
Packet Loss Analysis of Load-Balancing Switch
with ON/OFF Input Processes

Yury Audzevich1, Levente Bodrog2, Yoram Ofek1, and Miklós Telek2

1 Department of Information Engineering and Computer Science,
University of Trento, Italy,

{audzevi,ofek}@disi.unitn.it
2 Department of Telecommunications,

Technical University of Budapest, Hungary,
{bodrog,telek}@hit.bme.hu

Abstract. Lately, the number of Internet users and, correspondingly,
the amount of traversing traffic is growing extremely fast. In spite of the
fact that transmission links – mostly optical fibers – have high capac-
ity, the internet routers still remain a point of traffic bottleneck. The
construction of highly scalable switches for high-speed transmission still
remains a real challenge for designers. In this paper we focus our efforts
on the analysis of Load-Balancing Birkhof-von Neumann switch which is
lately considered to be a highly efficient distributed switch with simple
control and high scalability. Due to the fact that Internet traffic repre-
sents an asynchronous traffic which supports a variety of applications,
we have introduced the analysis of possible loss inside the load-balanced
switch under consideration of variable size packets and finite central stage
buffers previously in [1]. Although the analysis has showed some inter-
esting features of the switch, it has exponential complexity of O

`
NN

´
which makes that model inapplicable for the switches with large number
of ports, N. The main goal of this paper is to approximate the switch
analysis with lower complexity, i.e., O

`
2N
´

which can be useful for eval-
uation of packet loss in the larger load-balanced switches.

1 Introduction

The traditional ways of packet switching are designed to connect multiple area
networks (LANs, WANs, etc.) and forward asynchronous traffic between the
communication links. Usually packet switches are implementing centralized con-
trol, in order to find the best possible link to forward data traffic from the source
to the specific destination. Although in most of the cases these architectures are
capable to provide high throughput, they have poor scalability for switches of
large size. In this context, the switches with distributed control are more attrac-
tive with the advantage of their scalability due to the fact that each stage is
making its own calculations for packet forwarding.

In this paper we examine the Load-Balanced switch (LB switch) [2,3], which
is considered to be a particular case of two-stage switch. The first stage of the



switch is balancing the arriving traffic to the intermediate inputs of the sec-
ond switch, which is in fact an input buffer switch with deterministic control
(see Figure 1). Since all the interconnections inside are deterministic and pe-
riodic, the switch has a simple distributed control and can be highly scalable.
Among the first significant results shown in [2] and [3] was the fact that under
certain assumptions the switch can achieve high throughput (up to 100%) and
low packet traversing delay. However these results were obtained under consid-
eration that all the packets have equal length, traffic is admissible and central
stage buffers are infinite. Even under these strong assumptions some important
issues of packets mis-sequencing were investigated in detail in [4–8]. It is impor-
tant to mention that some of the architectures to resolve packets mis-sequencing
require extra control, introducing different overheads (communication and com-
putational), that basically increases the control complexity of the LB switch.
However, keeping correct sequence of packets through the system avoids unnec-
essary retransmissions of packets in the network protocol layer.
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Fig. 1. The load-balanced switch considered for the analysis

Taking into account the fact that some of the assumptions mentioned in
[2, 3, 8] are not practical, in [9] and [1] we examined the behavior of the LB
switch with finite size central stage buffers. Under these considerations, the LB
switch can experience a packet loss due to congestion. The first simulation results
on this issue were presented in [10] and detailed mathematical analysis in [9].
However, the analysis in [9] was done only for fixed size packets (cells), and there
were not taken into account variable size packets (multiple number of cells going
to the same destination). It is considered that most of the internet switches are
operating on the cell-based level (to increase buffer utilization), that means that
arriving variable size packets are segmented at the inputs and reassembled at
the outputs. The issue of possible cell and correspondingly a packet loss inside
the switch, can introduce some significant posterior problems to the LB switch
reassembly part [11]. That is why in [1] we presented the analysis of a packet loss
experienced by the switch operating with variable size packets and finite central
stage buffers.

We assumed Markovian behavior to be able to use numerically efficient algo-
rithms to solve the model. This means geometrically distributed packet lengths



and interarrival times, which allows us to capture the mean of these distributions.
Real internet traffic shows different packet size distributions [12] and one can
fit more parameters using other, more complex Markovian structures like dis-
crete Phase Type (DPH) distributions or discrete Markovian arrival processes
(DMAPs). The number of fitted parameters can be increased at an arbitrary
level, but it would greatly increase the complexity of the model as well and that
would also hide the main contribution of our approach.

