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Transition diagrams for (scalar) RW and MMRW in
QP

Transition diagrams of a (usual) random walk in the quarter plane,
and its generalization (two-dimensional QBD process)
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As two-dimensional QBD
If m as level and n as background or phase, then the transition
matrix P is given by:
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Exact tail asymptotics

• πm,n;k (m, n = 0, 1, . . ., and k = 1, 2, . . .M): Stationary
distribution under a stability condition

• Exact tail asymptotic along m-direction: for fixed n and k ,
looking for a function f (m) such that πm,n;k and f (m) have
the same exact tail asymptotic property, or

lim
m→∞

πm,n;k/f (m) = 1, denoted by πm,n;k ∼ f (m)

• Exact tail asymptotic along n-direction: for fixed m and k ,
looking for a function g(n) such that πm,n;k and g(n) have
the same exact tail asymptotic property, or

lim
n→∞

πm,n;k/g(n) = 1, denoted by πm,n;k ∼ g(n)
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KM: A bit of history:

• In combinatorics, first introduced by Knuth (1969) and later
developed as the kernel method by Banderier et al. (2002)

• Fundamental form:

K (x , y)F (x , y) = A(x , y)G (x) + B(x , y)

where F (x , y) and G (x) are unknown functions.

• Key idea in the kernel method: to find a branch y = y0(x),
such that K (x , y0(x)) = 0. When analytically substituting this
branch into RHS, we then have
G (x) = −B(x , y0(x))/A(x , y0(x)), and hence,

F (x , y) =
−A(x , y)B(x , y0(x))/A(x , y0(x)) + B(x , y)

K (x , y)
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KM: for RW (scalar)

• Unknown GFs:

π(x , y) =
∞∑

m=1

∞∑
n=1

πm,nx
m−1yn−1,

π1(x) =
∞∑

m=1

πm,0x
m−1, π2(y) =

∞∑
n=1

π0,ny
n−1.

• Fundamental form:

−h(x , y)π(x , y) = h1(x , y)π1(x)+h2(x , y)π2(y)+h0(x , y)π0,0

Instead of one, we have two unknown functions π1(x) and
π2(y) on RHS.

• When we consider a branch Y = Y0(x), such that
h(x ,Y0(x)) = 0, analytically substituting this branch into
RHS only leads to a relationship between the two unknown
functions.
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Determination of unknown functions

• Brute force method (e.g., Jackson networks)

• Boundary value problems (e.g., 2 by 2 switches; symmetric
JSQ)

• Uniformization method (e.g., 2 by 2 swithches; 2-demand
model; JSQ)

• Algebraic approach (e.g., 2-demand model)

In general, the determination of the unknown function is expressed
in terms of a singular integral, based on which tail asymptotic
properties in probabilities could be studied.
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Tail asymptotics

Advantage: Without a determination of the unknown function.
Instead, we only need: (1) location and (2) its detailed property of
the dominant singularity.

• Kernel equation: h = 0, leading to branch point x3, a
candidate of the dominant singularity (decay rate 1/x3), and
branches Y0(x) and Y1(x))

• Interlace of two unknown functions π1(x) and π2(y), leading
to analytic continuation of unknown functions (dominant
singularity and its asymptotic property

• Tauberian-like theorem (relationship between asymptotic
property of a function and asymptotic property of its
coefficients, or probabilities)
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Four types of tail asymptotics

For non-singular genus one RW, if it is not X-shaped, then one of
the following holds:

• Exact geometric:
πn,j ∼ cθn

• Geometric with subgeometric factor n−3/2:

πn,j ∼ cn−3/2θn

• Geometric with subgeometric factor n−3/2:

πn,j ∼ cn−1/2θn

• Geometric with subgeometric factor n:

πn,j ∼ cnθn
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Methods for tail asymptotics

