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1 Introduction

Estimating a mean up time (MUT) for a new component
generally relies on an extrapolation of informations ob-
tained on one or several matured components of the same
family. In charge of such a task, who did not hesitate think-
ing to himself :A why 5 000 hours rather than4 000 hours?
or 6 000 hours?B .

This estimation of theMUT will be used to estimate the
steady state availability of this new component and from
that elaborate the estimation of the availability of the global
system in which this subsystem is included. Moreover, for
tailored complex highly dependable systems (think for ex-
ample to air traffic control systems), there is a high sensitiv-
ity between the steady state availability of this new compo-
nent and the amount of spares to produce when introducing
the new complex system on the field. An over-estimation
of the MUT and the customer will not obtain the required
availability; an under-estimation of theMUT and very costly
spares might be produced for no need.

In order to take this risk into consideration, we propose
to consider the steady state mean up time (MUT) as a ran-
dom variable. This implies that the steady state availability
becomes itself a random variable.

In this paper we first consider theMUT as uniformly
distributed on a time interval[a0, b0] ; when no additional
information is available, this is meaningful to use the uni-
form distribution (this is the distribution that maximizes the
entropy function of the information). Then we consider
the so calledA triangularBdistribution. For such a distribu-
tion, the density function is continuous and non nul over the
interval [xmin, xmax], linearly increasing on[xmin, xmod]
and linearly decreasing on[xmod, xmax].

Because we deal with highly available systems, it is
more meaningful to study the relative variation of the un-
availability as a function the different parameters. Here, the
mean down time (easier to evaluate) is supposed to be con-
stant and the steady state unavailability can be written as :

A =
d

MUT + d

whered is the constant mean down time.
We determine the expectation and the probability dis-

tribution of this steady state unavailability as a function of
the probability distribution of the steady state mean up time
for the two different cases, respectively in sections 2 and 3.
Sensitivities of the different parameters are pointed out with
graphical illustrations of numeral cases. Section 4 gives

some insights on the differences induced by the two distinct
distributions.

2 The MUT follows a uniform distri-
bution

In this section, the random variableMUT follows the
uniform distributionU [a0, b0]. Letting a = (a0 + d)
and b = (b0 + d) the random variable unavailabilityA
takes its values on the intervalA ∈ [

Amin, Amax

]
where

Amin =
d

b
, Amax =

d

a
. It is interesting to represent the ob-

tained results as a function of the ratiob/a and therefore we
let β = b/a, β > 1. On this interval, the density function
of A is equal to

fA(x) =
d

a(β − 1)x2
, x ∈ [

Amin, Amax

]
From this result we get the expectation

IE[A] =
d

a(β − 1)
ln (β)

Expressingx as a function of a parameterα, α ∈ [0, 1]
in the following way

x(α) = Amin + α(Amax − Amin) = d
1 + α(β − 1)

βa
,

it is possible to show that

IP(A > x(α)) =
(1 − α)

(1 − α) + αβ
(1)

and also that

IP(A > x(α)) < (1 − α)

Figure 1 gives the variation of the probabilityIP(A ≤
x(α)) as a function ofα, α ∈ [0, 1], for several values ofβ.
The line segment denotedβ = 1 corresponds to the limit
curve whenβ tends to one,i.e., whenb0 tends towardsa0.
It is possible to check that the probabilityIP(A > x(α)) de-
creases significantly when parameterβ increases. However
we have to remember that interval[Amin, Amax] increases
with β and therefore that, globally the uncertainty stays pe-
nalizing.
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Figure 1: Variation ofIP(A ≤ x(α)) as a function ofα,
α ∈ [0, 1]. Values ofβ : 1; 2; 4; 8 (bottom-up). MUT fol-
lowing a uniform distribution.

Given a small value ofγ, we can determine the value of
α such thatIP(A > x(α)) = γ. We get the function :

α =
(1 − γ)

(1 − γ) + γβ

Note that this function is an involution (f(f(x)) = x).
Figure 2 gives this variation ofα as a function ofγ, γ ∈
[0 , 0, 2]. for several values ofβ. We observe thatα de-
creases significantly when parameterβ increases.
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Figure 2: Variation ofα as a function ofγ, γ ∈ [0 , 0, 2].
Values ofβ : 1; 2; 4; 8 (top-down). MUT following a uni-
form distribution.

Note that if we were considering a deterministic value
of MUT equal to its expectation, then the steady state un-
availability would be deterministic and equal to

Â =
2d

a(β + 1)

It can be shown that increasing the uncertainty on the
mean up time (without changing its expectation) decreases
the expectation of the steady state availability.

3 The MUT follows a triangular dis-
tribution

We assume now that the random variableMUT follows a
triangular distribution (see a representation on figure 3).

xmin xmod xmin

2
(xmax−xmin)

x

fMUT (x)

Figure 3: Illustration of the density function of the
A triangularB distribution.

This distribution is entirely characterized by the triplet
(xmin, xmax, xmod).

The mean down time is still supposed to be constant
(MDT = d) and, in order to simplify the writting, we let
a = xmin + d, b = xmax + d, ∆ = xmax − xmin and

ρ =
(xmod − xmin)
(xmax − xmin)

.

