Monotonicity, Convexity and Comparability of Some Functions Associated with Block-Monotone Markov Chains and Their Applications to Queueing Systems

Hai-Bo Yu

College of Economics and Management Beijing University of Technology, Beijing, China

MAM9, Budapest, Hungary

June 28-30, 2016

Outline

- 1. Introduction
- 2. Block-Monotonicity of Probability Vectors and Stochastic Matrices
- **3. Block-Monotone Markov Chains**
- 4. Application to the *GI/Geo/1*Queue
- 5. Numerical Examples
- 6. Conclusion

1. Introduction

- Queueing Systems & Univariate Markov chains
 - Research in this area started in 1950's
 - Classical queues: *M/M/1*, *M/G/*1, *GI/M/1*, *GI/Geo/*1,...
- Imbeeded Markov chain: (e.g., Kendall 1951,1953), Hunter (1983), Tian and Zhang (2002))
- **Stochastic comparison methods:** (e.g., Stoyan (1983))
- Monotonicity and convexity of functions *w.r.t.* univariate Markov chains(Yu, He and Zhang (2006))
- Question: Whether above results may be extended to bivariate Markov chains?

1. Introduction (continued)

- Bivariate Markov chains with block-structured transition matrices (e.g., QBD)
 - Research in this area started in 1980's.
 - Continuous-time queues: *GI/PH/1*, *PH/G/1*,*MAP/PH/1*,...
 - Discrete-time queues: *GI/Geo/1*, *GI/G/1*,...
 - Methods: Matrix-analytic method (MAM) vs. block-monotone Markov chain
- MAM: (Neuts (1981,1989), Gibson and Seneta (1987), Zhao, Li and Alfa (2000); Tweedie(1998), Liu (2010), He(2014), Alfa (2016), etc.)

1. Introduction (continued)

Block-monotone Markov chain approach

- First introduced the stochastic vectors based on F-orderings (Li and Shaked (1994))
- Defined the block-increasing order, and proved the stationary distributions of its truncations converge to that of the original Markov chain with monotone transition matrix (Li and Zhao (2000))
- Provided error bounds for augmented truncations of discrete-time block-monotone Markov chains under geometric drift conditions (Masuyama (2015)).
- Continuous-time block-monotone Markov chain(Masuyama (2016)).

2. Block-Monotonicity of Probability Vectors and Stochastic Matrices

• Definition:Block Stochastic orders

-
$$a = (a_0, a_1, a_2, ...), b = (b_0, b_1, b_2, ...), \text{ where } a_n = (a_n(1), a_n(2), ..., a_n(m)), b_n = (b_n(1), b_n(2), ..., b_n(m)).$$

 $a \leq_{m-s-st} b, \text{ if } a \in_m^s \leq_{el} b \in_m^s, \text{ for } s = 1, 2$

where

$$E_{m} = \begin{pmatrix} I_{m} & O & O & O & \cdots \\ I_{m} & I_{m} & O & O & \cdots \\ I_{m} & I_{m} & I_{m} & O & \cdots \\ I_{m} & I_{m} & I_{m} & I_{m} & \ddots \\ \vdots & \vdots & \vdots & \ddots & \ddots \end{pmatrix}, E_{m}^{2} = \begin{pmatrix} I_{m} & O & O & O & \cdots \\ 2I_{m} & I_{m} & O & 0 & \cdots \\ 3I_{m} & 2I_{m} & I_{m} & O & \cdots \\ 4I_{m} & 3I_{m} & 2I_{m} & I_{m} & \ddots \\ \vdots & \vdots & \vdots & \ddots & \ddots \end{pmatrix}$$
(1)

Note: For s = 1, Li and Zhao (2000) defined the order \leq_{m-1-st}

2. Block-Monotonicity of Probability Vectors and Stochastic Matrices(continued)

Example 1.

1)
$$a_0 = (0.3, 0.2), a_1 = (0.3, 0.2),$$

 $b_0 = (0.2, 0.2), b_1 = (0.4, 0.2),$ then $a \leq_{m-1-st} b.$
2) $a = (a_0, a_1, a_2, ...), b = (a_0 + a_1, a_2, a_3, ...),$ then $a \leq_{m-1-st} b$

Example 2.

$$\boldsymbol{a}_0 = (0.25, 0.25), \, \boldsymbol{a}_1 = (0.15, 0.15), \, \boldsymbol{a}_2 = (0.1, 0.1), \\ \boldsymbol{b}_0 = (0.21, 0.21), \, \boldsymbol{b}_1 = (0.17, 0.17), \, \boldsymbol{b}_3 = (0.12, 0.12),$$

then $a \leq_{m-2-st} b$.