In spite of the same assumption in [1] the complexity of that model resulted
unresolvable high Markov chains even in case of very small switches (N ≥ 4).
The main goal of this paper is to introduce the approximate model of the initial
analysis – with complexity O

(
2N

)
– in order to make the evaluation of packet

loss probabilities feasible for larger number of ports – at least in terms of the
exact analysis provided in [1].

As the present model is still exponentially complex with regard to the number
of ports – O

(
2N

)
– we have kept on with the research and introduced the

model of complexity O (N) in [13]. However, in the least complex model [13],
we assumed stochastically identical input processes. As a consequence the reader
should take into mind that the present model is less complex than that of [1] and
more complex than that of [13], but it takes into consideration inhomogeneous
input processes. These features of the three models are summarized in Table 1

citation [1] this paper [13]

submission order 1st 2nd 3rd
complexity O

`
NN

´
O
`
2N
´

O (N)

homogeneous inputs % % X
Table 1. The authors’ recent work on the LB switch topic

The rest of the paper is organized as follows. We summarize the LB switch’s
operation principles and main assumptions in Section 2. Next, in Section 3 we
introduce the “ON/OFF” model of the system. In Section 4 we verify the result
by comparing it with initial analytical model as well as with simulation results.
Finally, Section 5 concludes the paper.

2 The main assumptions and operating principles

Let denote N×N the LB switch with both N input and output ports. The single-
stage buffering LB switch is equipped with First-In-First-Out (FIFO) buffers in
the inputs, N sets of N Virtual Output Queues (VOQs) in the central stage and
re-sequencing and reassembly units (RRU) in the output (see the illustration
in Figure 1). In the kth set of VOQs there is one VOQ (VOQkj) dedicated
to store cells directed to output j. Hereinafter the term VOQk with a single
index denotes the kth set of VOQs and the term VOQkj with the pair of indices
denotes the specific VOQ stores cells directed to output j j, k ∈ [0, N − 1] . As



it is out of the scope of this paper and it does not affect the modeled parts of
the switch, the implementation of the RRU is not discussed in this paper, but
it can be taken from the ones proposed in research, e.g., in [11]. In this analysis
there is no feedback link between the switch stages and each stage is operating
independently. After segmentation of an incoming packet, the cells are load-
balanced between the central stage VOQs according to the final destination [2].
The interconnections between stages are made by means of crossbar switches
without buffers inside (contrary to [14]). The crossbar switches are indicated
as “Load-balancing” and “Switching” in Figure 1. In the tth time slot – the
transmission time of one cell – the interconnection pattern is the periodic round-
robin sequence according to the rules

k = (i + t) mod N

j = (k + t) mod N,
(1)

where i denotes the ordinal number of the input port, j the output port and k
the set of VOQs, i, j, k ∈ [0, N − 1] which implies the periodic behavior of the
system. This N cell transmission time long period – hereinafter referred to as
time period – will be the time unit of the discrete time Markov chain (DTMC)
modeling the VOQ. As all the stages are synchronized, the transmission of cells
is possible from all inputs simultaneously during a time slot [8].

If a single cell is lost in the central stage, there is no possibility to drop
all the remaining cells of this “broken” packet from VOQs without sophisti-
cated centralized controller (which is not the case in this paper). Such packets
will waste the capacity of the central stage buffers, will increase the possibility
of further packet loss and definitely will make impossible packets reassembling
operation [11].

In a time slot, first, the VOQs are connected to the outputs and then the
inputs to the VOQs. This order of interconnections inhibits a cell from traverse
the switch in a single time slot. The transmission rate inside the switch is fixed
and it is the service time of a cell. The mean service rate of the switch assumed
to be greater than the mean arrival rate of the variable size packets – the switch
is not overloaded.

The arrival pattern consists of packets with random distributed number of
cells idle periods inbetween in time slots. The details of these distributions are

packet length geometric distributed with probability mass function (PMF)
Pr (X = i) = p (1− p)i−1 ∀i = 1, 2, . . . and

idle period length geometric distributed with PMF Pr (Y = i) =
q (1− q)i ∀i = 0, 1, . . .

The geometric distribution of the packets arrive from input i to output j have
the parameter pij and the idle periods between packet arrivals at input i have
the parameter qi.