Considering the random variableY =
A

d
, it can be

shown that this random variable has the following density
function :

fY (y) =




0 if y < 1/b
2

(1 − ρ)∆2

1
y2

(b − 1
y
) if 1/b ≤ y ≤ 1

a + ρ∆
2

ρ∆2

1
y2

(
1
y
− a) if

1
a + ρ∆

≤ y ≤ 1/a

0 if y > 1/a

This density function is represented on figure 4 for three values ofρ (1/4; 1/2 and3/4). The cumulative probability
function is obtained by integration :



FY (y) =




0 if y < 1/b

1
(1 − ρ)∆2

(
b − 1

y

)2

if 1/b ≤ y ≤ 1
a + ρ∆

1 − 1
ρ∆2

(
1
y
− a

)2

if
1

a + ρ∆
≤ y ≤ 1/a

1 if y > 1/a
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Figure 4: Density function ofY for three values ofρ ; with
a = 10 andb = 20. MUT follows aA triangularB distribu-
tion.

With these previous notations, we still haveA ∈[
Amin, Amax

]
whereAmin =

d

b
, Amax =

d

a
, as in the pre-

vious section. Using again the notationsβ = b/a, β > 1
andx(α) = Amin + α(Amax − Amin) , we get again

x(α) = d
1 + α(β − 1)

βa
,

We can show that the expectation ofA has the following
expression whenρ satisfies the condition0 < ρ < 1 :

IE[A] =
2d

a(1 − ρ)(β − 1)2
×(

β ln(β) − (1 − ρ) + ρβ

ρ
ln ((1 − ρ) + ρβ)

)

Let α∗ be the value ofα such thatx(α∗) =
d

a + ρ∆
,

i.e., the value ofα corresponding to the unavailability that
we obtained whenMUT = xmod. This value is :

α∗ =
(1 − ρ)

(1 − ρ) + ρβ

Whenα takes its value betweenα∗ and1, we can show
that :

IP(A ≤ x(α)) = 1 − 1
ρ

(
(1 − α)

(1 − α) + αβ

)2

. (2)

If α = α∗, we have :

IP(A ≤ x(α∗)) = (1 − ρ), ∀β,

and whenα takes its value between0 andα∗, we can
show that :

IP(A ≤ x(α)) =
1

(1 − ρ)

(
αβ

(1 + α(β − 1))

)2

. (3)

Figure 5 gives the variation of the probabilityIP(A ≤
x(α)) as a function ofα andρ ; ρ = 0.5 , α ∈ [0.5 , 1],
for several values ofβ. Again, the curve denotedβ = 1
corresponds to the limit curve whenβ tends to one,i.e.,
whenb0 tends towardsa0. We can see that the probabil-
ity IP(A > x(α)) decreases significantly when parameter
β increases. But again we have to remember that interval
[Amin, Amax] increases withβ and therefore that, globally
the uncertainty stays penalizing.
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Figure 5: Variation ofIP(A ≤ x(α)) as a function ofα,
α ∈ [0.5 , 1]. ρ = 0.5 . Values ofβ : 1; 2; 4; 8 (bottom-up),
α ∈ [0.5 , 1]. MUT follows aA triangularB distribution.

Given a small value ofγ (satisfyingγ < ρ), we can de-
termine the value ofα such thatIP(A > x(α)) = γ. We
get the function :

α =
(1 −√

ργ)
(1 −√

ργ) +
√

ργβ

Figure 6 gives this variation ofα as a function ofγ,
γ ∈ [0 , 0, 2]. for several values ofβ. For example, if
β = 2, ρ = 0.5 andγ = 0.1, thenα equals0.63. We ob-
serve thatα decreases significantly when parameterβ in-
creases. This figure can be compared to figure 2 relative to
the variation ofα in the case of the uniforme distribution.
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Figure 6: Variation ofα as a function ofγ, γ ∈ [0 , 0.2].
ρ = 0.5 . Values ofβ : 1; 2; 4; 8 (top-down).MUT follows
aA triangularB distribution.

On the other side, given a small value ofδ (satisfying
δ < (1 − ρ)), we can determine the value ofα such that
IP(A ≤ x(α)) = δ. We get the function :

α =

√
(1 − ρ)δ

β − (β − 1)
√

(1 − ρ)δ

4 Comparison

In order to make comparisons between the two distribu-
tions, letIPU (A > x(α)) andIPT (A > x(α)) denote the
respective probabilities corresponding to the uniform and
to the triangular distributions of the random variableMUT.
From previous equations 1 and 2 , we get, for a given value
of α, α > α∗ :

IPT (A > x(α)) =
1
ρ

(
IPU (A > x(α))

)2
. (4)

Forα = α∗, we have :

IPT (A > x(α)) = IPU (A > x(α)) = ρ. (5)

While for α, α < α∗ :

IPT (A ≤ x(α)) =
1

(1 − ρ)
(
IPU (A ≤ x(α))

)2
. (6)

Figure 7 shows, forβ = 2, the advantage of the
A triangularB distribution on the uniform distribution. In-
creasing the value of parameterβ would increase this ad-
vantage.
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Figure 7: Variation ofIP(A ≤ x(α)) as a function ofα,
α ∈ [0.0 , 1]. Comparison of the uniform distribution with
theA triangularB distribution. Withρ = 0.5 ; β = 2.

5 Conclusions

In this study, we have pointed out a way to determine the
probability IP(A > x) when, due to a lake of knowl-
edge, the mean up time is considered as a random vari-
able. Simple expressions have been obtained for two cases
of probability distributions : the uniform distribution and
theA triangularB distribution. Expressions ofx satisfying
the equalityIP(A > x) = γ, for a givenγ have also been
exhibited.

We conducted this research with the aim to help the en-
gineer to understand the consequences of such uncertainties
on the mean up time.

Finally, note that, starting from these initial guesses on
probability distributions, we may then improve the evalu-
ation by using the Bayesian approach, making uses of the
data returning from the field experiences.
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