
Gradient-based Models of Multitier Systems
Shuyi Chen1, Kaustubh R. Joshi2, Matti A. Hiltunen2,

Richard D. Schlichting2, and William H. Sanders1

1Coordinated Science Laboratory
University of Illinois at Urbana-Champaign

Urbana, IL, USA
{schen38,whs}@illinois.edu

2AT&T Labs Research
180 Park Ave.

Florham Park, NJ, USA
{kaustubh,hiltunen,rick}@research.att.com

I. INTRODUCTION

Predicting the impact of environmental and infrastructure
changes on end-to-end performance metrics of multitier sys-
tems is an important endeavour with tremendous opportu-
nities. Multitier applications shape a large portion of the
online experience by powering services such as e-commerce
portals, search engines, social-networking sites, collaborative
services, email, and enterprise management systems. Studies
such as [1], [2], [3] and the experiences of large service
providers [4] have repeatedly shown the importance of perfor-
mance, measured using metrics such as end-to-end response
time, on user satisfaction, traffic growth, and, consequently,
business viability. Other metrics such as a service’s overall
power consumption are crucial for energy saving and green
computing efforts. Predictive models for such metrics can
aid in a variety of system management tasks such as system
deployment, planned upgrades, and adaptation in response to
dynamic workload variations.

However, the design and deployment life-cycle of typical
online applications poses significant practical challenges that
make the use of traditional modeling techniques such as
queuing theory difficult. Often, there is simply not enough
knowledge about the application or the infrastructure it is
deployed on to construct detailed models. Increasing software
complexity and the use of poorly understood off-the-shelf
components as “black-box” subsystems exacerbate the prob-
lem. Application deployment environments also play a role.
As multitier systems are increasingly deployed in outsourced
data centers, shared infrastructure clouds, content distribution
networks, and over complex networks, the application owners
are often separate entities from the infrastructure providers.
The former do not have enough visibility into the infrastruc-
ture to construct good models, while the later do not have
visibility into the application to do so. Finally, even if detailed
information were available, models often require significant
expertise and entail significant expense, both of which are
scarce in commercial environments with intense budget and
time-to-market pressures.

In this paper, we propose an alternative approach to de-
tailed performance modeling of multitier systems based on
simple models constructed via automatic on-line computation
of “resource gradients”. For a multitier application, resource

gradients quantify the impact of changes in low level system
resource parameters (or “knobs”) such as individual node CPU
capacity, CPU frequency, or network link latency on the end-
to-end performance metrics of the system by computing local
point derivatives of the metrics with respect to the parameters.
This is done by injecting minute perturbations into a running
system and using measurements of its response to estimate the
derivatives. Resource gradients provide models that capture the
impact of application specific parameters and infrastructure
configurations, but yet, require very little information about
the target system, it’s structure, resource usage characteristics,
and communication patterns. In Section II, we define resource
gradients and describe how they can be measured even in noisy
production environments with very low perturbation using
spectral analysis techniques based on Fourier transforms.

Gradient-based models can be very accurate for small
parameter variations. However, in return for their simplicity
and ability to model black-box systems, they increasingly
diverge from reality as the environment changes become more
significant compared to the original measurement point, and
thus must be periodically recalibrated. The divergence is due
to the linearity assumptions made by the models that real
systems often do not abide by for their whole range of possible
parameter values. While it is not possible to completely
eliminate the divergence, we have developed techniques to
deal with many types of non-linear behavior and extend the
useful range of resource gradient models. We demonstrate
these techniques in the context of different applications (i.e.,
different metric and knob combinations) in Section III and
show using experimental results that gradients provide a prac-
tical and powerful modeling paradigm for a diverse range of
applications ranging from topology aware system deployment
to virtual machine consolidation to energy conservation.

II. TECHNICAL APPROACH

We begin by defining resource gradients, and then describe
how they can be measured in a push-button manner.

