Partial stochastic characterization of timed runs over DBM domains

Laura Carnevali Lorenzo Ridi Enrico Vicario

Dipartimento di Sistemi e Informatica Università di Firenze

PMCCS-9 September 18, 2009 - Eger, Hungary

Outline

Introduction

- The addressed problem: an intuition
- Contribution
- Related work

2 partially stochastic Time Petri Nets

- Oharacterization of symbolic runs
 - Domain of timings along a symbolic run
 - Timing boundaries enlargement
 - Partial stochastic characterization of timings

The addressed problem: an intuition Contribution Related work

The addressed problem: an intuition

- Continuous-Time Discrete-Events Model
 - non-deterministic timings;
 - controllable timings are bounded within continuous intervals;
 - **non-controllable** timings are chosen by the system within a predictable range, following a given probability distribution.
 - (input/output transitions, actions/endogenous events)

The addressed problem: an intuition Contribution Related work

The addressed problem: an intuition

- The system can execute along different firing sequences (symbolic runs);
 - the actual sequence is determined by values assumed by timers.

The addressed problem: an intuition Contribution Related work

The addressed problem: an intuition

- Problem: force the system to run along a selected sequence.
 - controllable timers can be assigned arbitrary values;
 - success still depends upon values of non-controllable timers.
- The problem has a qualitative and a quantitative aspect:

• identification of the range of valuations for controllable timers that can let the system run along the selected sequence (**qualitative** problem);

 evaluation of the success probability for every choice of controllable timers (quantitative problem).

Introduction

partially stochastic Time Petri Nets Characterization of symbolic runs The addressed problem: an intuition Contribution Related work

An introductory example

- 4 concurrent transitions;
- *t*₁,*t*₂: controllable transitions;
- t₃,t₄: non-controllable transitions;

• **Problem**: select values for t_1 and t_4 so as to make possible/maximize the probability to execute the sequence $\rho = t_3, t_1, t_2, t_4$.

The addressed problem: an intuition Contribution Related work

Contribution

- partially stochastic Time Petri Nets
 - combines non-deterministic selection of controllable timers and stochastic sampling of non-controllable timers.
- evaluation of the execution probability of any firing sequence:
 - **support**: set of controllable choices that can let the system execute along the sequence;
 - **function**: distribution of the success probability as a function of values given to controllable timers.

The addressed problem: an intuition Contribution Related work

Related work

Real-Time test case sensitization

- L. Carnevali, L. Sassoli, E. Vicario: ETFA '07
- qualitative approach: all timers are non-deterministic.
- application in testing of real-time software (Linux RTAI).

stochastic Time Petri Nets

- G. Bucci, R. Piovosi, L. Sassoli, E. Vicario: QEST '05
- L. Carnevali, L. Sassoli, E. Vicario: Trans. on Software Engineering, September 2009.
- quantitative evaluation: all timers are stochastic.

Test case execution optimization on Timed Automata

- M. Jurdińsky, D. Peled, H. Qu: FATES '05
- N. Wolowick, P. D'Argenio, H. Qu: ICST '09
- non-controllable timers are uniformly distributed.

partially stochastic Time Petri Nets: Syntax

- *T* partitioned: T^c controllable, T^{nc} non-controllable;
- *F* : T^{nc} → F associates each non-controllable transition with a static probability distribution F_t() supported in [EFT(t), LFT(t)]:

$$F_t(x) = \int_0^x f_t(y) dy$$

partially stochastic Time Petri Nets: Semantics

- Tokens move as in Petri Nets (logical locations);
- each transition t has an Earliest and a Latest Firing Time (EFT(t)) and LFT(t), and an initial time to fire $\tau_0(t)$.
 - *t* cannot fire before it has been enabled with continuity for *EFT*(*t*);
 - neither it can let time advance without firing after it has been enabled with continuity for LFT(t);
 - firings occur in zero-time.

partially stochastic Time Petri Nets: Analysis

- state s = marking + valuation of transitions times-to-fire
- state class S = marking + continuous set of times-to-fire
 - timers within the same state class range in a Difference Bound Matrix (DBM) zone.

$$au_i - au_j \leq b_{ij}$$

 Remark: every state (class) may jointly enable controllable and non-controllable transitions, thus combining stochastic and non-deterministic behavior.

State class graph enumeration

• AE reachability relation between state classes:

Definition: AE reachability relation

Given two state classes *S* and *S'* we say that *S'* is a successor of *S* through t_0 iff *S'* contains all and only the states that are reachable from some state collected in *S* through some feasible firing of t_0 .