The destinations of the packets can be set via matrix T whose ijth element
(tij) gives the probability that if a packet arrives to input i is directed to output j.
The rowsum of T thus equals to h an appropriate size column vector of ones.



Moreover, as shown in our analytical results, the packet loss probability of the
specific VOQ strongly depends on the specific traversing path of the traffic inside
the switch (i.e., input, VOQ and output), which is an interesting phenomenon
described in Section 2.1 for the interconnection pattern applied.

2.1 Properties of the different paths

An important finding of our analysis of the LB switch is that there are differences
between the loss probabilities of paths traversing the switch. Here path means
the triple, {i, j, k}, containing the ordinal number of the input, the output and
the VOQ respectively.

Using the interconnection pattern policy given in (1) the time difference
between the service of the VOQ and the arrival to it can be expressed as

d = (2k − i− j) mod N. (2)

d also expresses the number of inputs that have the right to send a packet to
VOQkj before input i in the same time period.

A particular VOQ is served once a time period. It is also true that in a time
period all the inputs have the right – in a particular order determined by (2) –
to send cells to the VOQ. In case of “almost full” buffer the higher the d value
is the higher the probability that there are enough inputs that can fill up the
buffer, i.e., make the cell of the observed input to be lost. According to this
observation we introduce the notation type-d for paths with value d.

For example, using the above introduced notation, we can say that the type-0
paths cannot have cell loss. Its short explanation is that even if the buffer is full
the cell in the head of the queue is served and thus there is always a free position
in the tail accordingly which is used by the type-0 path to push its cell into it.
This makes impossible the cell loss at a type-0 path.

3 The ON/OFF model of the 3 × 3 switch

In this section we give the approximate model of a VOQ of the 3× 3 LB switch.
Compared to the exact analysis in [1] the approximation is that we model the
input process, i.e., the arrival process of the VOQ, with a two state – ON/OFF
– model. By this the state space of the model of the same VOQ can be reduced
compared to the exact model of [1] where a size (N) dependent full character-
ization of the input process is given. Once we have the model of an input the
complete model of the chosen VOQ is given in the same way as in case of the
full characterization in [1]. Indeed the ON/OFF based model of the LB switch
differs from the complete characterization in the DTMCs describing the input
processes.

As we described in Section 2.1 it is relevant which type of path is considered.
Here we describe a type-2 path lead through the 3 × 3 switch – as also done
in [1] in case of the full characterization. For example it is path {1, 0, 0} but we
will also investigate all types of path later in Section 4.



3.1 Model of an input

In this section we will introduce the approximate – ON/OFF – input model of
path {1, 0, 0} of the 3× 3 switch.

The ON/OFF model of the first input is derived from its complete char-
acterization depicted in Figure 2 using the notations introduced for the input
processes in Section 2. According to the geometric assumptions for the packet
length and idle period length this is a DTMC having four states, 1id corresponds
to the idle period, and the other three states corresponds to packet arrival from
input 1 to either output 0 (state 10) or output 1 (state 11) or output 2 (state 12).
The exact state transition probability matrix describing the behavior of input 1
is

PC1 =


(1− p10) + p10q1t10 p10q1t11 p10q1t12 p10 (1− q1)
p11q1t10 (1− p11) + p11q1t11 p11q1t12 p11 (1− q1)
p12q1t10 p12q1t11 (1− p12) + p12q1t12 p12 (1− q1)

q1t10 q1t11 q1t12 1− q1


 .

(3)

on

off

p10(1− q1)

q1t10

p11q1t12

p12q1t11

p11q1t10

p11(1− q1)

p10q1t11

p10q1t12

p12q1t10

q1t11

p12(1− q1)

q1t12
(1− p12) + p12q1t12

(1− p11) + p11q1t11

1− q1

(1− p10) + p10q1t10

1 id 12

1110

Fig. 2. The graph of the DTMC fully characterizing the first input of the 3× 3 switch

In terms of path {1, 0, 0} the states of the DTMC modeling input 1 can be
divided into two subsets

on this is a one-element subset containing state 10 in which there are cell arrivals
from input 1 to output 0 and

off the other states in which there is no arrival from input 1 to output 0

which is also indicated in Figure 2. Using this division we create the two state
ON/OFF model of the input processes. Hereinafter lowercase bold on and off



denotes these two subsets and uppercase ON and OFF the two states of the
newly derived DTMC model of the inputs.

