Exact Stationary Tail Asymptotics for a Markov Modulated Two-Demand Model - In Terms of a Kernel Method

Yiqiang Q. Zhao

School of Mathematics and Statistics
Carleton University
Ottawa, Ontario, Canada
at MAM9, June 28-30, 2016
(Based on joint work with Y. Liu and P. Wang)

Outline

(1) Model: from scalar to block
(2) Kernel Method
(3) Methods for tail
(4) RW-Block Case
(5) Exasmple

Transition diagrams for (scalar) RW and MMRW in QP

Transition diagrams of a (usual) random walk in the quarter plane, and its generalization (two-dimensional QBD process)

As two-dimensional QBD

If m as level and n as background or phase, then the transition matrix P is given by:

$$
\begin{aligned}
P & =\left(\begin{array}{cccccc}
B_{0} & B_{1} & & & \\
A_{-1} & A_{0} & A_{1} & & \\
& A_{-1} & A_{0} & A_{1} & \\
& & \ddots & \ddots & \ddots
\end{array}\right), \\
B_{i} & =\left(\begin{array}{cccccc}
A_{i, 0}^{(0)} & A_{i, 1}^{(0)} & & & \\
A_{i,-1}^{(2)} & A_{i, 0}^{(2)} & A_{i, 1}^{(2)} & & \\
& A_{i,-1}^{(2)} & A_{i, 0}^{(2)} & A_{i, 1}^{(2)} & \\
& & \ddots & \ddots & \ddots
\end{array}\right), \\
A_{i} & =\left(\begin{array}{ccccc}
A_{i, 0}^{(1)} & A_{i, 1}^{(1)} & & & \\
A_{i,-1} & A_{i, 0} & A_{i, 1} & & \\
& A_{i,-1} & A_{i, 0} & A_{i, 1} & \\
& & \ddots & \ddots & \ddots
\end{array}\right) .
\end{aligned}
$$

Exact tail asymptotics

- $\pi_{m, n ; k}(m, n=0,1, \ldots$, and $k=1,2, \ldots M)$: Stationary distribution under a stability condition
- Exact tail asymptotic along m-direction: for fixed n and k, looking for a function $f(m)$ such that $\pi_{m, n ; k}$ and $f(m)$ have the same exact tail asymptotic property, or

$$
\lim _{m \rightarrow \infty} \pi_{m, n ; k} / f(m)=1, \quad \text { denoted by } \quad \pi_{m, n ; k} \sim f(m)
$$

- Exact tail asymptotic along n-direction: for fixed m and k, looking for a function $g(n)$ such that $\pi_{m, n ; k}$ and $g(n)$ have the same exact tail asymptotic property, or

$$
\lim _{n \rightarrow \infty} \pi_{m, n ; k} / g(n)=1, \quad \text { denoted by } \quad \pi_{m, n ; k} \sim g(n)
$$

KM: A bit of history:

- In combinatorics, first introduced by Knuth (1969) and later developed as the kernel method by Banderier et al. (2002)
- Fundamental form:

$$
K(x, y) F(x, y)=A(x, y) G(x)+B(x, y)
$$

where $F(x, y)$ and $G(x)$ are unknown functions.

- Key idea in the kernel method: to find a branch $y=y_{0}(x)$, such that $K\left(x, y_{0}(x)\right)=0$. When analytically substituting this branch into RHS, we then have $G(x)=-B\left(x, y_{0}(x)\right) / A\left(x, y_{0}(x)\right)$, and hence,

$$
F(x, y)=\frac{-A(x, y) B\left(x, y_{0}(x)\right) / A\left(x, y_{0}(x)\right)+B(x, y)}{K(x, y)}
$$

KM: for RW (scalar)

- Unknown GFs:

$$
\begin{aligned}
\pi(x, y) & =\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \pi_{m, n} x^{m-1} y^{n-1} \\
\pi_{1}(x) & =\sum_{m=1}^{\infty} \pi_{m, 0} x^{m-1}, \quad \pi_{2}(y)=\sum_{n=1}^{\infty} \pi_{0, n} y^{n-1}
\end{aligned}
$$

- Fundamental form:
$-h(x, y) \pi(x, y)=h_{1}(x, y) \pi_{1}(x)+h_{2}(x, y) \pi_{2}(y)+h_{0}(x, y) \pi_{0,0}$
Instead of one, we have two unknown functions $\pi_{1}(x)$ and $\pi_{2}(y)$ on RHS.
- When we consider a branch $Y=Y_{0}(x)$, such that $h\left(x, Y_{0}(x)\right)=0$, analytically substituting this branch into RHS only leads to a relationship between the two unknown functions.