• Analytic and algebraic: Generating function methods: Malyshev 1972,
1973; Flatto and McKean 1977; Fayolle and Iasnogorodski 1979; Fayolle,
King and Mitrani 1982; Cohen and Boxma 1983; Flatto and Hahn 1984;
Flatto 1985; Fayolle, Iasnogorodski and Malyshev 1991; Wright 1992;
Kurkova and Suhov 2003; Leeuwaarden 2005; Morrison: 2007; Guillemin
and Leeuwaarden 2009; Miyazawa and Rolski; Li and Zhao 2010

• Large deviations (LD): Borovkov and Mogul’skii (2001)

• Markov additive processes (MAP) and LD: McDonald 1999; Foley and
McDonald 2001, 2005; Khachi 2008, 2009; Adan, Foley and McDonald
(2009)

• Matrix analytic methods (MAP and mtraix): Takahashi, Fujimoto and
Makimoto 2001; Haque 2003; Miyazawa 2004; Miyazawa and Zhao 2004;
Kroese, Scheinhardt and Taylor 2004; Haque, Liu and Zhao 2005; Motyer
and Taylor 2006; Li, Miyazawa and Zhao 2007; He, Li and Zhao 2008

• Non-linear optimization (N-LP) (MAP and N-LP): Miyazawa 2007, 2008,
2009; Kobayashi and Miyazawa 2010

• Kernel methods (analytic combinatorics and asymptotic analysis):
Bousquet-Melou 2005; Mishna 2006; Hou and Mansour 2008; Flajolet
and Sedgewick 2009
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KM: for RW (block)

• Fundamental form:

−Π(x , y)H(x , y) = Π1(x)H1(x , y)+Π2(y)H2(x , y)+Π0H0(x , y)

• All H, H1, H2 and H0 are given matrices, for example,

H(x , y) = xy
(
I −

∑1
i=−1

∑1
j=−1 x

iy jAij

)
• Π(x , y), Π1(x) and Π2(y) are unknown vector functions, for

example, Π1(x) =(∑∞
i=1 πi ,0;1x

i−1,
∑∞

i=1 πi ,0;2x
i−1, . . . ,

∑∞
i=1 πi ,0;Mx i−1

)
1×M
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Challenges from scalar from block

1. Kernel equation: Π(x , y)H(x , y) = 0

• For scalar case,

−h(x , y)π(x , y) = h1(x , y)π1(x)+h2(x , y)π2(y)+h0(x , y)π0,0

There exit enough (x , y) such that h(x , y) = 0

• For block case,

−Π(x , y)H(x , y) = Π1(x)H1(x , y)+Π2(y)H2(x , y)+Π0H0(x , y)

We need to show that there exist enough (x , y) such that
Π(x , y)H(x , y) = 0.

• This is not immediate. For specific simple examples (incl MM
2-demand model), a direct method may prevail, but for a
general case, we need a different treatment (for example,
based on analytic continuation to construct analytic functions
that satisfy the FF, and then use the uniqueness theorem)
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2. Factorization of detH(x , y) = 0

• detH(x , y) = 0 for (x , y) such that Π(x , y) 6= 0.

• Factorization:

detH(x , y) =[a(x)y2 + b(x)y + c(x)]q(x , y)

=[ã(y)x2 + b̃(y)x + c̃(y)]q(x , y) = 0,

• Proof based on properties of:
(1) Perron-Frobenius eigenvalue of

C (x , y) =
1∑

i=−1

1∑
j=−1

x iy jAi ,j

(2) Convex property of Γ̄ = {(s1, s2) ∈ R2 : χ(es1 , es2) ≤ 1};
(3) Polynomial detH(x , y) = 0.
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3. Analytic continuation of Π1(x)

• Based on

Π1(x)H1(x ,Y0(x)) = −[Π2(Y0(x))H2(x ,Y0(x))+Π0H0(x ,Y0(x))]

the dominant singularity of Π1(x) is either the branch point
x3, or a zero of detH1(x ,Y0(x) = 0 or the dominant
singularity of Π2(Y0(x)).

