Optimal Control of Service Rates in a MAP/M/1 Queue *

Li Xia, Qi-Ming He, Attahiru Sule Alfa

Tsinghua University xial@tsinghua.edu.cn

University of Waterloo q7he@uwaterloo.ca University of Manitoba attahiru.alfa@umanitoba.ca

*A full version of this paper was provisionally accepted by *IEEE Transactions on Automatic Control*

Background

- Service rate control of queuing systems
 - M/M/1, tandem queue, cyclic queue, Jackson network, ...
- Poisson arrival \rightarrow general arrival
 - Markovian arrival process (MAP)
 - approximate almost all arrival process at the cost of increasing model complexity
 - Coefficient of variation of MAP could be any positive #
- In this paper, we study service rate control of MAP/M/1 queue

Background

- Main difficulty
 - Increase the model complexity
 - State: (customer#, phase#)
 - Complicated Bellman equation
- Our idea
 - MAM (matrix analytic method)
 - Numerical algorithm to study QBD structure
 - SBO (sensitivity based optimization)
 - Difference formula provides a new perspective for optimization, utilize the problem structure
 - MAM + SBO: efficient way to compute value function; derive optimality property; algorithm
 - Promote: MAM community → optimization 2016-06-29, MAM, Budapest

Problem formulation

MAP/M/1

- MAP with m phases: D_0 , D_1
- Equivalent arrival rate: $\lambda = \omega D_1 e$
- System state: (*N*(*t*), *J*(*t*))
- Service rate: $\mu_{n,j}$, state-dependent
- Cost function: $f(n,j) = \phi(n,j) + b \mu_{n,j}$
- long-run average cost: η

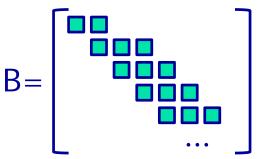
$$\boldsymbol{\mu}^* = \underset{\mu_{n,j}^{\min} \leq \mu_{n,j} \leq \mu_{n,j}^{\max}}{\arg\min} \left\{ \underset{T \to \infty}{\lim} \frac{1}{T} E\left[\int_0^T f(N(t), J(t)) dt\right] \right\} \text{ for all } n, j$$

Problem analysis

$$\boldsymbol{\mu}^* = \underset{\mu_{n,j}^{\min} \leq \mu_{n,j} \leq \mu_{n,j}^{\max}}{\arg\min} \left\{ \lim_{T \to \infty} \frac{1}{T} E\left[\int_0^T f(N(t), J(t)) dt\right] \right\}$$

Infinite dimension MDP

- Optimization variables: $\mu^*_{n,j}$ at every (n,j)
- Bellman optimality equation: difficult to use
- Special structure
 - QBD structure
- SBO + MAM



SBO

- Sensitivity-based optimization (SBO)
 - Much more beyond perturbation analysis (PA)
 - Difference formula to study Markov systems
- Key formulas
 - Performance potential (relative value function)

$$g(n, j) = \lim_{T \to \infty} E\left\{ \int_{t=0}^{T} [f(N(t), J(t)) - \eta] dt \Big|_{(N(0), J(0)) = (n, j)} \right\}$$

Difference formula (change to a new policy B', f')

$$\eta' - \eta = \pi'[(B' - B)g + (f' - f)]$$

Difference of unknown, but Choose proper B', f' to make always positive column vector negative 2016-06-29, MAM, Budapest

SBO

With the QBD structure of B, we have

$$\eta' - \eta = \sum_{n=1}^{\infty} \sum_{j=1}^{m} \left(\mu'_{n,j} - \mu_{n,j} \right) \pi'(n,j) G(n,j)$$

$$G(n,j) \coloneqq g(n-1,j) - g(n,j) + b$$

Physical explanation: the change of **g** at two adjacent states, which indicates an event of customer departure

very simple rule for the optimization:

If G(n,j)>0, we choose a smaller $\mu'_{n,j}$; If G(n,j)<0, we choose a larger $\mu'_{n,j}$;

How to compute G?

2016-06-29, MAM, Budapest

Optimality property and theorems

Monotone property

Theorem 1. The average cost is monotone w.r.t the service rate $\mu_{n,j}$, for all $n = 1, 2, \dots$; $j = 1, 2, \dots, m$.

Bang-bang control

Theorem 2. The optimal service rate can be either minimum or maximum. More specifically, if $G^*(n,j) \ge 0$, $\mu_{n,j}^* = \mu_{n,j}^{min}$; if $G^*(n,j) < 0$, $\mu_{n,j}^* = \mu_{n,j}^{max}$.

Optimality property and theorems

Quasi-threshold optimality

Theorem 3. Assume $\mu_{N+k,j}^{min} = 0$ and other mild conditions, if $\mu_{N,i}^* = \mu_{N,i}^{max}$, for some N and i, then we have $\mu_{N+k,j}^* = \mu_{N+k,j}^{max}$, for any *k* and $j = 1, 2, \dots, m$.

Remark. Quasi-threshold type policy: there exists a threshold *N* such that, if n > N, then $\mu_{n,j}^* = \mu_{n,j}^{max}$ for any *j*.

Strong quasi-threshold optimality

Corollary 1. if $\mu_{n,j}^{min} = 0$ and $\mu_{n,j}^{max}$ non-decreasing in n, then there exists a threshold N such that, if n > N, $\mu_{n,j}^* = \mu_{n,j}^{max}$; if n < N, $\mu_{n,j}^* = 0$; if n = N, $\mu_{n,j}^*$ can be either 0 or $\mu_{n,j}^{max}$ at different phase j.

