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ABSTRACT
The paper considers simple queueing systems with multiple
MAP servers, where the incoming customers can be freely
assigned to empty servers if there is more than one available.
In case of a well defined service policy the analysis of such
queueing systems is a standard matrix analytic procedure,
but the optimal control of those queues is rather complex.
We do not directly optimize the service policy, but consider
the number of all service policies in case of small models
and evaluate their main performance parameter, which is
the mean system time (waiting time + service time) in this
work. As results we report some surprising optimal policies
for small M/MAP(k)/n queues.

Keywords: M/MAP/n queue, control of queue, numerical
optimization.

1. INTRODUCTION
Queueing systems with multiple servers allow a degree of
freedom in assigning an incoming customer to one of the
idle servers when there is more than one. When the service
units have completely memoryless behaviour, then this as-
signment does not affect the queueing behaviour, but when
the servers are not memoryless, the overall queueing perfor-
mance is subject to optimal server selection.

We focus on the analysis of M/MAP(k)/n queues, where
customers arrive to a queuing system according to a Pois-
son process with rate λ, the queueing system is composed
of n server units and an infinite buffer. The service units
are identical and their service times are characterized by a
Markov arrival process of order k (MAP(k)) [1]. In case
of n service units, a customer arriving to the queue with
m < n − 1 customers in the system finds n − m > 1 free
servers and the system assigns the customer to one of the
idle servers freely. In this work we assume that the system
knows the phase of the free service units and makes its choice

based on that.

Generalization of this model to more complex queues, e.g.,
to the MAP/MAP(k)/n queue, is straightforward and pre-
serves the strange optimal behaviour as the one observed for
M/MAP(2)/2 queues.

2. THE MATRIX ANALYTIC MODEL OF

THE M/MAP(K)/N QUEUE
The number of customers in an M/MAP(k)/n queue and
the phase of the service processes can be characterized by
a continuous time Markov chain and, due to the fact that
customers arrive and depart one by one, this Markov chain
has a quasi birth death (QBD) structure [1]. The backward,
the local, and the forward matrices (denoted by B, L, and
F respectively) of this QBD are level independent in case
of more than n customers in the system. Consequently, the
QBD can be solved using the matrix geometric stationary
behaviour of the level independent part [1]. In the next
subsection we specialize this solution for the M/MAP(2)/2
queue.

2.1 The M/MAP(2)/2 queue
The M/MAP(2)/2 model translates to a quasi birth-death
(QBD) process, which is the multi-phase extension of the
M/M/1 model. The state space is partitioned into so-called
levels according to the number of customers in the system,
which implies the block tri-diagonal form of the infinitesimal
generator
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The blocks are built using the service MAP descriptor ma-
trix pair (S0,S1), as

L0 = −λI4, F0 = λ
(

P I4 −P
)

, B1 =

(

I2 ⊗ S1

S1 ⊗ I2

)

,

L1 =

(

I2 ⊗ S0 − λI4 0
0 S0 ⊗ I2 − λI4

)

, F1 = λ

(

I4
I4

)

,

B2 =
(

S1 ⊗ I2 I2 ⊗ S1

)

, L = S0 ⊕ S0 − λI4, F = λI4,

B = S1 ⊗ I2 + I2 ⊗ S1,



where

P = diag
(

1/2 p 1− p 1/2
)

. (2)

Choosing between free servers is done according to matrix
P. If a customer arrives to the empty system, it is directed
to the server in phase 1 with probability p and to the server
in phase 2 with probability 1−p if the servers are in different
phases, and if idle servers are in the same phase the service
units are chosen evenly.

The steady state solution of the system is partitioned ac-
cording to the levels as

π =
(

π0 π1 π2 . . .
)

. (3)

Due to the level independent behaviour of (1) for i ≥ 2 we
have

πi = π2R
i−2, (4a)

where R is the minimal non-negative solution of the
quadratic matrix equation [1]

0 = F+RL+R2B.

Based on (1) and matrix R, the irregular part of the steady
state distribution is the solution of the linear system

(

π0 π1 π2

)





L0 F0 0
B1 L1 F1

0 B2 L+RB



 = 0, (4b)

with normalization condition

π01+ π11+ π2 (I−R)−1
1 = 1. (4c)

Using the steady state distribution (4), the mean number of
customers in the system can be expressed as

E (N) =

∞
∑

i=0

iπi1 = π11+

∞
∑

i=2

iπ2R
i−2

1

= π11+ 2π2 (I−R)−1 + π2R (I−R)−2
1,

and the mean system time as

T =
E(N)

λ
. (5)

3. CASE STUDIES
In this section we examine some small M/MAP(k)/n queues
and present numerical results regarding optimal control.

3.1 M/MAP(2)/2 systems
The M/MAP(2)/2 queue is the simplest meaningful
M/MAP(k)/n queue, in which there are two servers with
the same order 2 MAP service time. Let us consider a sys-
tem where the servers are characterized by

S0 =

(

−1/10 1/20
0 −100

)

, S1 =

(

1/20 0
5 95

)

, (6)

and the customers arrive according to a Poisson process with
intensity λ = 1/10. In this queue there is one simple question
to be answered: If both servers are idle, one of them is in
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Figure 1: Mean system time of M/MAP(2)/2 queue
as a function of p, for positive (̺ > 0) and negative
(̺ < 0) correlated service times

phase 1 and the other one is in phase 2, which server has
to process the next arriving customer to have a minimal
average system time? In other words, what is the optimal
value of p in (2)? The first intuitive answer is to choose the
server which can serve the customer faster. This means that
we compare the mean service time starting from phase 1 and
phase 2, i.e., ( 1 0 ) (−S0)

−1
1 and ( 0 1 ) (−S0)

−1
1, and if the

first expression is smaller, we choose the server in phase 1
(p = 1), otherwise the one in phase 2 (p = 0). This greedy
decision can be motivated by the fact that we would like to
serve the customer as fast as possible to have an idle queue
as soon as possible. For the examined system, however, the
numerical results show that the opposite choice is better, as
can be seen on the solid curve in Figure 2, i.e., it is better
to choose the server which serves the customer slower.