Determination of unknown functions

- Brute force method (e.g., Jackson networks)
- Boundary value problems (e.g., 2 by 2 switches; symmetric JSQ)
- Uniformization method (e.g., 2 by 2 swithches; 2-demand model; JSQ)
- Algebraic approach (e.g., 2-demand model)

In general, the determination of the unknown function is expressed
in terms of a singular integral, based on which tail asymptotic properties in probabilities could be studied.

Tail asymptotics

Advantage: Without a determination of the unknown function. Instead, we only need: (1) location and (2) its detailed property of the dominant singularity.

- Kernel equation: $h=0$, leading to branch point x_{3}, a candidate of the dominant singularity (decay rate $1 / x_{3}$), and branches $Y_{0}(x)$ and $\left.Y_{1}(x)\right)$
- Interlace of two unknown functions $\pi_{1}(x)$ and $\pi_{2}(y)$, leading to analytic continuation of unknown functions (dominant singularity and its asymptotic property
- Tauberian-like theorem (relationship between asymptotic property of a function and asymptotic property of its coefficients, or probabilities)

Four types of tail asymptotics

For non-singular genus one RW, if it is not X-shaped, then one of the following holds:

- Exact geometric:

$$
\pi_{n, j} \sim c \theta^{n}
$$

- Geometric with subgeometric factor $n^{-3 / 2}$:

$$
\pi_{n, j} \sim c n^{-3 / 2} \theta^{n}
$$

- Geometric with subgeometric factor $n^{-3 / 2}$:

$$
\pi_{n, j} \sim c n^{-1 / 2} \theta^{n}
$$

- Geometric with subgeometric factor n :

$$
\pi_{n, j} \sim c n \theta^{n}
$$

Methods for tail asymptotics

- Analytic and algebraic: Generating function methods: Malyshev 1972, 1973; Flatto and McKean 1977; Fayolle and lasnogorodski 1979; Fayolle, King and Mitrani 1982; Cohen and Boxma 1983; Flatto and Hahn 1984; Flatto 1985; Fayolle, lasnogorodski and Malyshev 1991; Wright 1992; Kurkova and Suhov 2003; Leeuwaarden 2005; Morrison: 2007; Guillemin and Leeuwaarden 2009; Miyazawa and Rolski; Li and Zhao 2010
- Large deviations (LD): Borovkov and Mogul'skii (2001)
- Markov additive processes (MAP) and LD: McDonald 1999; Foley and McDonald 2001, 2005; Khachi 2008, 2009; Adan, Foley and McDonald (2009)
- Matrix analytic methods (MAP and mtraix): Takahashi, Fujimoto and Makimoto 2001; Haque 2003; Miyazawa 2004; Miyazawa and Zhao 2004; Kroese, Scheinhardt and Taylor 2004; Haque, Liu and Zhao 2005; Motyer and Taylor 2006; Li, Miyazawa and Zhao 2007; He, Li and Zhao 2008
- Non-linear optimization (N-LP) (MAP and N-LP): Miyazawa 2007, 2008, 2009; Kobayashi and Miyazawa 2010
Kernel methods (analytic combinatorics and asymptotic analysis):
Bousquet-Melou 2005; Mishna 2006; Hou and Mansour 2008; Flajolet and Sedgewick 2009

KM: for RW (block)

- Fundamental form:

$$
-\Pi(x, y) H(x, y)=\Pi_{1}(x) H_{1}(x, y)+\Pi_{2}(y) H_{2}(x, y)+\Pi_{0} H_{0}(x, y)
$$

- All H, H_{1}, H_{2} and H_{0} are given matrices, for example, $H(x, y)=x y\left(I-\sum_{i=-1}^{1} \sum_{j=-1}^{1} x^{i} y^{j} A_{i j}\right)$
- $\Pi(x, y), \Pi_{1}(x)$ and $\Pi_{2}(y)$ are unknown vector functions, for example, $\Pi_{1}(x)=$

$$
\left(\sum_{i=1}^{\infty} \pi_{i, 0 ; 1} x^{i-1}, \sum_{i=1}^{\infty} \pi_{i, 0 ; 2} x^{i-1}, \ldots, \sum_{i=1}^{\infty} \pi_{i, 0 ; M} x^{i-1}\right)_{1 \times M}
$$

