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 Queueing Systems & Univariate Markov chains

– Research in this area started in 1950’s 

– Classical queues: M/M/1, M/G/1, GI/M/1, GI/Geo/1,…

 Imbeeded Markov chain: (e.g., Kendall 1951,1953), 
Hunter (1983), Tian and Zhang (2002))

 Stochastic comparison methods: (e.g.,Stoyan (1983))

 Monotonicity and convexity of functions w.r.t.
univariate Markov chains(Yu, He and Zhang (2006))

 Question: Whether above results may be extended to 
bivariate Markov chains? 

1. Introduction
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 Bivariate Markov chains with block-structured 
transition matrices (e.g., QBD)

– Research in this area started in 1980’s. 

– Continuous-time queues: GI/PH/1, PH/G/1,MAP/PH/1,…

– Discrete-time queues: GI/Geo/1, GI/G/1,…

– Methods: Matrix-analytic method (MAM) vs. block-monotone 
Markov chain

 MAM: (Neuts (1981,1989), Gibson and Seneta (1987), 
Zhao, Li and Alfa (2000);                                
Tweedie(1998), Liu (2010), He(2014), Alfa (2016), etc.)

1. Introduction (continued)
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 Block-monotone Markov chain approach

– First introduced the stochastic vectors based on F-orderings (Li 
and Shaked (1994))

– Defined the block-increasing order, and proved the stationary 
distributions of its truncations converge to that of the original 
Markov chain with monotone transition matrix (Li and Zhao 
(2000))

– Provided error bounds for augmented truncations of discrete-time 
block-monotone Markov chains under geometric drift conditions 
(Masuyama (2015)).

– Continuous-time block-monotone Markov chain(Masuyama
(2016) ).

1. Introduction (continued)
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 Definition:Block Stochastic orders 
– a=(a0, a1, a2, …), b=(b0, b1, b2, …), where an =(an(1), 

an(2), …, an(m)), bn =(bn(1), bn(2), …, bn(m)).
a              b,   if a b ,  for s = 1, 2

where

,                                                               (1)

Note: For  s = 1,  Li and Zhao (2000) defined the order 

2. Block-Monotonicity of Probability
Vectors and Stochastic Matrices
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2. Block-Monotonicity of Probability
Vectors and Stochastic Matrices(continued)

Example 1.
1) a0 =(0.3,0.2), a1 =(0.3,0.2),

b0 =(0.2,0.2), b1 =(0.4,0.2), then a               b.
2) a=(a0, a1, a2, …), b=(a0+a1, a2, a3, …), then  a               b

1m st− −≤
1m st− −≤

Example 2.
a0 =(0.25, 0.25), a1 =(0.15, 0.15), a2 =(0.1, 0.1),
b0 =(0.21, 0.21), b1 =(0.17, 0.17), b3 =(0.12, 0.12),

then a               b.2m st− −≤
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 Definition: Block-Monotone Stochastic Matrices
Let P= (Ak,l ), Ak,l = (Ak,l(i,j)), i,j=1,2, …,m k,l=0,1,2, … 

, if                             for  s = 1, 2.   

– For n = 1,  Definition of                      (Masuyama (2015))
– For n = 1,                              a            b implies

a P               b P (Li and Zhao (2000)) 

2. Block-Monotonicity of Probability
Vectors and Stochastic Matrices(continued)

1E PE Os
m m el
− ≥P m s stM − −∈

⇔ 1m st− −≤
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 Example 3 :QBD

2. Block-Monotonicity of Probability
Vectors and Stochastic Matrices(continued)

 Example 4. QBD for GI/Geo/1 queue (Alfa 2016) 
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2. Block-Monotonicity of Probability
Vectors and Stochastic Matrices(continued)

 Property 1:  Suppose that                     , s=1,2, then
i. for n=1,2, ….. 

ii. for n=1,2, ….

for n=1,2, ….

⇒
P m s stM − −∈

a bm s st− −≤ aP bPn n
m s st− −≤

a aPm s st− −≤

aP am s st− −≤

⇒

⇒

1aP aPn n
m s st

+
− −≤

1aP aPn n
m s st

+
− −≤
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3. Block-Monotone Markov Chains(continued)

 Theorem 1: For a DTMC Z={Zn , } with transition 
matrix P having block size m and initial distribution . 
Assume that
1) If Condition Im-s-st , IIm-s-st and IIIm-s-st in Eq.(2) hold, 

then                is increasing concave in n for n=0,1,2,…            
and s=1,2. 

2) If Condition Im-s-st ,II’m-s-st and IIIm-s-st in Eq.(2) hold ,
then                  is decreasing convex in n for n=0,1,2,…            
and s=1,2. 

v
0n∈N

[ ( )]f P fn
v n

TZ v= < ∞E

[ ( )f ]v nZE

[ ( )f ]v nZE
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3. Block-Monotone Markov Chains(continued)

For s = 1, 2,
Condition Im-s-st:
Condition IIm-s-st:
Condition II’m-s-st:                                                            (2)

Condition IIIm-1-st:        is decreasing w.r.t. orders 
where                      

P m s stM − −∈
Pm s stv v− −≤

P m s stv v− −≤

fh Pf fT T T= −

fhT
m s st− −≤
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3. Block-Monotone Markov Chains(continued)

 Theorem 2: For two DTMCs and

with the same state space and initial 
distribution      , If their transition matrices    and satisfy:

, and either                  or , then
for n=0,1,2,…, and  s=1,2.