• Interlace between Π1(x) and Π2(y) leads to that the
dominant singularity of Π1(x) is either the branch point x3, or
a zero of detH1(x ,Y0(x)) = 0, or x̃1 such that Y0(x̃1) is a
zero of detH2(X0(y), y) = 0.
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4. Asymptotic properties of Π1(x)

• detH1(x , y) = 0 can be factored as

detH1(x , y) =[b1(x)y + c1(x)]q1(x , y)

=[ã1(y)x2 + b̃1(y)x + c̃1(y)]q1(x , y),

or h1(x , y) = b1(x)y + c1(x) = ã1(y)x2 + b̃1(y)x + c̃1(y) is a
polynomial of degree one in y and degree two in x .

• Similarly,

detH2(x , y) =[a2(x)y2 + b2(x)y + c2(x)]q2(x , y)

=[b̃2(y)x + c̃2(y)]q2(x , y),

or h2(x , y) = a2(x)y2 + b2(x)y + c2(x) = b̃2(y)x + c̃2(y) is a
polynomial of degree one in x and degree two in y .
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Convert to scalar case

• Consider h1(x , y)π1(x) + h2(x , y)π2(y) + h0(x , y)π0,0 = 0.
We want to claim that π1(x) has the same asymptotic
property as that of a component of Π1(x), and π2(y) has the
same asymptotic property as that of a component of Π2(y).

• We finally claim that the tail asymptotic problem for the block
fundamental form:

−Π(x , y)H(x , y) = Π1(x)H1(x , y)+Π2(y)H2(x , y)+Π0H0(x , y)

can be solved through asymptotic problem of the scalar
fundamental form:

−h(x , y)π(x , y) = h1(x , y)π1(x)+h2(x , y)π2(y)+h0(x , y)π0,0
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MM two-demand model

• Arrival rate is λk when the modulating MC is in state k . For
example, for two-state MC (state 0 and state 1), its transition
matrix is given by

J =

[ 0 1

0 p p̄
1 q̄ q

]
,

where ā = 1− a, and 0 < p, q < 1 to avoid triviality.
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Factorization

H(x , y) =

[
xy(1− λ1)− pg0(x , y) −p̄g0(x , y)

−q̄g1(x , y) xy(1− λ0)− qg1(x , y)

]
,

where
gk(x , y) = x2y2λk + xµ2 + yµ1

For simplicity, assume p = q = 1/2, which leads to

detH(x , y) = −x2y2

2
h(x , y),

where

h(x , y) =[λ0(1− λ0) + λ1(1− λ1)]x2y2 − 2(1− λ0)(1− λ1)xy

+ [(1− λ0) + (1− λ1)](µ2x + µ1y).
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detH1(x , y) =
(
−x

2

)
h1(x , y),

where

h1(x , y) =
[
(λ0 + µ1)λ1 + (λ1 + µ1)λ0

]
yx2 − 2(λ0 + µ1)(λ1 + µ1)x

+
[
(λ0 + µ1) + (λ1 + µ1)

]
µ1.

detH2(x , y) =
(
−y

2

)
h2(x , y),

where

h2(x , y) =
[
(λ0 + µ2)λ1 + (λ1 + µ2)λ0

]
xy2 − 2(λ0 + µ2)(λ1 + µ2)y

+
[
(λ0 + µ2) + (λ1 + µ2)

]
µ2.
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Dominant singularity

Recall

a(x) = [λ0(1− λ0) + λ1(1− λ1)] x2, (1)

b(x) = µ1(2− λ0 − λ1)− 2(1− λ0)(1− λ1)x , (2)

c(x) = µ2(2− λ0 − λ1)x , (3)

and the discriminant D1(x) = b2(x)− 4a(x)c(x), which is a cubic
polynomial. We can first show that D1(x) has three branch points:
0 < x1 < x∗ < x2 < 1 < x3 < +∞, where

x∗ =
µ1(2− λ0 − λ1)

2(1− λ0)(1− λ1)

is the unique solution to b(x) = 0.
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We are then to show:

1. h1(x ,Y0(x)) has a unique zero x∗ that is greater
than one;

2. h2(X0(y), y) does not have any zero y such that
y = X0(x̃1) for some x̃1 > 1.
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Tail asymptotic properties

Finally, based on which one is the dominant singularity, there are
three types of tail asymptotic properties for πm,0:

Type one: If x∗ < x3, then

πm,0 ∼ c(1/x∗)m;

Type two: If x3 < x∗, then

πm,0 ∼ cm−3/2(1/x3)m;

Type three; If x∗ = x3, then

πm,0 ∼ cm−1/2(1/x∗)m = cm−1/2(1/x3)m.