A. Resource Gradients

Consider a multitier application consisting of a set of nodes
represented by vector N = (n1, n2, . . . , nm) and connected
by a set of logical communication links represented by vector
L = (l1, l2, . . . , ln). Each node represents a single software

component of a specific type, e.g., a web server, application
server. Nodes execute using resources (e.g., physical hosts)
that may be dedicated or shared. E.g., several nodes may
execute within virtual machines on the same physical host.
Logical links exist between two nodes whenever message
exchanges occur between them during system operation. Each
logical link may comprise of many physical network links.
Together, nodes and links are called the elements of the
application. Each element e is associated with a vector of
attributes A = (ae1, a

e
2, . . . , a

e
k) that quantify properties of the

node or its resources that may impact its performance. For
example, attributes may include the capacity of a resource
available to an element such as the fraction of the host’s
CPU or I/O bandwidth available to a node, or the bandwidth
available to a logical link. They can also include properties of
the resources themselves, e.g., the CPU speed of the host a
node runs on, or the link latency of a logical link.

Applications are also associated with an end-to-end
“progress metric” M . This progress metric may include any
single measurable end-to-end property important to the ap-
plication, and may be different for different kinds of ap-
plications. For example, it could be the execution time in
case of non-interactive applications. For batch-oriented data
processing applications, it could be the rate at which the
application consumes input or produces output in terms of
records per second. For transactional systems, the metric might
be the throughput or the end-to-end response time of different
types of application transactions. It can also quantify non-
performance related attributes such as total power usage of
the system or power consumption per transaction type. In this
paper, we consider transactional systems whose users interact
with them through a set of transactions, such as “login”, “buy”,
and “browse”, each of which utilizes a set of components
according to a transaction-specific call graph. We focus on the
end-to-end transactional response time of such transactions.

The goal of a resource gradient model is to quantify
the relationship between attributes and end-to-end progress
metrics. Specifically, consider the values of a single type of
attribute Ak e.g., latency, for all p elements of the system
in the current operating configuration c0, i.e., Ak(c0) =
(ae1k (c0), ae2k (c0), . . . , aep

k (c0)). We represent the relationship
of the attribute to the metric M as an unknown function
at the current operating point, or, M = F (Ak(c0)). Then,
the question we wish to answer is, “Given the value of
M(Ak(c0)) at the system’s current operating configuration c0,
what is its value at a different operating configuration c1, i.e.,
M(Ak(c1))?”.

To answer this question, the approach we take is as follows.
Let the vector ∆Ak = Ak(c1)−Ak(c0) = (∆ae1k , . . . ,∆a

ep

k)
be the differential change in the attribute values between the
current and the new operating configurations. Assuming that
the function F is differentiable, we can then use the Taylor
expansion to represent the desired M(Ak(c1)) as:

M(Ak(c1)) = M(Ak(c0)) +
∑

e∈N∪L

∂F

∂ae
k

∣∣∣∣
c0

∆ae
k + O(∆A2

k) (1)

In this equation, the O(. . .) term represents the higher order
derivatives and powers of the attribute values. If the deriva-
tives ∂F

∂Ak

∣∣
c0

= (∂F
∂a

e1
k

∣∣
c0
, ∂F
∂a

e2
k

∣∣
c0
, . . .) (i.e., the gradients) are

known at the current operating configuration c0, one might
imagine using this equation to predict the performance of
the system in the new configuration by ignoring the higher-
order derivatives and powers in O(∆A2

k). However, doing
so is justifiable only if ∆Ak is small enough to cause the
higher powers to vanish, or if F is linear, thus ensuring
that the higher-order derivatives are zero. In practice, changes
in the operating conditions could be large, making the first
condition impractical. The second condition can hold true
depending on the type of metric and attribute being considered.
In Section III, we discuss one type of gradient—the link
gradient—for which that is the case. However, in general,
such linearity assumptions may not hold, and non-linearity can
impact the accuracy of the gradient. Although non-linearity
can always be overcome by recalculating the gradients when-
ever they change, it is important to minimize the need for
such recalculations not only to reduce runtime measurement
overhead, but also to prove a meaningful operating range over
which gradient models can make accurate predictions.

To tackle the problem of non-linearity of the unknown
function F with respect to the attributes Ak, we recast F in
terms of “basis functions” Bk = (be1k , . . . , b

ep

k) with respect
to which it is linear. For each element e, the basis function
bek(Ak(c1)) is a function whose values for a configuration c1
can be computed solely based on the values of attributes in that
configuration, i.e., Ak(c1) and any constant parameters. As we
show in Section III, in many cases, these basis functions can
be derived using high level knowledge of the causes of non-
linearity without the need for detailed application knowledge.
Since the value of basis functions can be predicted for a
new configuration, the change in basis functions between the
old and new configurations, i.e., ∆Bk = |Bk(Ak(c1)) −
Bk(Ak(c0))| = (∆be1k , . . . ,∆b

ep

k) can be used along with
a gradient with respect to the basis functions, i.e., ∂F

∂Bk
to

predict the value of the metric in a new configuration, or
M(Ak(c1)) ≈M(Ak(c0)) + ∂F

∂Bk
·∆Bk without any error.

