗𝑗

 long-run average cost:  𝜂𝜂
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Problem analysis

 Infinite dimension MDP 
 Optimization variables: 𝜇𝜇∗ 𝑛𝑛,𝑗𝑗 at every (𝑛𝑛, 𝑗𝑗)

 Bellman optimality equation: difficult to use
 Special structure

 QBD structure
 SBO + MAM
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SBO
 Sensitivity-based optimization (SBO)

 Much more beyond perturbation analysis (PA)
 Difference formula to study Markov systems

 Key formulas
 Performance potential (relative value function)

 Difference formula (change to a new policy B’, f’ )
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column vector negative



SBO
 With the QBD structure of B, we have
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Physical explanation: the change of g at two adjacent 
states, which indicates an event of customer departure

If G(n,j)>0, we choose a smaller 𝜇𝜇𝑛𝑛,𝑗𝑗
′ ;

If G(n,j)<0, we choose a larger 𝜇𝜇𝑛𝑛,𝑗𝑗
′ ;

very simple rule for the optimization:

How to compute G?



Optimality property and theorems
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Theorem 2. The optimal service rate can be either minimum 
or maximum. More specifically, 
if 𝐺𝐺∗ 𝑛𝑛, 𝑗𝑗 ≥ 0,  𝜇𝜇𝑛𝑛,𝑗𝑗

∗ =𝜇𝜇𝑛𝑛,𝑗𝑗
𝑚𝑚𝑚𝑚𝑛𝑛 ;   if 𝐺𝐺∗ 𝑛𝑛, 𝑗𝑗 < 0,  𝜇𝜇𝑛𝑛,𝑗𝑗

∗ =𝜇𝜇𝑛𝑛,𝑗𝑗
𝑚𝑚𝑚𝑚𝑚𝑚.

Theorem 1. The average cost is monotone w.r.t the service 
rate 𝜇𝜇𝑛𝑛,𝑗𝑗, for all 𝑛𝑛 = 1,2,⋯ ; 𝑗𝑗 = 1,2,⋯ ,𝑚𝑚 .

Monotone property

Bang-bang control



Optimality property and theorems
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Theorem 3. Assume 𝜇𝜇𝑁𝑁+𝑘𝑘,𝑗𝑗
𝑚𝑚𝑚𝑚𝑛𝑛 = 0 and other mild conditions, 

if 𝜇𝜇𝑁𝑁,𝑚𝑚
∗ = 𝜇𝜇𝑁𝑁,𝑚𝑚

𝑚𝑚𝑚𝑚𝑚𝑚, for some N and i,  then we have
𝜇𝜇𝑁𝑁+𝑘𝑘,𝑗𝑗
∗ = 𝜇𝜇𝑁𝑁+𝑘𝑘,𝑗𝑗

𝑚𝑚𝑚𝑚𝑚𝑚 , for any 𝑘𝑘 and 𝑗𝑗 = 1,2,⋯ ,𝑚𝑚 .

Quasi-threshold optimality

Remark. Quasi-threshold type policy: there exists a 
threshold 𝑁𝑁 such that, if 𝑛𝑛 > 𝑁𝑁, then 𝜇𝜇𝑛𝑛,𝑗𝑗

∗ = 𝜇𝜇𝑛𝑛,𝑗𝑗
𝑚𝑚𝑚𝑚𝑚𝑚 for any 𝑗𝑗 .

Corollary 1. if 𝜇𝜇𝑛𝑛,𝑗𝑗
𝑚𝑚𝑚𝑚𝑛𝑛 = 0 and 𝜇𝜇𝑛𝑛,𝑗𝑗

𝑚𝑚𝑚𝑚𝑚𝑚 non-decreasing in n, then 
there exists a threshold 𝑁𝑁 such that, if 𝑛𝑛 > 𝑁𝑁, 𝜇𝜇𝑛𝑛,𝑗𝑗

∗ = 𝜇𝜇𝑛𝑛,𝑗𝑗
𝑚𝑚𝑚𝑚𝑚𝑚; 

if 𝑛𝑛 < 𝑁𝑁, 𝜇𝜇𝑛𝑛,𝑗𝑗
∗ = 0; if 𝑛𝑛 = 𝑁𝑁, 𝜇𝜇𝑛𝑛,𝑗𝑗

∗ can be either 0 or 𝜇𝜇𝑛𝑛,𝑗𝑗
𝑚𝑚𝑚𝑚𝑚𝑚 at 

different phase 𝑗𝑗 .

Strong quasi-threshold optimality



Optimality property and theorems
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Theorem 4. If we consider the service rate control of M/M/1, 
then we have 𝜇𝜇𝑛𝑛∗ = 𝜇𝜇𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚 for 𝑛𝑛 > 𝜃𝜃; 𝜇𝜇𝑛𝑛∗ = 0 for 𝑛𝑛 ≤ 𝜃𝜃, where 
𝜃𝜃 is the optimal threshold. 

Threshold optimality for M/M/1

Corollary 2. Since M/M/1 is a special case of MAP/M/1, all 
the previous results hold for M/M/1. That is, the 
monotonicity and the optimality of bang-bang control hold.

Service rate control for M/M/1



Computation and algorithms
 G is the key, how to compute it?

 with QBD structure, use MAM to compute G
 recursive, numerical algorithm
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Algorithm 1. recursive numerical computation for �̃�𝐴∞

�̃�𝐴∞ is used to further compute G iteratively 



Optimization algorithms
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Algorithm 2. iterative algorithm to find 𝝁𝝁∗ of MAP/M/1

• A policy iteration type algorithm
• MAM algorithm to compute G, difference of value functions

• How to compute value function is key for MDP
• Deep learning, use deep neural network to compute it



Numerical experiments
 Consider a MAP/M/1 with parameters
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Monotonicity is validated.



Numerical experiments
 Consider another example
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 Use MAM+SBO, Algorithm 1&2 to find

 Bang-bang control is validated
 Optimality of strong quasi-threshold type policy

 n>5, 𝜇𝜇𝑛𝑛,𝑗𝑗
∗ = 𝜇𝜇𝑛𝑛,𝑗𝑗

𝑚𝑚𝑚𝑚𝑚𝑚; n<5, 𝜇𝜇𝑛𝑛,𝑗𝑗
∗ = 0; n=5, 𝜇𝜇𝑛𝑛,𝑗𝑗

∗ is either 0 or 
max



Conclusion
 Service rate control of MAP/M/1
 Optimality properties 

 Monotone, bang-bang, quasi-threshold
 MAM+SBO: optimization algorithm

 MAM to recursively compute G
 SBO to iteratively compute 𝝁𝝁∗

 Computation of value function
 Very important topic in MDP and AI 

 Deep learning, AlphaGo, reinforcement learning, ADP
 SBO provides a powerful method to do optimization
 MAM provides a promising way, recursive algo.,
 recursive numerical approach is important

 Google PageRank to compute 𝝅𝝅 :  𝑷𝑷𝒏𝒏 → 𝝅𝝅
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