- Enumeration → Timed Transition System (state class graph);
- DBM form is closed wrt successor evaluation;
- **symbolic runs** are paths in the state class graph.

Domain of timings along a symbolic run Timing boundaries enlargement Partial stochastic characterization of timings

Domain of timings along a symbolic run

- Consider a symbolic run *ρ* starting from class S⁰, terminating in S^N;
- *t*ⁿ_i is the instance of transition *t_i* enabled along *ρ* in class *Sⁿ*;
 - associated to an absolute virtual firing time τⁿ_i;
- absolute firing times feasible for p satisfy three kinds of constraints:
 - 1 model constraints;
 - 2 disabling constraints;
 - 3 sequence constraints.

Domain of timings along a symbolic run

1 Model constraints

 time elapsed between enabling and firing of each transition tⁿ_i fired along ρ must range within its static firing interval:

$$\textit{EFT}(t_i) \leq \tau_i^n - \tau_{\iota(n)}^{v(n)} \leq \textit{LFT}(t_i) \text{ where } t_{\iota(n)}^{v(n)} \text{ enables } t_i^n$$

Domain of timings along a symbolic run

2 Disabling constraints

if transition tⁿ_x is enabled but not fired along ρ, its absolute firing time must be greater than the one of its disabling transition t^{δ(x,n)}_{γ(x,n)}:

$$au_x^n \geq au_{\gamma(x,n)}^{\delta(x,n)}$$
 where $t_{\gamma(x,n)}^{\delta(x,n)}$ disables t_x^n

Domain of timings along a symbolic run Timing boundaries enlargement Partial stochastic characterization of timings

Domain of timings along a symbolic run

3 Sequence constraints

• transitions must fire in the expected sequence:

$$\tau_{\iota(n+1)}^{\nu(n+1)} \geq \tau_{\iota(n)}^{\nu(n)} \forall n \in [0, N-1]$$

Domain of timings along a symbolic run

- timers of transitions enabled along ρ are encoded in two vectors τ^c and τ^{nc} ;
- the set of valuations (x, y) of timers (τ^c, τ^{nc}) that are feasible for ρ is a DBM domain D_τ:

Domain of timings along a symbolic run Timing boundaries enlargement Partial stochastic characterization of timings

The problem of domain enlargement

- Non-controllable timers can take values outside D_τ;
 - must be taken into account to evaluate the probability of successful execution;
- enlarged domain D_i includes divergent behaviors:
 - controllable timers conform to D_{τ} ;
 - non-controllable timers satisfy model constraints.

Main result: distribution of the probability of successful execution

• family of functions $f_{\tilde{\tau}^{nc}}(\tau^{nc})(\mathbf{x})$:

- for each selection x of controllable timers, probability density function of non-controllable timers.
- for a valuation $\mathbf{x} = \mathbf{x}_1$ of controllable timers, the integral of function $f_{\tilde{\tau}^{nc}}(\tau^c)(\mathbf{x}_1)$ over domain $D_{\tau^{nc}}(\mathbf{x}_1)$ represents the probability to execute ρ under the assumption of the choice \mathbf{x}_1 on controllable timers.

$$f_{\tilde{\tau}^{nc}}(\tau^{nc})(\mathbf{x}) = \prod_{\substack{t_{i}^{n} \in A^{nc} \\ t_{i}^{\nu(n)} \in A^{nc}}} f_{t_{i}}(y_{i}^{n} - y_{\iota(n)}^{\nu(n)}) \cdot \prod_{\substack{t_{i}^{n} \in A^{nc} \\ t_{i}^{\nu(n)} \in A^{c} \cup \{t_{*}\}}} f_{t_{i}}(y_{i}^{n} - x_{\iota(n)}^{\nu(n)})$$

Distribution of the probability of successful execution

- The integral of the whole family of function over D_{τ^{nc}}(**x**) defines a new function p(**x**);
 - *p*(**x**) associates each valuation of controllable timers with the execution probability of *ρ*:

Conclusions

- we considered a probabilistic extension of Time Petri Nets;
- we introduced a partial stochastic characterization of timed runs based on the definition of controllable and non-controllable timers;
- we identified a measure of probability of successful execution of a run as a function of non-deterministic (controllable) variables.

Ongoing work

- **optimization** of $p(\mathbf{x})$ to maximize the execution probability;
- bring to application in (real) **real-time testing** (test case sensitization).