This counter-intuitive result can be interpreted in the follow-
ing way. If we use the faster server for the first customer,
the probability of finishing the service before a new arrival
is high, as the mean service time of the faster state is signifi-
cantly smaller than the mean inter-arrival time of a new cus-
tomer. Upon service there is a chance that the server moves
to the slower state, leaving the system with two servers in
the phase with higher service time. In this state there is a
higher chance that more than 2 consecutive customers ar-
rive before the first customer can be served, which leads to
a higher average system time. In other words, assigning the
customer with the faster server leads to a more deteriorated
state after service completion. While assigning the customer
with the server in the slower phase, there is a chance that
the server will move to the faster state upon service, thus the
state of the system improves. One can think of this effect as
the repair of the server at the cost of a slower service.

The presented behaviour is quite typical. Our extensive
numerical investigations suggest that choosing the server
with higher service time (with probability 1) is optimal for
MAP(2) servers regardless of their other characteristics and
the intensity of arrivals. For example the MAP character-
ized by S0 and S1 has a positive lag-1 correlation. Replacing
S1 with S′

1 =
(

0 1/20
95 5

)

results in a MAP with negative lag-1
correlation, whose associated system time is depicted with
dashed curve in Figure 2 for ̺ < 0. In accordance with this
counter-intuitive behaviour we have observed that the differ-
ence in performance between the two deterministic policies



increases when we increase the difference in expected service
time of the two phases.

3.2 M/MAP(3)/2 queue
In our second example we also have two servers, but the
service time is a MAP(3) with

S0 =





−1 0 0
0 −r1 0
0 0 −r2



 , S1 =





0 1 0
0 0 r1
r2 0 0



 (7)

In this case, just like in the previous example, we have to
make decision only if both servers are idle and their phases
are different. However, while for MAP(2) this meant the
determination of a single priority relation, here we have three
relations (priority between phase 1 and 2, 1 and 3, 2 and
3). Our numerical experiments suggests that it is sufficient
to consider only strict (the server in the phase with higher
priority serves the new customer with a probability of 1)
and transitive priority relations (if phase 1 has priority over
phase 2 and phase 2 has priority over phase 3, then 1 has
priority over phase 3). Applying this assumption we have
6 possible service policies and by evaluating all of them we
can determine the best service policy for any M/MAP(3)/2
queue. We denote the priority of the server in phase i by qi,
where qi > qj if we choose the server in phase i over the one
in phase j.

First let r1 = 100, r2 = 10 and λ = 1.5. In this case the
results are in accordance with the observations obtained
for M/MAP(2)/2 queues. The best priority scenario is
q1 > q3 > q2. The reasoning is the same as before. By
using the server in the slowest phase we guarantee that
its next service time will be faster (probabilistically), i.e.,
we improve the state of the system. While choosing the
server in phase 2 and phase 3 both worsens the state of the
system, the deterioration is greater when the server transi-
tions from phase 3 to phase 1. If r1 = 10, r2 = 100, and
λ = 1.5, however, the optimal priority scenario remains the
same (q1 > q3 > q2) although the previous reasoning would
suggest that q1 > q2 > q3 is better. In this case we have to
lower r1 to 2.2 to get q1 > q2 > q3 for optimum. If we change
the arrival rate the switching point between the optimal sce-
narios also changes. For λ = 1 the switching point is around
r1 = 2.4. These results imply that the optimal priority sce-
nario is determined by conflicting effects and the intuitive
understanding of the optimal decision is more complicated.

3.3 M/MAP(2)/n with more than 2 servers
In this section we investigate the cases with higher num-
bers of MAP(2) servers. The numerical analysis is based on
the Markov chains built on the analogy of (1). In case of
more than 2 servers, at a customer arrival we need to choose
between the idle servers if more than one is available. We
identify an idle server by its phase that is held during the
idle period and we number the phases such that the server
in phase 1 is the “slower”. The number of all possible strict
and transitive priority cases increases exponentially with the
number of servers. To simplify the investigation we apply a
uniform probabilistic server selection scheme. If upon a cus-
tomer arrival there is at least one idle server in phase 1 and
one in phase 2, we choose the one in phase 1 (the slower)
with probability p. We compare the uniform probabilistic
server selection schemes for different p values.
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Figure 2: The system time vs. p for several n values
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Figure 3: The system time versus the number of
servers, for several p parameters

We evaluated the cases when the arrival process is a Pois-
son process with parameter λ = 1/10 and the service time
is characterized by the MAP(2) in (6). The results are de-
picted in Figure 2 and 3. Figure 2 indicates that for all
evaluated number of servers the best uniform probabilistic
policy is to choose the slowest server, which is the case at
p = 1. According to our investigations the correlation of the
MAP(2) service does not play a role in the optimal prob-
abilistic decision and the same conclusion holds. It can be
seen in Figure 3 that, as number of servers tends to in-
finity, the system time tends to a constant limiting value
independent of parameter p. According to the expectations
the limiting constant value is the mean service time of the
MAP(2).

The evaluation of uniform probabilistic server selection
schemes suggests that the conclusion obtained for the
M/MAP(2)/2 case might extend to M/MAP(2)/n queues
with more than 2 servers. In general, it can be interpreted
as follows. At any levels of system saturation (any number
of customers in the queue), it is worth choosing the slower
server, because it results in a better system state for higher
levels of system saturation.
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