{ }0,Z= nZ n∈  N
{ }0,Z= nZ n∈N

PPv

[ ( )] [ ( )f f ]v n v nZ Z≤ E E

 Property 2: Suppose                     (i.e.,                            )                                
and either                   or                     , then                       

Note: Li and Zhao (2000) gave result in property 2 for s=1

P Pm s st− −≤ 

P m s stM − −∈ P Pn n
m s st− −≤ 

P m s stM − −∈

PE PEs s
m m s st m− −≤ 

 Proof based on Property 2:

P Pm s st− −≤  P m s stM − −∈

P m s stM − −∈
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4. Application to the GI/Geo/1Queue

 There is a single server. Service times follow the 
geometric distribution with parameter     ,              

 Service discipline: first-come-first-served (FCFS).  
 Inter-arrival times are follow  a general 

distributions, g=(g1, g2, …, gm), m<∞, and with 
DPH representation (β, B) of order m, where
β=(g1, g2, …, gm), B is given in Eq. (4). 

µ 0 1µ< <
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4. Application to the GI/Geo/1Queue(continued)

 DTMC Z={(    ,     ) , n=0,1,2,…} 
 : the number of customers in the system at time n
 : the remaining inter-arrival time at time n
 The transition matrix P given by 

(3)

nI nJ

2 1 0

2 1 0

2 1

B C O O
A A A O

P O A A A
O O A A

 
 
 
 =
 
 
 
 









    

nI

nJ



16

4. Application to the GI/Geo/1Queue(continued)

where
(4)

(5)
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4. Application to the GI/Geo/1Queue (continued)

 Corollary 1:
1)If Condition Im-1-st in Eq.(7), IIm-1-st in Eq.(8) and

IIm-1-st in Eq.(9)  hold, then                   is increasing 
concave in n .

2)If Conditions Im-1-st in Eq.(7), II’m-1-st in Eq.(8’) 
and IIm-1-st in Eq.(9) hold, then                   is 
decreasing convex in n.

For the GI/Geo/1 Queue  

[ ( )f ]v nZE

[ ( )f ]v nZE
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4. Application to the GI/Geo/1Queue(continued)

Condition Im-1-st:                                                          (7)
Condition IIm-1-st: For j=1,2,…, m-1,

(8)

Condition II’m-1-st: For j=1,2,…, m-1,

(8’)                       
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4. Application to the GI/Geo/1Queue(continued)

Condition IIIm-1-st: 

for k=1,2,…

(9)

for k=1,2,…,j=1,2,…, m-1.
for j=1,2,…m-1.

1 1 2 2
1 1

(1) [ ( ) ( )] ( )
m m

k j k k j k
j j

f g f j f j g f jµ+ + + +
= =

∆ ≥ ∆ −∆ + ∆∑ ∑

1 1 1( 1) ( ) [ ( ) ( )]k k k kf j f j f j f jµ+ + +∆ + −∆ ≥ ∆ −∆

 For example, taking , fn(j)=n for n=0,1,2,…,   j=1,2,…, m. 
then  the function  f=(f0, f1, f2, …) satisfies Condition IIIm-1-st 

1 1( 1) ( )f j f jµ∆ + ≥ ∆
1 1

1
(1) ( )

m

j
j

f g f jµ
=

∆ ≥ ∆∑
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4. Application to the GI/Geo/1Queue (continued)

 Corollary 2: For two GI(n)/Geo(n)/1 queues 
-- service rates       and
-- inter-arrival times  

Suppose that                                       ,                                       
and                             for n=0,1,2,…,   j=1,2,…, m,

then                                            for all n=0,1,2,…, 

nµ

[ ( )] [ ( )f f ]v n v nZ Z≤ E E

nµ
( (1), ( ),..., ( ))n n n ng g g m g m=

( (1), ( ),..., ( ))n n n ng g g m g m=   

( ) ( ))n ng j g j≤ 
1 1( ) / ( )n n ng j g jµ + +≤ n nµ µ≥ 
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5. Numerical Examples
 Consider the GI/Geo/1 Queue system with  g = (0.5, 0.5), λ

= 2/3, v = (v0,0,0,…), v0 = (3/4,1/4), fn(j)=n, µ = 0.8, 

2 1 0

0 0 0.5 0.5
, ;

1 0 0 0

0 0 0.4 0.4 0.1 0.1
, , .

0.8 0 0.2 0 0 0

B C

A A A

   
= =   
   
     

= = =     
     

n 0 1 2 3 4 5 6

0 0.7500 0.7750 0.7950 0.8150 0.8350 0.8550
0 0.7500 0.8125 0.8325 0.8525 0.8725 0.8925

[ ( )f ]v nZE
'[ )f ( ]v nZE

 Consider another GI/Geo/1 Queue system with  g = (0.5,
0.5), λ = 2/3, v = (v0,0,0,…), v0 = (3/4,1/4), fn(j)=n, µ’ =0.75. 
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6. Conclusion 

 Sufficient conditions to assure the  monotonicity and 
convexity of function for block-monotone Markov 
chain can be obtained. 

 Our approach can be used to analyze those complex 
queueing systems, e.g., 
– GI/G/1 queue, (Alfa 2016 Section 5.12)
– GI(n)/G(n)/1 queue
– GI/Geo/1 queue with server vacations                                    



Thank you very much! 
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