

L. Bodrog et al.

Motivation

P2P live streaming

Statistical properties and their tests Heavy talled distributions Long-range dependency Multi-fractal behaviour Lag-k correlation

Conclusions

Statistical analysis of peer-to-peer live streaming traffic

Levente Bodrog¹ Ákos Horváth¹ Miklós Telek¹

¹Technical University of Budapest

Probability and Statistics with Applications, 2009

・ ロ ト ・ 同 ト ・ 回 ト ・ 日 ト

- L. Bodrog et al.
- Motivation
- P2P live streaming
- Statistical properties and their tests Heavy tailed distributions Long-range dependency Multi-fractal behaviour Lag-k correlation
- Conclusions

1 Motivation

- 2 P2P live streaming
- 3 Statistical properties and their tests

- Heavy tailed distributions
- Long-range dependency
- Multi-fractal behaviour
- Lag-k correlation

L. Bodrog et al.

Motivation

P2P live streaming

- Statistical properties and their tests Heavy tailed distributions Long-range dependency Multi-fractal behaviour Lag-k correlation
- Conclusions

Nowadays observations on high speed network traffic

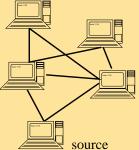
- heavy tailed distributions,
- long-range dependency,
- multi-fractal behaviour.
- Emerging peer-to-peer (P2P) traffic includes
 - file sharing,
 - military, telecommunication, bioinformatics and other research,
 - live streaming.

A new kind of traffic, the P2P live streaming traffic, is analysed.

Technical introduction

Analysis of P2P traffic

L. Bodrog et al.


Motivation

P2P live streaming

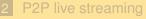
- Statistical properties and their tests Heavy tailed distributions Long-range dependency Multi-fractal behaviour Lag-k correlation
- Conclusions

P2P is for TV programme broadcasting.

- One source, without high resources
- spreads the stream via packets over
- the estabilished overlay topology.

・ロン・西マ・ホリン・ロン ヨ

Advantages:


- simple,
- no special infrastructure needed,
- robust.

- L. Bodrog et al.
- Motivation
- P2P live streaming
- Statistical properties and their tests
- Heavy tailed distributions Long-range dependency Multi-fractal behaviour
- Lag-k correlation
- Conclusions

- 3 Statistical properties and their tests
 Heavy tailed distributions
 - Long-range dependency
 - Multi-fractal behaviour
 - Lag-k correlation

Heavy tailed distributions

Analysis of P2P traffic

L. Bodrog et al.

Motivation

P2P live streaming

Statistical properties and their tests

Heavy tailed distributions Long-range dependency Multi-fractal behaviour

Lag-k correlation

Conclusions

A distribution is heavy tailed if its complementary cumulative distribution function is

$$1-F_{Y}(x)=x^{-\alpha}L(x),$$

where $\lim_{x\to\infty} L(ax)/L(x) = 1$ for a > 0 (e.g. Pareto family with cumulative distribution function $1 - (x_m/x)^{-k}$, $x_m > 0, k > 0$). α is the tail index of the distribution.

くしゃ 人口 マイビッ 人口 マイロッ

Tests for heavy tailed distributions

Analysis of P2P traffic

L. Bodrog et al.

Motivation

P2P live streaming

Statistical properties and their tests

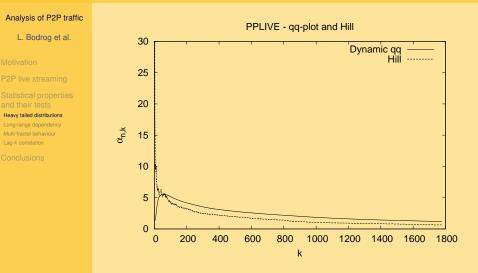
Heavy tailed distributions Long-range dependency Multi-fractal behaviour

Conclusions

These tests estimate the tail index of a distribution based on its samples. *Hill estimator*

$$\alpha_{n,k} = \left(\frac{1}{k} \sum_{i=0}^{k-1} \left(\log X_{(n-i)} - \log X_{(n-k)}\right)\right)^{-1},$$

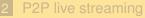
where $X_{(1)} \leq ... \leq X_{(n)}$ denotes the order statistics of the dataset.