Challenges from scalar from block

1. Kernel equation: $\Pi(x, y) H(x, y)=0$

- For scalar case,
$-h(x, y) \pi(x, y)=h_{1}(x, y) \pi_{1}(x)+h_{2}(x, y) \pi_{2}(y)+h_{0}(x, y) \pi_{0,0}$
There exit enough (x, y) such that $h(x, y)=0$
- For block case,
$-\Pi(x, y) H(x, y)=\Pi_{1}(x) H_{1}(x, y)+\Pi_{2}(y) H_{2}(x, y)+\Pi_{0} H_{0}(x, y)$
We need to show that there exist enough (x, y) such that $\Pi(x, y) H(x, y)=0$.
- This is not immediate. For specific simple examples (incl MM 2-demand model), a direct method may prevail, but for a general case, we need a different treatment (for example, based on analytic continuation to construct analytic functions that satisfy the FF, and then use the uniqueness theorem)

2. Factorization of $\operatorname{det} H(x, y)=0$

- $\operatorname{det} H(x, y)=0$ for (x, y) such that $\Pi(x, y) \neq 0$.
- Factorization:

$$
\begin{aligned}
\operatorname{det} H(x, y) & =\left[a(x) y^{2}+b(x) y+c(x)\right] q(x, y) \\
& =\left[\tilde{a}(y) x^{2}+\tilde{b}(y) x+\tilde{c}(y)\right] q(x, y)=0,
\end{aligned}
$$

- Proof based on properties of:
(1) Perron-Frobenius eigenvalue of

$$
C(x, y)=\sum_{i=-1}^{1} \sum_{j=-1}^{1} x^{i} y^{j} A_{i, j}
$$

(2) Convex property of $\bar{\Gamma}=\left\{\left(s_{1}, s_{2}\right) \in \mathbb{R}^{2}: \chi\left(e^{s_{1}}, e^{s_{2}}\right) \leq 1\right\}$;
(3) Polynomial $\operatorname{det} H(x, y)=0$.

3. Analytic continuation of $\Pi_{1}(x)$

- Based on
$\Pi_{1}(x) H_{1}\left(x, Y_{0}(x)\right)=-\left[\Pi_{2}\left(Y_{0}(x)\right) H_{2}\left(x, Y_{0}(x)\right)+\Pi_{0} H_{0}\left(x, Y_{0}(x)\right)\right]$
the dominant singularity of $\Pi_{1}(x)$ is either the branch point x_{3}, or a zero of $\operatorname{det} H_{1}\left(x, Y_{0}(x)=0\right.$ or the dominant singularity of $\Pi_{2}\left(Y_{0}(x)\right)$.
- Interlace between $\Pi_{1}(x)$ and $\Pi_{2}(y)$ leads to that the dominant singularity of $\Pi_{1}(x)$ is either the branch point x_{3}, or a zero of det $H_{1}\left(x, Y_{0}(x)\right)=0$, or \tilde{x}_{1} such that $Y_{0}\left(\tilde{x}_{1}\right)$ is a zero of $\operatorname{det} H_{2}\left(X_{0}(y), y\right)=0$.

4. Asymptotic properties of $\Pi_{1}(x)$

- det $H_{1}(x, y)=0$ can be factored as

$$
\begin{aligned}
\operatorname{det} H_{1}(x, y) & =\left[b_{1}(x) y+c_{1}(x)\right] q_{1}(x, y) \\
& =\left[\tilde{a}_{1}(y) x^{2}+\tilde{b}_{1}(y) x+\tilde{c}_{1}(y)\right] q_{1}(x, y),
\end{aligned}
$$

or $h_{1}(x, y)=b_{1}(x) y+c_{1}(x)=\tilde{a}_{1}(y) x^{2}+\tilde{b}_{1}(y) x+\tilde{c}_{1}(y)$ is a polynomial of degree one in y and degree two in x.