B. Spectral Gradient Measurement

The basic technique we use to estimate the resource gradient
for each system element e with respect to attribute aek at
runtime is conceptually very simple. We inject small perturba-
tions in the value of aek, and then measure the corresponding
change in the end-to-end metric. The ratio of the change in
the metric to the change in the basis function value provides
the gradient. However, the problem with such an approach is
that measurements made on running systems are often very
noisy, especially when resources are shared. Therefore, to get
accurate estimates with tight confidence intervals, measure-
ments must either be accumulated over long periods of time, or
the perturbation must be high enough to overcome the effects
of noise. Both approaches are less than ideal. Conducting
measurements over long time intervals carries the risk that
the system behavior might change during measurement as a

0 10 20 30 40 50 60 70
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 105

Sampling points

R
es

po
ns

e
tim

e(
m

ic
ro

se
co

nd
)

Response time series
w/o delay injection
Response time series
with delay injection

(a) Response Time Series

0 0.05 0.1 0.15 0.2 0.25
0

0.5

1

1.5

2

2.5
x 1011

Frequency(Hz)

Po
w

er

Power spectrum
w/o delay injection
Power spectrum
with delay injection

(b) Frequency Spectrum

Central

Coordinator

Front-end

Server
Server Clients …

Daemon Daemon

Log

(c) Gradient Computation Architecture

Fig. 1. Gradient Measurement

result of workload changes, or other runtime adaptations. On
the other hand, injecting large perturbations can be intrusive
and be detrimental to user experience.

To address this problem, we have developed a technique
that uses the observation that while noise may be present in
a system’s runtime measurements, it is rarely periodic. While
some sources of noise such as garbage collection may indeed
be periodic, such sources are few, and operate at a small set
of frequencies that can be easily identified by examining the
metric in the frequency domain. The remainder of the noise is
often spread uniformly across many different frequencies, with
very little contribution at any particular frequency. Therefore,
if the perturbation is crafted such that a large portion of its
energy is concentrated on a single frequency at which noise is
usually low, one can get significantly superior signal-to-noise
ratios and more accurate measurements.

For simplicity, we use a square wave pattern for injecting
perturbations. Within a short time frame (usually several
minutes), we perturb the resource attribute at a single element
by repeatedly switching its value between its normal value and
a high/low value at a frequency chosen to minimize ambient
noise. This also causes a square-wave perturbation in the basis
function. Subsequently, we use standard Fourier transforms to
compute the frequency spectrum of the time series of metric
measurements made during the period of signal injection, and
use that frequency spectrum to estimate the resource gradient
using the following equation, as derived in [5].

∂M

∂bek
=
|FFTd(M)− FFT0(M)| · sin(π2n)

∆bek · fd
(2)

In this equation, n is the number of sample measurements in
the metric time series, fd represents the frequency at which
the perturbation was injected, and FFTd(M) and FFT0(M)
represent the Fast Fourier Transform (FFT) of the metric time
series with and without the perturbation, respectively. Sample
end-to-end response time series with and without perturbation
along with their frequency domain counterparts are shown in
Figures 1 (a) and (b). As can be seen, even a square wave
that is visually difficult to discern in the time domain results
in large spikes in the frequency domain. Use of this technique
allows a reduction of noise and perturbation by an order of
magnitude (see [5]) compared to a time-domain approach, and
thus makes it possible to recalculate the gradients dynamically
and cheaply while the system is running.

To facilitate gradient model computation, we have imple-

mented a distributed active monitoring framework, as shown
in Figure 1(c), that automatically calculates the frequency
gradients for a distributed application. The framework consists
of a central coordinator and a set of local daemons on each
node. Each daemon is responsible for reporting the current
values of node and link attributes to the central co-ordinator,
and changing their values on command from the coordinator.
Depending on the attribute being changed, several different
perturbation mechanisms are used as described in Section III.
The central coordinator orchestrates the daemons and executes
the gradient measurement algorithm. It requires a list of
the machines executing the application’s components and the
location of the end-to-end metric data. No additional workload
beyond the application’s normal workload is required for
measurement purposes, thus ensuring minimal interference in
a running system.