In the following sections the detailed description of the ON and OFF states
are given based on the aforementioned division.

OFF properties The OFF state is used to approximate the set of off states.
Its properties are determined based on the absorbing time of a discrete phase
type (DPH) distribution given in Figure 3 with transient states identical to the
off states and absorbing state given as the on state. Its initial distribution then
given as the renormalization of the zeroth row of PC1 in (3) without its zeroth
element

β1 =
(

q1t11
q1t11+q1t12+(1−q1)

q1t12
q1t11+q1t12+(1−q1)

1−q1
q1t11+q1t12+(1−q1)

)
. (4)

B1, the transition probability matrix of the transient states, is the N×N matrix
given as PC1 without its zeroth row and zeroth column

B1 =




(1− p11) + p11q1t11 p11q1t12 p11 (1− q1)
p12q1t11 (1− p12) + p12q1t12 p12 (1− q1)

q1t11 q1t12 1− q1


 . (5)
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p11q1t10
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p12q1t10
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p12(1− q1)

(1− p12) + p12q1t12
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1− q1

q1t11
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Fig. 3. The graph of the DPH substitution of the off states in terms of the pair input 1
- output 0

The mean absorbing time of this DPH is

µ1 = β1 (I−B1)
−1 h, (6)

where I is the identity matrix and h is the column vector of ones of appropriate
size.

We set the sojourn probability of the state OFF to 1 − 1
µ1

which sets the
mean sojourn time to µ1. Then the state transition probability from OFF to ON
is 1

µ1
.



ON properties In case of ON the sojourn probability remain the same as in
the complete characterization, i.e. in case of output 0 the upper left element of
PC1 in (3). The state transition probability from ON to OFF is the summation
of the remaining elements of the zeroth row of PC1 which is 1 minus the sojourn
probability.

Summation of the ON/OFF DTMC Here we summarize all the properties
of the ON/OFF DTMC by giving its graph for the general path {i, j, k} in
Figure 4 together with its state transition probability matrix

Pi =

((
PCi

)
jj

1− (
PCi

)
jj

1
µi

1− 1
µi

)
=

(
(1− pij) + pijqitij pij − pijqitij

1
µi

1− 1
µi

)
, (7)

where (∗)ij denotes the ijth element of a matrix.

pij − pijqitij

1
µi

1− 1
µi

(1− pij) + pijqitij

OFFON

Fig. 4. The graph of the ON/OFF DTMC describing the pair input i - output j

3.2 The cell level model

Up to now we have introduced the differences between the full model of [1] and
the ON/OFF model of the input processes. From now on we recall the remaining
part of building the model of the VOQ using the ON/OFF model of each input.
Here we keep on with building the model of the VOQ of path {1, 0, 0}.

First of all we give the cell level model of VOQ00 which is a quasi birth-
deathlike (QBD-like) DTMC where the level represents the queue length and
the phase is the combined state

(
0, 1, . . . , 2N − 1

)
of the inputs.

According to the periodic operation of the switch mentioned in Section 2
the time unit of the QBD-like model is N time slots – the time period of the
operation of the switch.

Since the DTMC given in Figure 4 and in (7) gives the behavior of the input
process in a single time slot we raise all of them to the Nth = 3rd power to have
the model of the input processes in a time period.

Then the joint behavior of the input processes – for all inputs (i = 0, 1, 2) –
gives the phase process of the QBD-like model which is the Kronecker product
of their 3rd power as

P = P3
0 ⊗P3

1 ⊗P3
2. (8)

The number of arrivals to the observed VOQ is determined as the sum of the
arrivals from each input, but we cannot forget that each input can transmit a



cell into the VOQ in its dedicated time slot. This is determined by the intercon-
nection pattern given in (1), i.e. input 0 sends cell to VOQ00 in the 1st time slot
of a time period, input 1 sends in the 3rd time slot of a period and input 2 sends
in the 2nd time slot of a time period. Here we note that the ordinal number of
the dedicated time slot equals to d + 1 for each input i in any path. According
to this we replace the 1st, the 3rd and the 2nd factor of the powers of P3

0, P3
1

and P3
2 respectively in (8) to

Pi = Ai + Ki ∀i ∈ [0, N − 1] , (9)

in which the first term corresponds to arrival from input i and the second term
corresponds to the case when there is no arrival from input i. The substitution
is then