- Similarly,

$$
\begin{aligned}
\operatorname{det} H_{2}(x, y) & =\left[a_{2}(x) y^{2}+b_{2}(x) y+c_{2}(x)\right] q_{2}(x, y) \\
& =\left[\tilde{b}_{2}(y) x+\tilde{c}_{2}(y)\right] q_{2}(x, y),
\end{aligned}
$$

or $h_{2}(x, y)=a_{2}(x) y^{2}+b_{2}(x) y+c_{2}(x)=\tilde{b}_{2}(y) x+\tilde{c}_{2}(y)$ is a polynomial of degree one in x and degree two in y.

Convert to scalar case

- Consider $h_{1}(x, y) \pi_{1}(x)+h_{2}(x, y) \pi_{2}(y)+h_{0}(x, y) \pi_{0,0}=0$. We want to claim that $\pi_{1}(x)$ has the same asymptotic property as that of a component of $\Pi_{1}(x)$, and $\pi_{2}(y)$ has the same asymptotic property as that of a component of $\Pi_{2}(y)$.
- We finally claim that the tail asymptotic problem for the block fundamental form:
$-\Pi(x, y) H(x, y)=\Pi_{1}(x) H_{1}(x, y)+\Pi_{2}(y) H_{2}(x, y)+\Pi_{0} H_{0}(x, y)$
can be solved through asymptotic problem of the scalar fundamental form:

$$
-h(x, y) \pi(x, y)=h_{1}(x, y) \pi_{1}(x)+h_{2}(x, y) \pi_{2}(y)+h_{0}(x, y) \pi_{0,0}
$$

MM two-demand model

- Arrival rate is λ_{k} when the modulating MC is in state k. For example, for two-state MC (state 0 and state 1), its transition matrix is given by

$$
\left.J=\begin{array}{c}
0 \\
0 \\
1
\end{array} \begin{array}{cc}
p & \bar{p} \\
\bar{q} & q
\end{array}\right],
$$

where $\bar{a}=1-a$, and $0<p, q<1$ to avoid triviality.

Factorization

$$
H(x, y)=\left[\begin{array}{cc}
x y\left(1-\lambda_{1}\right)-p g_{0}(x, y) & -\bar{p} g_{0}(x, y) \\
-\bar{q} g_{1}(x, y) & x y\left(1-\lambda_{0}\right)-q g_{1}(x, y)
\end{array}\right],
$$

where

$$
g_{k}(x, y)=x^{2} y^{2} \lambda_{k}+x \mu_{2}+y \mu_{1}
$$

For simplicity, assume $p=q=1 / 2$, which leads to

$$
\operatorname{det} H(x, y)=-\frac{x^{2} y^{2}}{2} h(x, y),
$$

where
$h(x, y)=\left[\lambda_{0}\left(1-\lambda_{0}\right)+\lambda_{1}\left(1-\lambda_{1}\right)\right] x^{2} y^{2}-2\left(1-\lambda_{0}\right)\left(1-\lambda_{1}\right) x y$ $+\left[\left(1-\lambda_{0}\right)+\left(1-\lambda_{1}\right)\right]\left(\mu_{2} x+\mu_{1} y\right)$.

$$
\operatorname{det} H_{1}(x, y)=\left(-\frac{x}{2}\right) h_{1}(x, y)
$$

where

$$
\begin{aligned}
h_{1}(x, y)= & {\left[\left(\lambda_{0}+\mu_{1}\right) \lambda_{1}+\left(\lambda_{1}+\mu_{1}\right) \lambda_{0}\right] y x^{2}-2\left(\lambda_{0}+\mu_{1}\right)\left(\lambda_{1}+\mu_{1}\right) x } \\
& +\left[\left(\lambda_{0}+\mu_{1}\right)+\left(\lambda_{1}+\mu_{1}\right)\right] \mu_{1} .
\end{aligned}
$$

$$
\operatorname{det} H_{2}(x, y)=\left(-\frac{y}{2}\right) h_{2}(x, y)
$$

where

$$
\begin{aligned}
h_{2}(x, y)= & {\left[\left(\lambda_{0}+\mu_{2}\right) \lambda_{1}+\left(\lambda_{1}+\mu_{2}\right) \lambda_{0}\right] x y^{2}-2\left(\lambda_{0}+\mu_{2}\right)\left(\lambda_{1}+\mu_{2}\right) y } \\
& +\left[\left(\lambda_{0}+\mu_{2}\right)+\left(\lambda_{1}+\mu_{2}\right)\right] \mu_{2}
\end{aligned}
$$