The process of measuring the gradients consists of two
phases: a) the training phase, and b) a set of per-element
measurement phases. In the training phase, the coordinator
passively collects the metric values, and uses them to deter-
mine the parameters for the perturbation square wave that is
to be injected into each individual element. The per-element
measurement phase is conducted once for every element, and
is the active phase during which perturbations are actually
introduced. A detailed description of the algorithms can be
found in [5] and [6].

III. APPLICATIONS OF GRADIENTS

Next, we describe three different gradient models that we
have developed, and experimentally show that they are able to
achieve sufficient linearity and accuracy over a wide range of
parameters without retraining. Our experimental setup consists
of a deployment of RUBiS, which is an eBay-like auction
system widely used as a benchmark in the literature. We use a
3-tier Java servlet version of the application with a front-end
Apache web server, a middle-tier Tomcat application server,
and a back-end MySQL database server. The application is
subjected to a workload generated by the standard client
simulator program provided with the application.

A. Link Gradients

The first example of resource gradients that we demonstrate
are link gradients. They are defined as the rate of change
of the system’s end-to-end transaction response time as a
function of changes in the link latency of its logical links.
During link gradient estimation, end-to-end response times

0 5 10 15 20 25
0

100

200

300

400

500

600

Link latency between tomcat and MySQL(millisec)

Re
sp

on
se

 ti
m

e
(m

ill
ise

c)

StoreBid
ViewItem

(a) Link latency

0

100

200

300

400

500

600

700

UP UMD DU PU MIT CU

R
es

po
ns

e
tim

e(
m

ill
is

ec
)

Application server location

experiment
prediction

(b) Link gradient predictions

4 6 8 10 12 14
x 10−4

1

2

3

4

5

6 x 104

Basis function

Re
sp

on
se

 ti
m

e
(m

ic
ro

se
c)

(c) Physical CPU frequency

0.02 0.04 0.06 0.08 0.1 0.12 0.14
0.5

1

1.5

2

2.5

3 x 105

Basis function

Re
sp

on
se

 ti
m

e
(m

ic
ro

se
c)

(d) Virtual CPU frequency

Fig. 2. Gradients

are measured by parsing the front-end web server access logs.
Perturbations to link latency are injected by redirecting packet-
level traffic on the application’s communication links to the
gradient measurement local daemons where it is delayed for
a constant amount of time while the perturbation signal is
high. Redirection is accomplished through per-node kernel
level mechanisms such as the Linux iptables packet filter.

We choose an identity basis function for link gradients. The
reason is that the relationship between end-to-end response
time and a link’s latency is based primarily on the commu-
nications pattern between the two nodes that communicate
over the link, i.e., whether the communication is synchronous,
asynchronous, or pipelined, or if there is a cache or load bal-
ancing involved. Since these communication patterns are often
relatively constant for a given application, the relationship
between link latency and end-to-end response time is usually
linear. This is also experimentally demonstrated by Figure 2(a)
which shows the linearity of the end-to-end response time of
two randomly chosen transactions as a function of the link
latency between the application and database server at a work-
load of 40 req/sec. Large scale experiments [5] on PlanetLab
nodes distributed across the US have further corroborated the
linearity for latency changes at intra-continental scales.

Figure 2(b) shows the accuracy of the end-to-end response
time predictions made by the link gradient models when the
middle tier application server for the RUBiS test instance is
moved across several widely distributed locations spanning the
eastern coast of the United States1. As can be seen, the link
gradients, which were calculated just once on our local testbed,
can provide excellent predictions even in configurations that
are dramatically different from the measurement setup. Link
gradients find wide application in optimizing the deployment
of distributed applications across multiple geographically dis-
persed sites. For example, they can be used to predict the

1UP: Univ. of Pennsylvania, UMD: Univ. of Maryland, DU: Duke Univ.,
PU: Princeton, MIT: Massachusetts Inst. of Tech., CU: Cornell Univ.

impacts of moving parts of an application from one data center
to another, of moving parts of an application into the cloud, of
using a cache-based content distribution network in an attempt
to improve responsiveness, or of optimizing the placement of
shared back-end databases used by multiple applications.