P = P3
0 ⊗P3

1 ⊗P3
2 = (A0 + K0)P2

0 ⊗P2
1 (A1 + K1)⊗P2 (A2 + K2)P2 (10)

based on the d values of the inputs calculated as given in (2). Expanding this
expression and collecting the terms according to 0, 1, 2 and 3 arrivals we get

P = K0P2
0 ⊗P2

1K1 ⊗P2K2P2︸ ︷︷ ︸
no arrivals – B

+A0P2
0 ⊗P2

1K1 ⊗P2K2P2︸ ︷︷ ︸
1 arrival – L

+

+ K0P2
0 ⊗P2

1A1 ⊗P2K2P2 + K0P2
0 ⊗P2

1K1 ⊗P2A2P2︸ ︷︷ ︸
1 arrival – L

+

+ K0P2
0 ⊗P2

1A1 ⊗P2A2P2 + A0P2
0 ⊗P2

1K1 ⊗P2A2P2︸ ︷︷ ︸
2 arrivals – F1

+

+ A0P2
0 ⊗P2

1A1 ⊗P2K2P2︸ ︷︷ ︸
2 arrivals – F1

+A0P2
0 ⊗P2

1A1 ⊗P2A2P2︸ ︷︷ ︸
3 arrivals – F2

=

= B + L + F1 + F2,

(11)

where we have also indicated the level transition based decomposition, P =
B + L + F1 + F2, of such a QBD-like model.

Using these level transition matrices the state transition probability matrix
has the QBD-like structure

P =




B L F1 F2 0 . . .
B L F1 F2 0 . . .
. . . . . . . . . . . . .
. . . 0 B L F1 F2

. . . 0 0 B L F′1

. . . 0 0 0 B L′




, (12)

where F′1 = F1 + F2 and L′ = L + F1 + F2.
The building of this kind of QBD-like DTMC for N = 3 is given in Algo-

rithm 1.
The steady state solution of this QBD-like model is the solution of the linear

equation system

πP = π, πh = 1. (13)



Algorithm 1 Building the QBD-like model of a VOQ
INPUT: P0,P1,P2 from (7)
OUTPUT: P the QBD-like model similar to (12)
1: for i = 0 to 2 do
2: compute Ai,Ki as given in (9)
3: calculate d for the ith input as given in (2)
4: replace the (d + 1)st factor of P3

i in (8) with Ai + Ki as given in (10)
5: end for
6: expand the resulting expression for P and
7: identify the level transition matrices B,L,F1,F2 as given in (11)
8: build P as in (12)
9: return P

3.3 The packet level model

With the geometric assumption for the packet length, given in Section 2, the life
cycle of a packet in the observed path can be modeled by a transient DTMC
in which the two absorbing states corresponds to the two possible ending of a
packet transmission – the successful transmission (ST) of the packet or its lost
(PL), as given in Figure 5. In this section we present this transient DTMC with
its state transition probability matrix and initial distribution.

s

`

LR
′

F
R(A)
1 + FR2

BR
LR

FR1
FR2

BR
LR

BR
LR

FR1
FR2

BR
LR

FR1
FR2

ST

PL. . .

QBD-like part

Fig. 5. The transient DTMC modelling the VOQ during the life cycle of a packet

The state transition probability matrix of the transient part The tran-
sient DTMC is mainly built in the same way as the QBD-like model of the VOQ
on the cell level in Section 3.2. The exceptions are

– the state transitions responsible for packet completion in the observed path
are removed (its DTMC is given in Figure 6(a)) and

– the cell losses in case of “nearly” full buffer are considered.



The removal of the state transitions is explained by the introduction of absorbing
state ST. Indeed this transient DTMC move to state ST when the transmission of
a packet is completed. Then according to these modifications the state transition
probability matrix of the modified DTMC of input 1, with such state transitions
removed (see Figure 6(a)), is

PR1 =
(

1− p10 0
1− 1

µi

1
µi

)
, (14)

where superscript R refers to the DTMC with absorbing states PL and ST, in
Figure 5. The DTMC of the other two inputs remain as in (7).

The state transition probability matrix of the QBD-like part of the DTMC
in Figure 5 is PR. It is determined by Algorithm 1 with input parameters
P0,PR1 ,P2 with one exception in line 8.