Dynamic quantile-quantile regression plot The slope of the linear regression of

$$\left\{ \left(-\log\left(1-\frac{j}{n+1}\right), \log X_{(j)}\right), n-k+1 \le j \le n \right\}$$

gives $\alpha_{n,k}$.

▲□▶▲□▶▲□▶▲□▶ = つへ⊙


Figure: The Hill and the dynamic qq-plot of a P2P live streaming trace

- L. Bodrog et al.
- **Motivation**
- P2P live streaming
- Statistical properties and their tests Heavy tailed distributions Long-range dependency
- Multi-fractal behaviour Lag-k correlation
- Conclusions

- 3 Statistical properties and their tests
 Heavy tailed distributions
 Long-range dependency
 Multi-fractal behaviour
 - Lag-*k* correlation

Self-similarity

Analysis of P2P traffic

L. Bodrog et al.

Motivation

P2P live streaming

Statistical properties and their tests Heavy tailed distributions Long-range dependency Multi-fractal behaviour Lag-k correlation

Conclusions

First we define self-similarity A stochastic process $\mathcal{X} = \{X_i, i = 0, 1, 2, ...\}$ with aggregated process

$$\mathcal{X}^{(m)} = \left\{ X_k^{(m)} = \dots, \frac{X_{km} + \dots + X_{(k+1)m-1}}{m}, \dots, \forall k \right\}$$

is exactly self-similar if $\mathcal{X} \stackrel{d}{=} m^{1-H} \mathcal{X}^{(m)}$, i.e., if \mathcal{X} and $\mathcal{X}^{(m)}$ are identical within a scale factor in a finite dimensional distribution sense.

Here *H* is the Hurst, or the self-similarity, parameter.

くしゃ 人口 マイビッ 人口 マイロッ

Definition of LRD

Analysis of P2P traffic

- L. Bodrog et al.
- Motivation
- P2P live streaming
- Statistical properties and their tests Heavy tailed distributions Long-range dependency Multi-fractal behaviour Lack correlation
- Conclusions

A process is long-range dependent (LRD) if its autocorrelation coefficients (ρ_k) are not summable, i.e.,

$$\lim_{N\to\infty}\sum_{k=0}^N \varrho_k = \infty.$$

- It is observed through the self-similarity.
- Self-similarity is determined based on the Hurst parameter,
- if 0.5 ≤ H ≤ 1 then the trace is self-similar and it is also long-range dependent.

Variance time plot

Analysis of P2P traffic

L. Bodrog et al.

Motivation

P2P live streaming

Statistical properties and their tests Heavy tailed distributions Long-range dependency Multi-fractal behaviour Lag-k correlation

Conclusions

For self-similar time series $\{X_i\}$ (with *m*-aggregated process $X^{(m)}$)

Var
$$X^{(m)} \sim m^{-\beta}$$
, as $m \to \infty, 0 < \beta < 1$.

The slope of the linear regression of the plot log Var $X^{(m)}$ versus log *m* gives β and $H = 1 - (\beta/2)$

L. Bodrog et al.

Motivation

P2P live streaming

Statistical properties and their tests Heavy tailed distributions Long-range dependency Multi-fractal behaviour Lag-k correlation

Conclusions

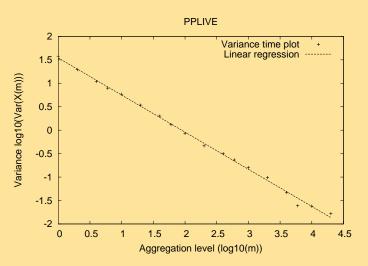
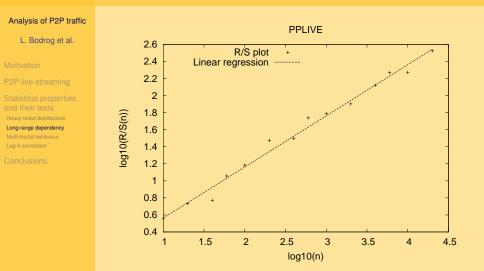


Figure: Variance time plot of a P2P live streaming trace

(日)