Outline Model: from scalar to block Kernel Method Methods for tail RW-Block Case Exasmple

References

I.J.B.F. Adan, O.J. Boxma and J.A.C. Resing, Queueing models with multiple waiting lines, Queueing

Systems, 37, 65–98, 2001.

K. Avrachenkov, Ph. Nain and U. Yechiali, A retrial system with two input streams and two orbit queues.

Queueing Syst. 77, 1–31 (2014)

Banderier, C., Bousquet-Mélou, M, Denise, A, Flajolet, P., Gardy, D. and Gouyou-Beauchamps, D. (2002)

Generating functions of generating trees, Discrete Math., 246, 29–55.

J.P.C. Blanc, Application of the theory of boundary value problems in the analysis of a queueing model with

paired services. Mathematisch Centrum Amsterdam, 1982

J.P.C. Blanc, The relaxation time of two queueing systems in series. Communications in Statistics :

Stochastic Models. 1, 1–16 (1985)

J.P.C. Blanc, R. Iasnogorodski and Ph. Nain, Aanlysis of the M/GI/1→ ./M/1 queueing model.

Queueing Syst. 3, 129–156 (1988)

Borovkov, A.A. and Mogul’skii, A.A. (2001) Large deviations for Markov chains in the positive quadrant,

Russian Math. Surveys, 56, 803–916.

Bousquet-Mélou, M. (2005) Waks in the quarter plane: Kreweras’ algebraic model, Annals of Applied

Probability, 15, 1451–1491.

O.J. Boxma, Two symmertric queues with alternating service and switching times, In: Performance’84, ed.

E. Gelenbe (North-Holland Publ. Co., Amsterdam,1984) 409–431



Outline Model: from scalar to block Kernel Method Methods for tail RW-Block Case Exasmple

References

O.J. Boxma and G.J. van Houtum, The Compensation approach applied to a 2× 2 switch, Probability in

the Engineering and Informational Sciences. 7, 471–493 (1993)

J.W. Cohen, Boundary value problems in queueing theory. Queueing Syst. 3, 97–128 (1988)

J.W. Cohen and O.J. Boxma, Boundary value problems in queueing system analysis. North-Holland

Publishing Company, 1983

Fayolle, G. and Iasnogorodski, R. (1979) Two coupled processors: the reduction to a Riemann-Hilbert

problem, Z. Wahrscheinlichkeitsth, 47, 325–351.

Fayolle, G., King, P.J.B. and Mitrani, I. (1982) The solution of certain two-dimensional Markov models,

Adv. Appl. Prob., 14, 295–308.

Fayolle, G., Iasnogorodski, R. and Malyshev, V. (1999) Random Walks in the Quarter-Plane, Springer.

Flajolet, P. and Odlyzko, A. (1990) Singularity analysis of generating functions, SIAM J. Disc. Math., 3,

216–240.

Flatto, L. and McKean, H.P. (1977) Two queues in parallel, Comm. Pure Appl. Math., 30, 255–263.

Flatto, L. and Hahn, S. (1984) Two parallel queues created by arrivals with two demands I, SIAM J. Appl.

Math., 44, 1041–1053.

Flatto, L. (1985) Two parallel queues created by arrivals with two demands II, SIAM J. Appl. Math., 45,

861–878.

L. Flatto and S. Hahn, Erratum: Two parallel queues created by arrivals with two demands I, SIAM Journal

on Applied Mathematics. 45, p.168 (1985)



Outline Model: from scalar to block Kernel Method Methods for tail RW-Block Case Exasmple

Foley, R.D. and McDonald, D.R. (2001) Join the shortest queue: stability and exact asymptotics, Annals of

Applied Probability, 11, 569–607.