Dominant singularity

Recall

$$
\begin{align*}
& a(x)=\left[\lambda_{0}\left(1-\lambda_{0}\right)+\lambda_{1}\left(1-\lambda_{1}\right)\right] x^{2}, \tag{1}\\
& b(x)=\mu_{1}\left(2-\lambda_{0}-\lambda_{1}\right)-2\left(1-\lambda_{0}\right)\left(1-\lambda_{1}\right) x, \tag{2}\\
& c(x)=\mu_{2}\left(2-\lambda_{0}-\lambda_{1}\right) x, \tag{3}
\end{align*}
$$

and the discriminant $D_{1}(x)=b^{2}(x)-4 a(x) c(x)$, which is a cubic polynomial. We can first show that $D_{1}(x)$ has three branch points: $0<x_{1}<x^{*}<x_{2}<1<x_{3}<+\infty$, where

$$
x^{*}=\frac{\mu_{1}\left(2-\lambda_{0}-\lambda_{1}\right)}{2\left(1-\lambda_{0}\right)\left(1-\lambda_{1}\right)}
$$

Carlet?nthe unique solution to $b(x)=0$.

We are then to show:

1. $h_{1}\left(x, Y_{0}(x)\right)$ has a unique zero x^{*} that is greater than one;
2. $h_{2}\left(X_{0}(y), y\right)$ does not have any zero y such that $y=X_{0}\left(\tilde{x}_{1}\right)$ for some $\tilde{x}_{1}>1$.

Tail asymptotic properties

Finally, based on which one is the dominant singularity, there are three types of tail asymptotic properties for $\pi_{m, 0}$:
Type one: If $x^{*}<x_{3}$, then

$$
\pi_{m, 0} \sim c\left(1 / x^{*}\right)^{m} ;
$$

Type two: If $x_{3}<x^{*}$, then

$$
\pi_{m, 0} \sim \mathrm{~cm}^{-3 / 2}\left(1 / x_{3}\right)^{m}
$$

Type three; If $x^{*}=x_{3}$, then

$$
\pi_{m, 0} \sim c m^{-1 / 2}\left(1 / x^{*}\right)^{m}=c m^{-1 / 2}\left(1 / x_{3}\right)^{m} .
$$

References

I.J.B.F. Adan, O.J. Boxma and J.A.C. Resing, Queueing models with multiple waiting lines, Queueing Systems, 37, 65-98, 2001.
K. Avrachenkov, Ph. Nain and U. Yechiali, A retrial system with two input streams and two orbit queues. Queueing Syst. 77, 1-31 (2014)

Banderier, C., Bousquet-Mélou, M, Denise, A, Flajolet, P., Gardy, D. and Gouyou-Beauchamps, D. (2002) Generating functions of generating trees, Discrete Math., 246, 29-55.
J.P.C. Blanc, Application of the theory of boundary value problems in the analysis of a queueing model with paired services. Mathematisch Centrum Amsterdam, 1982
J.P.C. Blanc, The relaxation time of two queueing systems in series. Communications in Statistics : Stochastic Models. 1, 1-16 (1985)
J.P.C. Blanc, R. Iasnogorodski and Ph. Nain, Aanlysis of the $M / G I / 1 \rightarrow . / M / 1$ queueing model. Queueing Syst. 3, 129-156 (1988)

Borovkov, A.A. and Mogul'skii, A.A. (2001) Large deviations for Markov chains in the positive quadrant, Russian Math. Surveys, 56, 803-916.

Bousquet-Mélou, M. (2005) Waks in the quarter plane: Kreweras' algebraic model, Annals of Applied Probability, 15, 1451-1491.
O.J. Boxma, Two symmertric queues with alternating service and switching times, In: Performance'84, ed.
E. Gelenbe (North-Holland Publ. Co., Amsterdam,1984) 409-431

References

\square O.J. Boxma and G.J. van Houtum, The Compensation approach applied to a 2×2 switch, Probability in the Engineering and Informational Sciences. 7, 471-493 (1993)
J.W. Cohen, Boundary value problems in queueing theory. Queueing Syst. 3, 97-128 (1988)
J.W. Cohen and O.J. Boxma, Boundary value problems in queueing system analysis. North-Holland Publishing Company, 1983

Fayolle, G. and lasnogorodski, R. (1979) Two coupled processors: the reduction to a Riemann-Hilbert problem, Z. Wahrscheinlichkeitsth, 47, 325-351.