B. Frequency Gradients

The next example of gradients is the frequency gradient
which is defined as the rate of change of a system’s end-to-
end transactional response time with respect to changes in the
CPU frequencies fn of individual nodes. Such gradients can
not only be used to predict the impact of upgrading machines,
but can also be used to perform dynamic energy saving by
slowing down nodes to the limits allowed by their response
time SLAs. In this case, perturbations are injected by using
dynamic voltage and frequency scaling (DVFS) features found
in most modern microprocessors. The Linux CPUfreq system
interface enabled by the userspace CPU frequency scaling
governor is used to change CPU frequency.

Unlike link gradients that are substantially linear, CPU
gradients demonstrate significant non-linearity. This is because
frequency changes impact queuing behavior in significant
ways, and cause a superlinear increase in end-to-end response
times. Recognizing queuing as the primary source of non-
linearity, we use a basis function based on the mean response
time relation for a single M/G/1/PS queue, i.e., rt = s

1−U ,
where s is the per-transaction service time and U is the uti-
lization. Subsequently, we utilize the fact that service time and
utilization are inversely proportional to frequency fn, while
utilization is also proportional to the application workload w,
i.e., s ∝ 1/fn, and U = αnw/f , where αn is a node specific
constant. Therefore, we set the basis function for a node n
to bna = 1

fn−αnw
. Note that although the basis function is

based on the high-level knowledge that non-linearity is caused
by queuing effects, no application specific information such
as service times or routing matrices are required. The only
application specific constant is αn, which can be characterized
as the gradient for node utilization with respect to the basis
function w/fn. The estimation techniques described earlier
can be used to compute both this utilization gradient and
subsequently the frequency gradient.

While we do not provide a comparison of the gradient
predictions with experimental measurements due to a lack of
space, Figure 2(c) validates the linearity of the metric with
respect to the basis function by plotting the system’s mean end-
to-end response times against the values of the basis functions
as the CPU frequency for the Tomcat server is changed for two
different workloads of 40 and 50 requests per second. The
figure was obtained using a heterogeneous testbed in which
the Apache server was hosted on an Intel E8400 Core 2 Duo
machine with 4 operating frequency choices, while the Tomcat
and MySQL servers were hosted on AMD Athlon 64 3800+
machines with five operating frequencies. The machines were
connected to each other using a 100Mbps Ethernet LAN. The
plots show good linearity over the entire range of available

CPU frequencies despite the fact that only two frequencies
were used to estimate the gradients.

C. VM Capacity Gradients

The final gradient we present is the VM capacity gradient.
This gradient assumes a virtual machine environment in which
each node is hosted in its own virtual machine (although
several virtual machines may share a physical machine). The
gradient is then defined as rate of change of the system’s end-
to-end transactional response time with respect to the fraction
of CPU capacity allocated to each individual VM. The VM
capacity gradient can be used to drive performance aware
server consolidation and energy conservation. Specifically, it
can help determine how much each virtual machine’s CPU
allocation can be reduced without violating response time
SLAs so that VMs can be packed into the fewest number of
physical hosts as possible.

We measure VM capacity gradients using a Xen 3.2 based
environment, and use Xen’s Dom0 configuration interface to
dynamically adjust the CPU capacity allocated to each VM.
In principle, VM capacity gradients are similar to frequency
gradients and can thus use a similar basis function after appro-
priately scaling the CPU frequency fn by the fractional CPU
capacity cn allocated to node n. However, the virtualization
environment raises complications that must also be addressed.
The most important difference is in the measurement of
utilization U . For Xen based environments, the hypervisor acts
as a conduit for all I/O requests from each VM to the physical
hardware. In doing so, it acts on behalf of each VM, and thus
the basis function requires the sum of the VM and hypervisor
utilization when estimating the application constant αn.

Using these modifications, the basis function achieves excel-
lent linearity with respect to the measured end-to-end response
time as can be seen from the x-y plot of Figure 2(d). The
testbed used for this experiment consisted of Pentium 4 servers
running a Xen 3.2 installation and communicating over a local
100Mbps Ethernet segment. To obtain the figure, the CPU
allocation to the Tomcat server was varied from 25% to 60%
and the values of the measured system response time were
plotted against the values of the basis function for two different
workloads. The figure shows that linearity is maintained de-
spite the wide variation in CPU capacity and workload changes
without the need for any model recalibration.