- 2. Block-Monotonicity of Probability Vectors and Stochastic Matrices(continued)
- Definition: Block-Monotone Stochastic Matrices

Let
$$P = (A_{k,l}), A_{k,l} = (A_{k,l}(i,j)), i,j=1,2, ..., m k, l=0,1,2, ...$$

 $P \in M_{m-s-st}$, if $E_m^{-1}PE_m^s \ge_{el} O$ for $s = 1, 2$.

For n = 1, Definition of P∈M_{m-1-st} (Masuyama (2015))
For n = 1, P∈M_{m-1-st} ⇔ a≤_{m-1-st} b implies
a P ≤_{m-1-st} b P (Li and Zhao (2000))

2. Block-Monotonicity of Probability Vectors and Stochastic Matrices(continued)

• Example 3 :QBD

$$P = \begin{pmatrix} B & C & O & O & \cdots \\ F & A_1 & A_0 & O & \cdots \\ O & A_2 & A_1 & A_0 & \cdots \\ \vdots & \vdots & \vdots & \ddots & \ddots \end{pmatrix}$$
i) If $F \leq_{el} B \quad F \leq_{el} A_2 \quad and B + C \leq_{el} F + A_1 + A_0 \quad and \\ then \quad P \in M_{m-1-st} \quad then \quad P \in M_{m-1-st} \quad ii)$ If $F \leq_{el} B + A_0 \quad F \leq_{el} 2A_2 + A_1 + A_0 \quad and \\ B + 2C \leq_{el} F + 2A_1 + 3A_0$, then $P \in M_{m-2-st}$

• Example 4. QBD for *GI/Geo/1* queue (Alfa 2016)

$$B = \begin{pmatrix} 0 & 0 & 0 & \cdots & 0 \\ 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \ddots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 & 0 \end{pmatrix} \quad C = \begin{pmatrix} g_1 & g_2 & g_3 & \cdots & g_m \\ 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \ddots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 0 \end{pmatrix} \quad F = A_2 = \mu B$$
$$A_1 = \overline{\mu}B + \mu C$$
$$A_0 = \overline{\mu}C$$

Then $P \in M_{m-1-st}$, $P \in M_{m-2-st}$.

2. Block-Monotonicity of Probability Vectors and Stochastic Matrices(continued)

• **Property 1:** Suppose that $P \in M_{m-s-st}$, s=1,2, then *i.* $a \leq_{m-s-st} b \implies aP^n \leq_{m-s-st} bP^n$ for n=1,2,...

ii.
$$a \leq_{m-s-st} aP \implies aP^n \leq_{m-s-st} aP^{n+1}$$
 for $n=1,2,...$

$$aP \leq_{m-s-st} a \implies aP^{n+1} \leq_{m-s-st} aP^n$$
 for $n=1,2,...$

3. Block-Monotone Markov Chains(continued)

- **Theorem 1:** For a DTMC $Z = \{Z_n, n \in \mathbb{N}_0\}$ with transition matrix *P* having block size *m* and initial distribution *V*. Assume that $\mathsf{E}_v[f(Z_n)] = v \mathsf{P}^n \mathsf{f}^T < \infty$
 - 1) If Condition I_{m-s-st} , II_{m-s-st} and III_{m-s-st} in Eq.(2) hold, then $\mathbb{E}_{v}[f(Z_{n})]$ is increasing concave in *n* for n=0,1,2,...and s=1,2.
 - 2) If *Condition* I_{m-s-st} , II'_{m-s-st} and III_{m-s-st} in Eq.(2) hold, then $E_{v}[f(Z_{n})]$ is decreasing convex in *n* for n=0,1,2,...and s=1,2.

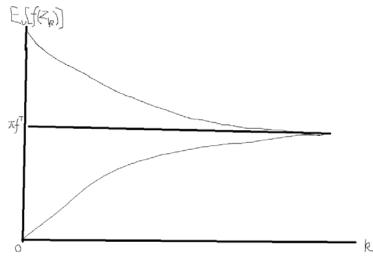
3. Block-Monotone Markov Chains(continued)

For
$$s = 1, 2,$$

Condition I_{m-s-st} : $P \in M_{m-s-st}$
Condition II_{m-s-st} : $v \leq_{m-s-st} vP$
Condition II'_{m-s-st} : $vP \leq_{m-s-st} v$ (2)