- L. Bodrog et al.
- Motivation
- P2P live streaming
- Statistical properties and their tests Heavy tailed distributions Long-range dependency Multi-fractal behaviour Lac-k correlation
- Conclusions


H is the slope of the linear regression of

$$R/S(n) = \frac{1}{S(n)} \left(\max_{0 \le k \le n} \left(Y(k) - \frac{k}{n} Y(n) \right) - \min_{0 \le k \le n} \left(Y(k) - \frac{k}{n} Y(n) \right) \right),$$

Sac

the scaled difference between the fastest and the slowest arrival period considering *n* arrivals.

Figure: R/S plot of a P2P live streaming trace

- L. Bodrog et al.
- **Motivation**
- P2P live streaming
- Statistical properties and their tests Heavy tailed distributions Long-range dependency Multi-fractal behaviour
- Conclusions

2 P2P live streaming

- 3 Statistical properties and their tests
 Heavy tailed distributions
 Long-range dependency
 - Multi-fractal behaviour
 - Lag-*k* correlation

L. Bodrog et al.

Motivation

P2P live streaming

Statistical properties and their tests Heavy tailed distributions Long-range dependency Multi-fractal behaviour Lank correlation

Conclusions

Considering $E\left(\left|X^{(m)}\right|^{q}\right)$, the absolute moments of the *m*-aggregated arrival process:

- self-similarity: one scaling parameter (the Hurst parameter) for all moments,
- multi-fractal behaviour:
 - different scaling for the *q*th absolute moment,

results in a spectrum depending on q.

Test – Legendre spectrum

Analysis of P2P traffic

- L. Bodrog et al.
- Motivation
- P2P live streaming
- Statistical properties and their tests Heavy tailed distributions Long-range dependency Multi-fractal behaviour
- Conclusions

Considering the rate process of a continuous time process:

- **its local scaling exponent is** $\alpha(t)$ at time *t*,
- the "number of" α(t)s falling ε within α is the multi-fractal spectrum, f_L(α),
- the scaling of the absolute moments is T(q), the partition function,
- the Legendre transform of the partition function is also the multi-fractal spectrum.

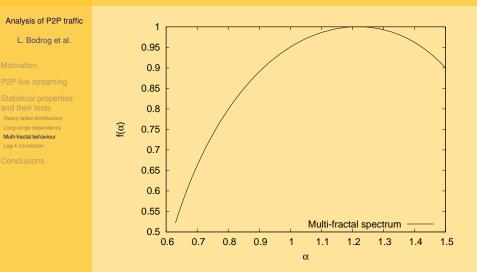
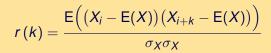


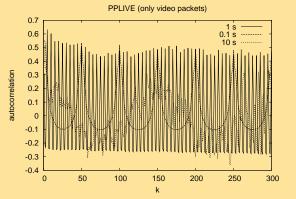
Figure: The multi-fractal spectrum of a P2P live streaming trace

- L. Bodrog et al.
- **Motivation**
- P2P live streaming
- Statistical propertie and their tests Heavy tailed distributions Long-range dependency Multi-fractal behaviour Lag-k correlation
- Conclusions

2 P2P live streaming

3 Statistical properties and their tests


- Heavy tailed distributions
- Long-range dependency
- Multi-fractal behaviour
- Lag-k correlation



Lag-k correlation

Analysis of P2P traffic

- L. Bodrog et al.
- Motivation
- P2P live streaming
- Statistical properties and their tests Heavy tailed distributions Long-range dependency Multi-fractal behaviour Lag-k correlation
- Conclusions

- L. Bodrog et al.
- Motivation
- P2P live streaming
- Statistical properties and their tests Heavy tailed distributions Long-range dependency Multi-fractal behaviour Lag-k correlation
- Conclusions

The analysed P2P live streaming traffic traces:

- are heavy tailed,
- are long-range dependent considering several time scales,
- and have rich multi-fractal spectrum.

Consequences:

- the heavy tailed distributions degrades the quality of service parameters in the network,
- both the LRD and multi-fractal behaviour should taken into consideration when one considers P2P live streaming traffic.