Foley, R.D. and McDonald, D.R. (2005) Large deviations of a modified Jackson network: Stability and

rough asymptotics, Annals of Applied Probability, 15, 519–541.

Foley, R.D. and McDonald, R.D. (2005) Bridges and networks: exact asymptotics, Annals of Applied

Probability, 15, 542–586.

G.J. Foschini, Equilibrium for diffusion models of pairs of communicating computers-symmetric case, IEEE

Transactions. IT 28, 273–284 (1982)

F. Guillemin, C. Knessl and J. S. H. van Leeuwaarden, Wireless three-hop networks with stealing II: exact

solutions through boundary value problems. Queueing Syst. 74, 235–272 (2013)

F. Guillemin, C. Knessl and J. S. H. van Leeuwaarden, Erratum to: Wireless three-hop networks with

stealing II: exact solutions through boundary value problems. Queueing Syst. 78, 189–195 (2014)

F. Guillemin and D. Pinchon, Analysis of generalized processor-sharing systems with two classes of

customers and exponential services. J. Appl. Prob. 41, 832–858 (2004)

F. Guillemin and J. S. H. van Leeuwaarden, Rare event asymptotics for a random walk in the quarter plane.

Queueing Syst. 67, 1–32 (2011)

Haque, L. (2003) Tail Behaviour for Stationary Distributions for Two-Dimensional Stochastic Models, Ph.D.

Thesis, Carleton University, Ottawa, ON, Canada.

Haque, L., Liu, L. and Zhao, Y.Q. (2005) Sufficient conditions for a geometric tail in a QBD process with

countably many levels and phases, Stochastic Models, 21(1), 77–99.

He, Q., Li, H. and Zhao, Y.Q. (2009) Light-tailed behaviour in QBD process with countably many phases,

Stochastic Models, 25, 50–75.



Outline Model: from scalar to block Kernel Method Methods for tail RW-Block Case Exasmple

Hou, Q.-H. and Mansour, T. (2008) Kernel method and linear recurrence system, Journal of Computational

and Applied Mathematics, 216, 227–242.

Isotupa, K.P.S. and Stanford, D.A. (2002) An infinite-phase quasi-birth-and-death model for the

non-preemptive priority M/PH/1 queue, Stochastic Models, 18, 378–410.

S. Jaffe, Equilibrium results for a pair of coupled discrete-time queues, Ultracomputer Note, NYA

Ultracomputer Research Lab, Courant Institute of Mathematical Sciences, New York (1989).

S. Jaffe, The equilibrium distribution for a clocked buffered switch, Probability in the Engineering and

Informational Sciences, 6, 425–438, 1992.

Knuth, D.E. (1969) The Art of Computer Programming, Fundamental Algorithms, vol. 1, second ed.,

Addison-Wesley.

Kobayashi, M. and Miyazawa, M. (2010) Tail asymptotics of the stationary distribution of a two

dimensional re ecting random walk with unbounded upward jumps, submitted.

Kobayashi, M., Miyazawa, M. and Zhao, Y.Z. (2010) Tail asymptotics of the occupation measure for a

Markov additive process with an M/G/1-type background process, to appear in Stochastic Models.

Kroese, D.P., Scheinhardt, W.R.W. and Taylor, P.G. (2004) Spectral properties of the tandem Jackson

network, seen as a quasi-birth-and-death process, Annals of Applied Probability, 14(4), 2057–2089.

I. Kurkova and K. Raschel, Random walks in (Z+)2 with non-zero drift absorbed at the axes.

arXiv:0903.5486 [math.PR]

Kurkova, I.A. and Suhov, Y.M. (2003) Malyshev’s theory and JS-queues. Asymptotics of stationary

probabilities, The Annals of Applied Probability, 13, 1313-1354.