Fayolle, G., King, P.J.B. and Mitrani, I. (1982) The solution of certain two-dimensional Markov models, Adv. Appl. Prob., 14, 295-308.

Fayolle, G., lasnogorodski, R. and Malyshev, V. (1999) Random Walks in the Quarter-Plane, Springer.

Flajolet, P. and Odlyzko, A. (1990) Singularity analysis of generating functions, SIAM J. Disc. Math., 3, 216-240.

Flatto, L. and McKean, H.P. (1977) Two queues in parallel, Comm. Pure Appl. Math., 30, 255-263.

Flatto, L. and Hahn, S. (1984) Two parallel queues created by arrivals with two demands I, SIAM J. Appl. Math., 44, 1041-1053.

Flatto, L. (1985) Two parallel queues created by arrivals with two demands II, SIAM J. Appl. Math., 45, 861-878.
L. Flatto and S. Hahn, Erratum: Two parallel queues created by arrivals with two demands I, SIAM Journal on Applied Mathematics. 45, p. 168 (1985)

Foley, R.D. and McDonald, D.R. (2001) Join the shortest queue: stability and exact asymptotics, Annals of Applied Probability, 11, 569-607.

Foley, R.D. and McDonald, D.R. (2005) Large deviations of a modified Jackson network: Stability and rough asymptotics, Annals of Applied Probability, 15, 519-541.

Foley, R.D. and McDonald, R.D. (2005) Bridges and networks: exact asymptotics, Annals of Applied Probability, 15, 542-586.
G.J. Foschini, Equilibrium for diffusion models of pairs of communicating computers-symmetric case, IEEE Transactions. IT 28, 273-284 (1982)
F. Guillemin, C. Knessl and J. S. H. van Leeuwaarden, Wireless three-hop networks with stealing II: exact solutions through boundary value problems. Queueing Syst. 74, 235-272 (2013)
F. Guillemin, C. Knessl and J. S. H. van Leeuwaarden, Erratum to: Wireless three-hop networks with stealing II: exact solutions through boundary value problems. Queueing Syst. 78, 189-195 (2014)
F. Guillemin and D. Pinchon, Analysis of generalized processor-sharing systems with two classes of customers and exponential services. J. Appl. Prob. 41, 832-858 (2004)
F. Guillemin and J. S. H. van Leeuwaarden, Rare event asymptotics for a random walk in the quarter plane. Queueing Syst. 67, 1-32 (2011)

Haque, L. (2003) Tail Behaviour for Stationary Distributions for Two-Dimensional Stochastic Models, Ph.D. Thesis, Carleton University, Ottawa, ON, Canada.

Haque, L., Liu, L. and Zhao, Y.Q. (2005) Sufficient conditions for a geometric tail in a QBD process with countably many levels and phases, Stochastic Models, 21(1), 77-99.

He, Q., Li, H. and Zhao, Y.Q. (2009) Light-tailed behaviour in QBD process with countably many phases, Stochastic Models, 25, 50-75.

Hou, Q.-H. and Mansour, T. (2008) Kernel method and linear recurrence system, Journal of Computational and Applied Mathematics, 216, 227-242.

Isotupa, K.P.S. and Stanford, D.A. (2002) An infinite-phase quasi-birth-and-death model for the non-preemptive priority $M / P H / 1$ queue, Stochastic Models, 18, 378-410.
S. Jaffe, Equilibrium results for a pair of coupled discrete-time queues, Ultracomputer Note, NYA Ultracomputer Research Lab, Courant Institute of Mathematical Sciences, New York (1989).
S. Jaffe, The equilibrium distribution for a clocked buffered switch, Probability in the Engineering and Informational Sciences, 6, 425-438, 1992.

Knuth, D.E. (1969) The Art of Computer Programming, Fundamental Algorithms, vol. 1, second ed., Addison-Wesley.

Kobayashi, M. and Miyazawa, M. (2010) Tail asymptotics of the stationary distribution of a two dimensional re ecting random walk with unbounded upward jumps, submitted.

Kobayashi, M., Miyazawa, M. and Zhao, Y.Z. (2010) Tail asymptotics of the occupation measure for a Markov additive process with an $M / G / 1$-type background process, to appear in Stochastic Models.