Having the level transition matrices
(
BR,LR,FR1 ,FR2

)
the construction of

the QBD-like structure and the state transition vector to state PL are

PR =




BR LR FR1 FR2 0 . . .
BR LR FR1 FR2 0 . . .
. . . . . . . . . . . . . . . . . .
. . . 0 BR LR FR1 FR2
. . . 0 0 BR LR FR1
. . . 0 0 0 BR LR′




, ` =




0
...
0

FR2 h(
FR(A)

1 + FR2
)
h




, (15)

where LR′ = LR + FR(K)
1 . Here the forward level transition matrix

(
FR1

)
is

decomposed into two parts both of them corresponds to two cell arrivals. In the
first case one of the cells arrives from input 1

FR(A)
1 = K0P2

0 ⊗PR1
2
AR

1 ⊗P2A2P2 + A0P2
0 ⊗PR1

2
AR

1 ⊗P2K2P2

and in the second case none of them arrive from input 1

FR(K)
1 = A0P2

0 ⊗PR1
2
KR

1 ⊗P2A2P2.

Due to this there is cell loss and accordingly packet loss in the observed path
{1, 0, 0} if at the beginning of the time period either
– there is one free position in VOQ00 and there are cell arrivals from all three

inputs
(
FR2

)
or

– the buffer is full and there are cell arrivals either
• from all the three inputs

(
FR2

)
or

• there is two arrivals from which one arrives from input 1
(
FR(A)

1

)
.

Accordingly, if the buffer is full at the beginning of the time period and there
is two arrival, but none of them from input 1 the DTMC stays in the last level(
FR(K)

1

)
.

Finally according to Figure 6(a) and (14) and using the notations of Figure 5
and (15) the state transition probability vector to the absorbing state ST is

s = h− (
PRh− `

)
. (16)



1
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1− p10
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(a) Packet completion

1
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p10q1t10

OFFON

(b) New packet arrival

Fig. 6. The modified graphs of the ON/OFF DTMC describing input 1

The initial distribution of the transient DTMC The initial distribution
of PR in (15) is determined as the state of the system right after the arrival of
an incoming customer. In this section we determine the probability distribution
of the system at this time instance, right after a new packet arrival.

A new packet arrives at input 1 according to the state transitions depicted
in Figure 6(b). Its state transition probability matrix is

PN1 =
(

p10q1t10 0
1

µ1
0

)
, (17)

where superscript N refers to the DTMC according to new packet arrival.
Here we build a QBD-like model also using Algorithm 1 with input parame-

ters P0,PN1 ,P2 with an exception in line 4 which also affects lines 6 and 7.

Instead of replacing the third factor of PN1
3 (remind that d = 2 for i = 1)

we give the state transition probability matrix of input 1 in a time period as

P3
1 −

(
P1 −PN1

)3

. (18)

It expresses the behavior of input 1 at new packet arrivals in a three time slots
long time period. According to Algorithm 1 we expand (18), replace the third
factors of its terms and simplify it we get

P3
1 −

(
P1 −PN1

)3

= P2
1A

N
1 +

(
P1PN1 + PN1

(
P1 −PN1

))(
A1 −AN

1

)

︸ ︷︷ ︸
AN

1

+

+ P2
1K

N
1 +

(
P1PN1 + PN1

(
P1 −PN1

))(
K1 −KN

1

)

︸ ︷︷ ︸
KN

1

= AN
1 + KN

1 , (19)

where we have also indicated the two terms according to cell arrival
(
AN

1

)
into

VOQ00 and no cell arrival
(
KN

1

)
in the time period. These two matrices are



used to replace the whole middle operand of (8) in line 6 of Algorithm 1 as

PN = (A0 + K0)P2
0 ⊗

(
AN

1 + KN
1

)
⊗P2 (A2 + K2)P2 =

= K0P2
0 ⊗KN

1 ⊗P2K2P2︸ ︷︷ ︸
no arrivals – BN

+A0P2
0 ⊗KN

1 ⊗P2K2P2︸ ︷︷ ︸
1 arrival – LN

+

+ K0P2
0 ⊗AN

1 ⊗P2K2P2 + K0P2
0 ⊗KN

1 ⊗P2A2P2︸ ︷︷ ︸
1 arrival – LN

+

+ K0P2
0 ⊗AN

1 ⊗P2A2P2 + A0P2
0 ⊗KN

1 ⊗P2A2P2︸ ︷︷ ︸
2 arrivals – FN1

+

+ A0P2
0 ⊗AN

1 ⊗P2K2P2︸ ︷︷ ︸
2 arrivals – FN1

+A0P2
0 ⊗AN

1 ⊗P2A2P2︸ ︷︷ ︸
3 arrivals – FN2

=

= BN + LN + FN1 + FN2 .