Optimality property and theorems

Service rate control for M/M/1

Corollary 2. Since M/M/1 is a special case of MAP/M/1, all the previous results hold for M/M/1. That is, the monotonicity and the optimality of bang-bang control hold.

Threshold optimality for M/M/1

Theorem 4. If we consider the service rate control of M/M/1, then we have $\mu_n^* = \mu_n^{max}$ for $n > \theta$; $\mu_n^* = 0$ for $n \le \theta$, where θ is the optimal threshold.

Computation and algorithms

• G is the key, how to compute it?

- with QBD structure, use MAM to compute G
 - recursive, numerical algorithm

Algorithm 1. recursive numerical computation for \tilde{A}_{∞}

• Initialize \tilde{A}_{∞} arbitrarily, e.g., set $\tilde{A}_{\infty}^{(0)} = 0$, k = 0, and $\epsilon > 0$.

 \tilde{A}_{∞} is used to further compute G iteratively

Optimization algorithms

Algorithm 2. iterative algorithm to find μ^* of MAP/M/1

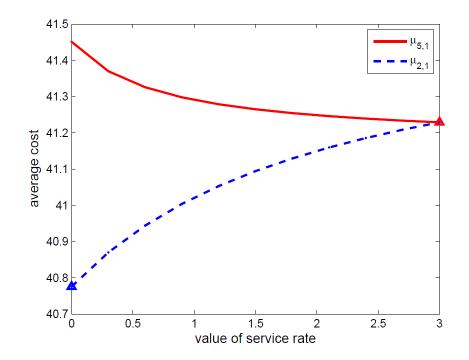
- Initialize system parameters (m, D_0, D_1) , μ^{\max} , ϕ , b, and the initial policy μ' . Determine N, μ_{∞}^{\max} , and $d\phi_{\infty}$.
- Compute \tilde{A}_{∞} and A_{∞} by using Algorithm 1. Compute ξ_{∞} by using (55).
- Repeat:

Let $\mu \leftarrow \mu'$; Compute $\{A_n, n = N, N - 1, \dots, 1\}$ and $\{\xi(n), n = N, N - 1, \dots, 1\}$ with (44); Set $G(1) = \xi(1)$, compute $\{G_n, n = 2, 3, \dots, N\}$ by using (43); Use (63) to generate a new policy μ' ; Until the stopping criterion $\mu = \mu'$ is satisfied. Output μ as the optimal policy μ^* .

- A policy iteration type algorithm
- MAM algorithm to compute G, difference of value functions
 - How to compute value function is key for MDP
 - Deep learning, use deep neural network to compute it

Numerical experiments

Consider a MAP/M/1 with parameters



Monotonicity is validated.

Numerical experiments

Consider another example

$$m = 2, \ \boldsymbol{D}_0 = \begin{pmatrix} -0.1 & 0 \\ 0.2 & -3 \end{pmatrix}, \ \boldsymbol{D}_1 = \begin{pmatrix} 0.09 & 0.01 \\ 0 & 2.8 \end{pmatrix};$$
$$\boldsymbol{\mu}^{\max} = \begin{pmatrix} 3 & 5 & 4 & 4 & 2 & 3 & 3 & 4 & 2 & 2 & 2 & \cdots \\ 8 & 3 & 2 & 5 & 2 & 2 & 5 & 5 & 7 & 7 & 7 & \cdots \end{pmatrix};$$
$$\boldsymbol{\mu}^{\min} = \mathbf{0}; \ \phi(n, j) = \frac{15}{n+1} + 2\sqrt{n} + 30j, \text{ for } n \ge 0, \ j = 1, 2.$$

Use MAM+SBO, Algorithm 1&2 to find

- Bang-bang control is validated
- Optimality of strong quasi-threshold type policy
 - n>5, $\mu_{n,j}^* = \mu_{n,j}^{max}$; n<5, $\mu_{n,j}^* = 0$; n=5, $\mu_{n,j}^*$ is either 0 or max

Conclusion

- Service rate control of MAP/M/1
- Optimality properties
 - Monotone, bang-bang, quasi-threshold
- MAM+SBO: optimization algorithm
 - MAM to recursively compute G
 - SBO to iteratively compute μ*
- Computation of value function
 - Very important topic in MDP and AI
 - Deep learning, AlphaGo, reinforcement learning, ADP
 - SBO provides a powerful method to do optimization
 - MAM provides a promising way, recursive algo.,
 - recursive numerical approach is important
 - Google PageRank to compute π : $P^n \rightarrow \pi$

Reference

• Cao, X.R. (2007). *Stochastic Learning and Optimization - A Sensitivity-Based Approach,* Springer, New York.

• Puterman, M. L. (1994). *Markov Decision Processes: Discrete Stochastic Dynamic Programming*, New York: John Wiley & Sons.

• Xia, L., He, Q., and Alfa, A. (2016). "Optimal control of state-dependent service rates in a MAP/M/1 queue," *IEEE Transactions on Automatic Control*, accepted.

• Xia, L. and Shihada, B. (2013). "Max-Min optimality of service rate control in closed queueing networks," *IEEE Transactions on Automatic Control*, Vol. 58, pp. 1051-1056.

Thank You!