Condition III_{*m*-1-st}: h_f^T is decreasing *w.r.t.* orders \leq_{m-s-st} where $\mathbb{E}[f_{n}]$

$$\mathbf{h}_{\mathbf{f}}^{T} = \mathbf{P}\mathbf{f}^{T} - \mathbf{f}^{T}$$



3. Block-Monotone Markov Chains(continued)

- **Theorem 2:** For two DTMCs $Z = \{Z_n, n \in \mathbb{N}_0\}$ and $\tilde{Z} = \{\tilde{Z}_n, n \in \mathbb{N}_0\}$ with the same state space and initial distribution V, If their transition matrices \mathbb{Q} and \tilde{P} satisfy: $P \leq_{m-s-st} \tilde{P}$, and either $P \in M_{m-s-st}$ or $\tilde{P} \in M_{m-s-st}$, then $\mathsf{E}_v[f(Z_n)] \leq \mathsf{E}_v[f(\tilde{Z}_n)]$ for n=0,1,2,..., and s=1,2.
- Proof based on Property 2:
- **Property 2:** Suppose $P \leq_{m-s-st} \tilde{P}$ (i.e., $PE_m^s \leq_{m-s-st} \tilde{P}E_m^s$) and either $P \in M_{m-s-st}$ or $P \in M_{m-s-st}$, then $P^n \leq_{m-s-st} \tilde{P}^n$

Note: Li and Zhao (2000) gave result in property 2 for *s*=1

4. Application to the *GI/Geo/1*Queue

- There is a single server. Service times follow the geometric distribution with parameter μ , $0 < \mu < 1$
- Service discipline: first-come-first-served (FCFS).
- Inter-arrival times are follow a general distributions, $\mathbf{g}=(g_1, g_2, ..., g_m)$, $m < \infty$, and with DPH representation (β , B) of order m, where $\beta=(g_1, g_2, ..., g_m)$, B is given in Eq. (4).

4. Application to the GI/Geo/1Queue(continued)

• DTMC
$$Z = \{(I_n, J_n), n = 0, 1, 2, ...\}$$

- I_n : the number of customers in the system at time n
- J_n : the remaining inter-arrival time at time *n*
- The transition matrix *P* given by

$$P = \begin{pmatrix} B & C & O & O & \cdots \\ A_2 & A_1 & A_0 & O & \cdots \\ O & A_2 & A_1 & A_0 & \cdots \\ O & O & A_2 & A_1 & \ddots \\ \vdots & \vdots & \vdots & \ddots & \ddots \end{pmatrix}$$

(3)

4. Application to the GI/Geo/1Queue(continued)

 $B = \begin{pmatrix} 0 & 0 & 0 & \cdots & 0 \\ 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \ddots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 & 0 \end{pmatrix}$ where (4) $C = \begin{pmatrix} g_1 & g_2 & g_3 & \cdots & g_m \\ 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \ddots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 0 \end{pmatrix}$ (5) $A_{2} = \mu B , \qquad A_{1} = \overline{\mu}B + \mu C \quad , \qquad A_{0} = \overline{\mu}C \qquad (6)$ 16

4. Application to the GI/Geo/1Queue (continued)

For the *GI/Geo/1* Queue

• Corollary 1:

1) If *Condition* I_{m-1-st} in Eq.(7), II_{m-1-st} in Eq.(8) and II_{m-1-st} in Eq.(9) hold, then $\mathsf{E}_{v}[\mathsf{f}(Z_{n})]$ is increasing concave in n.

2) If Conditions I_{m-1-st} in Eq.(7), H'_{m-1-st} in Eq.(8') and H_{m-1-st} in Eq.(9) hold, then $\mathsf{E}_{v}[\mathsf{f}(Z_{n})]$ is decreasing convex in *n*.

4. Application to the *GI/Geo/1*Queue(continued)

$$Condition I_{m-1-st}: \quad 0 < \mu < 1$$

$$Condition II_{m-1-st}: \text{ For } j=1,2,...,m-1,$$

$$\overline{g}_{j} \sum_{i=0}^{k} v_{i}(j) + \overline{\mu}g_{j}v_{k}(j) - \left(\sum_{i=0}^{k} v_{i}(j+1) + \mu v_{k+1}(j+1)\right) \ge 0$$

$$v_{0}(j) - v_{0}(j+1) - \mu v_{0}(j+1) \ge 0$$

$$\sum_{i=0}^{k} v_{i}(m) - g_{m} \left(\sum_{i=0}^{k-1} v_{i}(m) + \mu v_{k}(m)\right) \ge 0$$
(8)