(20)

Here we also indicated the level transition matrices used in line 8 of Algorithm 1
to build the state transition probability matrix

(
PN

)
in the same way as in (12).

Using (13) and PN the initial distribution of the DTMC in Figure 5 is

πN =
πPN

πPNh
. (21)

The packet loss of the system Using (15), (16) and (21) the packet loss
probability (p`) is given as the probability of absorbing in state PL and the
probability of successful packet transmission (ps) as absorbing in state ST

p` = πN
(
I−PR

)−1
` ps = πN

(
I−PR

)−1
s = 1− p`. (22)

4 Computation study

In this section we present the comparative study of the analysis with ON/OFF
model and the simulation results using the memoryless (geometric) assumptions
and the notations introduced in Section 2. We executed two studies with different
sets of parameters given in Table 2 representing a set of considered parameters
in detail, instead of just the ON and the OFF parameters (the model is derived
from the detailed parameters). Although the independent variables are discrete
we used continuous plots to improve visibility of Figure 7.

Study 1 Figure 7(a) plots the packet loss probability of different types of paths
through VOQ00 versus the buffer size. The loss of a single queue is decreasing
with increase of the buffer size, which is obvious with increase of system capacity.
Here the dependence of packet loss on the chosen paths is also shown. The set of
parameters of study 1 is given in the left hand side of Table 2. The experimental
results proof the validity of our assumptions. In particular, in Figure 7(a) we



study 1 study 2

variable value variable value

N 4 N 3,. . . ,8
pij

1
20

(av. 20 cells) pij
1
50

(av. 50 cells)
qi

1
3

(av. 2 cells) qi
1
6

(av. 5 cells)
tij

1
N

tij
1
N

b 8, . . . , 40 b 20
Table 2. The main parameters of the computation

show, that the queue does not experience any loss for the type-0 path {0, 0, 0},
and, as expected, the higher the d value is the higher the loss probability of the
path is. It is also shown in Figure 7(a) that the higher the buffer size (b) is the
less the difference between the loss values for types.

0

0.1

0.2

0.3

8 16 24 32 40

p
`

b

{0, 0, 0}, d = 0
{1, 0, 0}, d = 3
{2, 0, 0}, d = 2
{3, 0, 0}, d = 1

(a) The packet loss probability versus the
buffer size (study 1)

0.2

0.35

3 4 5 6 7 8

p
`

N

sim{1, 0, 0}
an{1, 0, 0}

sim{2, 0, 0}
an{2, 0, 0}

(b) The packet loss probability versus the
switch size (study 2)

Fig. 7. Numerical results for the packet loss analysis of LB switches

Study 2 Due to lower analysis complexity in comparison with [1], the packet loss
of a single queue can be evaluated for larger switches – than those ones in [1].
Figure 7(b) plots the packet loss of the queue if the switch size is increasing – up
to the solvable highest size of this model. The detailed set of parameters used in
Study 2 is shown in the right hand side of Table 2. We present packet loss only
for those two traffic path ({1, 0, 0} and {2, 0, 0}) which exist for all considered
switch sizes. As it is shown on the plot, with the increase of the switch size, the
packet loss decreases. As the average packet size and idle period size keeps to
be the same, the increase in number of ports increases the number of queues
at the central stage and consequently the buffering capacity for the same set of
parameters. Correspondingly, the higher is the LB switch buffering capacity the
lower packet loss is experienced.



5 Conclusions

In this paper we have presented an approximate analytical model for evaluation
of loss probabilities inside the load-balanced switch with finite buffers and vari-
able length packets. In comparison to the analysis presented in [1], we reduced the
complexity of the model from O

(
NN

)
to O

(
2N

)
. Although the complexity has

remained exponential, the new approach has extended the range of packet/cell
loss probability evaluation for switches with N ≥ 4 and large VOQ sizes. Since
the load-balanced switch is the architecture of choice when N is large, our next
step is the presentation of approximated analysis with linear complexity in [13].
This will enable us to remove restrictions on the port/buffer size of the switch
in order to calculate the systems important characteristics (like different kinds
of loss, delays, average buffers occupancy).
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