Li, L., Miyazawa, M. and Zhao, Y. (2007) Geometric decay in a QBD process with countable background

states with applications to a join-the-shortest-queue model, Stochastic Models, 23, 413–438.



Outline Model: from scalar to block Kernel Method Methods for tail RW-Block Case Exasmple

Li, H. and Zhao. Y.Q. (2009) Exact tail asymptotics in a priority queue — characterizations of the

preemptive model, Queueing Systems, 63, 355–381.

Li, H. and Zhao. Y.Q. (2010) Exact tail asymptotics in a priority queue — characterizations of the

nonpreemptive model, submitted.

Liu, L., Miyazawa, M. and Zhao, Y.Q. (2008) Geometric decay in level-expanding QBD models, Annals of

Operations Research, 160, 83–98.

Maertens, T., Walraevens, J. and Bruneel H. (2007) Priority queueing systems: from probability generating

functions to tail probabilities, Queueing Systems, 55, 27–39.

Malyshev, V.A. (1972) An analytical method in the theory of two-dimensional positive random walks,

Siberian Math. Journal, 13, 1314–1329.

Malyshev, V.A. (1973) Asymptotic behaviour of stationary probabilities for two dimensional positive random

walks, Siberian Math. Journal, 14, 156–169.

McDonald, D.R. (1999) Asymptotics of first passage times for random walk in an orthant, Annals of

Applied Probability, 9, 110–145.

Miller, Douglas R. (1981) Computation of steady-state probabilites for M/M/1 priority queues, Operations

Research, 29(5), 945–958.

Mishna, M. (2009) Classifying lattice walks restricted to the quarter plane, Journal of Combinatorial Theory,

Series A, 116, 460–477.

Miyazawa, M. (2004) The Markov renewal approach to M/G/1 type queues with countably many

background states, Queueing Systems, 46, 177-196.

Miyazawa, M. (2007) Doubly QBD process and a solution to the tail decay rate problem, in Proceedings of

the Second Asia-Pacific Symposium on Queueing Theory and Network Applications, Kobe, Japan.



Outline Model: from scalar to block Kernel Method Methods for tail RW-Block Case Exasmple

Miyazawa, M. (2009) Two sided DQBD process and solutions to the tail decay rate problem and their

applications to the generalized join shortest queue, in Advances in Queueing Theory and Network
Applications, edited by W. Yue, Y. Takahashi and H. Takaki, 3–33, Springer, New York.

Miyazawa, M. (2009) Tail decay rates in double QBD processes and related reflected random walks, Math.

OR, 34, 547–575.

Miyazawa, M. and Rolski, R. (2009) Exact asymptotics for a Levy-driven tandem queue with an

intermediate input, Queueing Systems, 63, 323–353.

Miyazawa, M. and Zhao, Y.Q. (2004) The stationary tail asymptotics in the GI/G/1 type queue with

countably many background states, Adv. in Appl. Probab., 36(4), 1231–1251.

Motyer, Allan J. and Taylor, Peter G. (2006) Decay rates for quasi-birth-and-death process with countably

many phases and tri-diagonal block generators, Advances in Applied Probability, 38, 522–544.

Ph. Nain and K. Ross, Optimal priority assignment with hard constraint, Report INRIA, Centre de Sophia

Antipolis, 1985

J. Resinga and L. Ormeci, A tandem queueing model with coupled processors, Operations Research Letters.

31, 383–389 (2003)

Takahashi, Y., Fujimoto, K. and Makimoto, N. (2001) Geometric decay of the steady-state probabilities in a

quasi-birth-and-death process with a countable number of phases, Stochastic Models, 17(1), 1–24.

Wischik, D. (2001) Sample path large deviations for queues with many inputs, Annals of Applied

Probability, 11, 379–404.

Wright, P. (1992) Two parallel processors with coupled inputs, Adv. Appl. Prob., 24, 986–1007.



Outline Model: from scalar to block Kernel Method Methods for tail RW-Block Case Exasmple

Thanks You!


	Model: from scalar to block
	Kernel Method
	Methods for tail
	RW-Block Case
	Exasmple