Kroese, D.P., Scheinhardt, W.R.W. and Taylor, P.G. (2004) Spectral properties of the tandem Jackson network, seen as a quasi-birth-and-death process, Annals of Applied Probability, 14(4), 2057-2089.
I. Kurkova and K. Raschel, Random walks in $\left(Z_{+}\right)^{2}$ with non-zero drift absorbed at the axes. arXiv:0903.5486 [math.PR]

Kurkova, I.A. and Suhov, Y.M. (2003) Malyshev's theory and JS-queues. Asymptotics of stationary probabilities, The Annals of Applied Probability, 13, 1313-1354.

Li, L., Miyazawa, M. and Zhao, Y. (2007) Geometric decay in a QBD process with countable background states with applications to a join-the-shortest-queue model, Stochastic Models, 23, 413-438.

Li, H. and Zhao. Y.Q. (2009) Exact tail asymptotics in a priority queue - characterizations of the preemptive model, Queueing Systems, 63, 355-381.

Li, H. and Zhao. Y.Q. (2010) Exact tail asymptotics in a priority queue - characterizations of the nonpreemptive model, submitted.

Liu, L., Miyazawa, M. and Zhao, Y.Q. (2008) Geometric decay in level-expanding QBD models, Annals of Operations Research, 160, 83-98.

Maertens, T., Walraevens, J. and Bruneel H. (2007) Priority queueing systems: from probability generating functions to tail probabilities, Queueing Systems, 55, 27-39.

Malyshev, V.A. (1972) An analytical method in the theory of two-dimensional positive random walks, Siberian Math. Journal, 13, 1314-1329.

Malyshev, V.A. (1973) Asymptotic behaviour of stationary probabilities for two dimensional positive random walks, Siberian Math. Journal, 14, 156-169.

McDonald, D.R. (1999) Asymptotics of first passage times for random walk in an orthant, Annals of Applied Probability, 9, 110-145.

Miller, Douglas R. (1981) Computation of steady-state probabilites for $M / M / 1$ priority queues, Operations Research, 29(5), 945-958.

Mishna, M. (2009) Classifying lattice walks restricted to the quarter plane, Journal of Combinatorial Theory, Series A, 116, 460-477.

Miyazawa, M. (2004) The Markov renewal approach to M/G/1 type queues with countably many background states, Queueing Systems, 46, 177-196.

Miyazawa, M. (2007) Doubly QBD process and a solution to the tail decay rate problem, in Proceedings of the Second Asia-Pacific Symposium on Queueing Theory and Network Applications, Kobe, Japan.

Miyazawa, M. (2009) Two sided DQBD process and solutions to the tail decay rate problem and their applications to the generalized join shortest queue, in Advances in Queueing Theory and Network Applications, edited by W. Yue, Y. Takahashi and H. Takaki, 3-33, Springer, New York.

Miyazawa, M. (2009) Tail decay rates in double QBD processes and related reflected random walks, Math. OR, 34, 547-575.

Miyazawa, M. and Rolski, R. (2009) Exact asymptotics for a Levy-driven tandem queue with an intermediate input, Queueing Systems, 63, 323-353.

Miyazawa, M. and Zhao, Y.Q. (2004) The stationary tail asymptotics in the $\mathrm{GI} / \mathrm{G} / 1$ type queue with countably many background states, Adv. in Appl. Probab., 36(4), 1231-1251.

Motyer, Allan J. and Taylor, Peter G. (2006) Decay rates for quasi-birth-and-death process with countably many phases and tri-diagonal block generators, Advances in Applied Probability, 38, 522-544.

Ph. Nain and K. Ross, Optimal priority assignment with hard constraint, Report INRIA, Centre de Sophia Antipolis, 1985
J. Resinga and L. Ormeci, A tandem queueing model with coupled processors, Operations Research Letters. 31, 383-389 (2003)

Takahashi, Y., Fujimoto, K. and Makimoto, N. (2001) Geometric decay of the steady-state probabilities in a quasi-birth-and-death process with a countable number of phases, Stochastic Models, 17(1), 1-24.

Wischik, D. (2001) Sample path large deviations for queues with many inputs, Annals of Applied Probability, 11, 379-404.

Wright, P. (1992) Two parallel processors with coupled inputs, Adv. Appl. Prob., 24, 986-1007.

Thanks You!