IV. RELATED WORK AND CONCLUSIONS

The general problem of performance prediction in multitier
systems is a well-studied one. Queuing network formulations
such as Layered queuing networks (LQN) [7] provide an
especially appropriate formulation to model multitier systems
and have been used effectively in many case studies. However,
such models require detailed knowledge of the system trans-
actions, their resource usage, and communication patterns. To
alleviate these drawbacks, data intensive approaches including
machine learning have also been proposed to construct models
for black box systems as in [8] and [9]. However, such
approaches can provide performance estimates only if very

similar configurations have already been seen before, and thus
do not provide true predictive capabilities. In contrast, by
imposing restrictions on how a system’s metrics evolve via
basis functions formulated using high level knowledge about
the behavior of distributed systems, gradients neither require
detailed system knowledge nor extensive data collection. The
closest related work is an approach proposed by Stewart
et. al. in [10] and [11] in which passive data collection is
combined with an M/M/1 queuing model based template in
order to estimate the service and waiting times at each resource
of a complex multitier system. However, their techniques
become increasingly inaccurate as the system load increases.
In contrast, by introducing active perturbations into a running
system, our approach can predict metrics in configurations
that are very different from those in which measurement was
performed.

In conclusion, we believe that gradient based models are
a practical, push-button alternative to traditional approaches
for modeling complex multitier systems that rely heavily on
domain knowledge. By applying gradient-based models to
three different prediction problems, we have demonstrated
the generality of the techniques and via experimental results,
demonstrated their feasibility and accuracy. In future work, we
intend to investigate gradients involving additional metrics and
attributes, and to develop techniques for addressing unexpected
and/or abrupt behaviors that can cause our basis function based
techniques to fail. These include behaviors triggered due to
timeouts and other application triggered adaptations.

REFERENCES

[1] D. Galletta, R. Henry, S. McCoy, and P. Polak, “Web site delays: How
tolerant are users?” J. of the Assoc. for Information Sys., vol. 5, no. 1,
pp. 1–28, 2004.

[2] I. Ceaparu, J. Lazar, K. Bessiere, J. Robinson, and B. Shneiderman,
“Determining causes and severity of end-user frustration,” Int. Journal
of Human-Computer Interaction, vol. 17, no. 3, pp. 333–356, 2004.

[3] “The psychology of web performance,” May 2008, accessed Apr.
2009. http://www.websiteoptimization.com/speed/tweak/ psychology-
web-performance/.

[4] D. Farber, “Google’s Marissa Mayer: Speed wins,” ZDNet
Between the Lines, Nov. 2006, accessed Apr. 2009.
http://blogs.zdnet.com/BTL/?p=3925.

[5] S. Chen, K. Joshi, M. Hiltunen, W. Sanders, and R. Schlichting,
“Link gradients: Predicting the impact of network latency on multitier
applications,” in Proc. INFOCOM, Apr. 2009.

[6] S. Chen, K. Joshi, M. Hiltunen, R. Schlichting, and W. Sanders, “Black-
box prediction of the impact of DVFS on end-to-end performance of
multi-tiered systems,” in GreenMetrics 2009 Workshop at SIGMETRICS
2009, Jun. 2009.

[7] M. Woodside, J. Neilson, D. Petriu, and S. Majumdar, “The stochastic
rendezvous network model for performance of synchronous client-
server-like distributed software,” IEEE Trans. on Comp., vol. 44, no. 1,
pp. 20–34, 1995.

[8] C. Stewart and K. Shen, “Performance modeling and system manage-
ment for multi-component online services,” in Proc. Usenix NSDI, vol. 2,
2005, pp. 71–84.

[9] P. Bodik, C. Sutton, A. Fox, D. Patterson, and M. Jordan, “Response-
time modeling for resource allocation and energy-informed SLAs,” in
Proc. Workshop on Stat. Learning Tech. for Solving Sys. Problems, 2007.

[10] C. Stewart, T. Kelly, and A. Zhang, “Exploiting Nonstationarity for
Performance Prediction,” in EuroSys, March 2007.

[11] C. Stewart, T. Kelly, A. Zhang, and K. Shen, “A Dollar from 15 Cents:
Cross-Platform Management for Internet Services,” in Proc. Usenix
Annual Technical Conference, June 2008.