$$Condition II'_{m-1-st}: \text{For } j=1,2,...,m-1, \overline{g}_{j} \sum_{i=0}^{k} v_{i}(j) + \overline{\mu}g_{j}v_{k}(j) - \left(\sum_{i=0}^{k} v_{i}(j+1) + \mu v_{k+1}(j+1)\right) \le 0 v_{0}(j) - v_{0}(j+1) - \mu v_{0}(j+1) \le 0 \sum_{i=0}^{k} v_{i}(m) - g_{m} \left(\sum_{i=0}^{k-1} v_{i}(m) + \mu v_{k}(m)\right) \le 0$$
(8')

4. Application to the GI/Geo/1Queue(continued)

Condition III_{m-1-st}:

$$\Delta f_{k+1}(1) \ge \mu \sum_{j=1}^{m} g_{j} [\Delta f_{k+1}(j) - \Delta f_{k+2}(j)] + \sum_{j=1}^{m} g_{j} \Delta f_{k+2}(j) \text{ for } k=1,2,...$$

$$\Delta f_{k+1}(j+1) - \Delta f_{k+1}(j) \ge \mu [\Delta f_{k}(j) - \Delta f_{k+1}(j)] \qquad (9)$$

$$\Delta f_{1}(1) \ge \overline{\mu} \sum_{j=1}^{m} g_{j} \Delta f_{1}(j) \text{ for } k=1,2,...,j=1,2,...,m-1$$

$$\Delta f_{1}(j+1) \ge \overline{\mu} \Delta f_{1}(j) \text{ for } j=1,2,...,m-1.$$

• For example, taking $f_n(j)=n$ for $n=0,1,2,\ldots, j=1,2,\ldots,m$. then the function $f=(f_0,f_1,f_2,\ldots)$ satisfies *Condition III*_{m-1-st}

4. Application to the GI/Geo/1Queue (continued)

- **Corollary 2:** For two GI(n)/Geo(n)/1 queues
 - -- service rates μ_n and $\tilde{\mu}_n$
 - -- inter-arrival times $g_n = (g_n(1), g_n(m), ..., g_n(m))$ $\tilde{g}_n = (\tilde{g}_n(1), \tilde{g}_n(m), ..., \tilde{g}_n(m))$

Suppose that $\mu_{n+1} \leq g_n(j) / g_{n+1}(j)$, $\mu_n \geq \tilde{\mu}_n$ and $g_n(j) \leq \tilde{g}_n(j)$ for n=0,1,2,..., j=1,2,..., m, then $\mathsf{E}_v[\mathsf{f}(Z_n)] \leq \mathsf{E}_v[\mathsf{f}(\tilde{Z}_n)]$ for all n=0,1,2,...,

5. Numerical Examples

- Consider the *GI/Geo/1* Queue system with $g = (0.5, 0.5), \lambda$ = 2/3, $\mathbf{v} = (v_0, 0, 0, ...), v_0 = (3/4, 1/4), f_n(j) = n, \mu = 0.8,$ $B = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \quad C = \begin{pmatrix} 0.5 & 0.5 \\ 0 & 0 \end{pmatrix};$ $A_2 = \begin{pmatrix} 0 & 0 \\ 0.8 & 0 \end{pmatrix}, \quad A_1 = \begin{pmatrix} 0.4 & 0.4 \\ 0.2 & 0 \end{pmatrix}, A_0 = \begin{pmatrix} 0.1 & 0.1 \\ 0 & 0 \end{pmatrix}.$
 - Consider another *GI/Geo/1* Queue system with g = (0.5, 0.5), $\lambda = 2/3$, $v = (v_0, 0, 0, ...)$, $v_0 = (3/4, 1/4)$, $f_n(j) = n$, $\mu' = 0.75$.

n	0	1	2	3	4	5	6
$E_{v}[f(Z_{n})]$	0	0.7500	0.7750	0.7950	0.8150	0.8350	0.8550
$E_{v}[f(Z_{n})]$] 0	0.7500	0.8125	0.8325	0.8525	0.8725	0.8925

6. Conclusion

- Sufficient conditions to assure the monotonicity and convexity of function for block-monotone Markov chain can be obtained.
- Our approach can be used to analyze those complex queueing systems, e.g.,
 - *GI/G/1 queue*, (Alfa 2016 Section 5.12)
 - GI(n)/G(n)/1 queue
 - GI/Geo/1 queue with server vacations

Thank you very much!