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Abstract—The importance of the order two Markovian arrival
process (MAP(2)) comes from its compactness, serving either as
arrival or service process in applications, and from the nice
properties which are not available for higher order MAPs.
E.g., for order two processes the acyclic MAP(2) (AMAP(2)),
the MAP(2) and the order two matrix exponential process
(MEP(2)) are equivalent [1]. Additionally, MAP(2) processes can
be represented in a canonical form, from which closed form
moments bounds are available. In this paper we investigate
possible fitting methods utilizing the special nice properties of
MAP(2).

We present two fitting methods. One of them partitions the
exact boundaries of the MAP(2) class into bounding subsurfaces
reducing the numerical inaccuracy of the optimization based
moment fitting . The characterizing new feature of the other
one is that it considers the distance of joint density functions of
infinitely many arrivals.
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I. I NTRODUCTION

Markovian arrival processes (MAPs) are widely applied in
stochastic modeling. Their popularity comes from their rela-
tively easy applicability and the associated efficient numerical
methods (referred to as matrix analytic methods) [2]. MAPs
can approximate a wide range of stochastic processes from
the simplest renewal processes to the long range dependent,
fractal-like and heavy tailed ones [3]. Since it is an important
modeling technique researchers pay particular attention to
exploring the MAP(n) class but up to now there are still
open questions. One of these open questions is, what are the
boundaries of the MAP(n) class?

This question is answered only for order two MAPs [1].
The first results on the order two MAPs are given in [4]
which presents a basic moment set matching method for
hyperexponential MAP(2)s – MAP with hyperexponential
marginal distribution. In the next step [5] provides the same
results for general acyclic MAPs (AMAPs). Finally [1] proves
the equivalence of matrix exponential processes, MAPs and
AMAPs of second order as well as [1] provides a minimal
Markovian canonical representation of the two dimensional
arrival processes.

The knowledge on MAP(2) boundaries can be useful in
developing simple models of complex systems as well as
in utilizing it as basic building block for large models [6].
Although [1] introduced a moment matching method, together
with the derivation of the MAP(2) boundaries, it is not utilized
yet for special fitting techniques or to simplify the existing,

usually some kind of multidimensional optimization based,
fitting algorithms.

In this paper we propose two fitting algorithms utilizing
the MAP(2) boundaries and the canonical form. The first
method searches for an optimal point in the valid MAP(2)
moment space by minimizing the Euclidean distance of the
moment sets. The difficulty of this approach comes from the
fact that the boundary of the valid MAP(2) moment space is
very irregular. Practically the proposed approach is to divide
the MAP(2) boundary into “nice” subsurfaces on which the
minimization for the distance is constrained. We show that it
is worth to do so as the constrained problems can be solved
easier than global optimization problems that do not take care
of the exact boundaries.

The second fitting algorithm fits MAPs of low order to
MAPs of higher order based on the distance of the finite or
infinite dimensional joint density functions. In this generally
applicable approach we restrict our attention to the case when
the low order MAP is MAP(2), because we make use of the
MAP(2) canonical form.

We will demonstrate the performance of the proposed
algorithms by comparing the cumulative distribution function,
the correlation structure and the queueing behavior of the fitted
MAP(2)s and the original higher order MAP.

The rest of the paper is organized as follows. First we
overview the basic MAP properties in Section II, then in
Section III we outline the general approach of MAP fitting
by examples of some previously developed methods. The two
newly developed fitting algorithms are detailed in SectionsIV
and V. There is a detailed numerical study on the perfor-
mance of the fitting algorithms given in Section VI. Finally
Section VII concludes the paper.

II. M ARKOVIAN ARRIVAL PROCESSES

Let X0, X1, . . . be the interarrival times of the arrival pro-
cessX(t) and let the joint density function ofX0, X1, . . . , Xn

be defined by the matrix pair(D0,D1) as

f(x) =f(x0, x1, . . . , xn)

=πeD0x0D1e
D0x1D1 · · · · · eD0xnD11,

(1)

where1 is the column vector of ones andπ is the solution of
the system of linear equationsπ(−D

−1
0 )D1 = πP = π and

π1 = 1.
If D0 is a transient Markovian generator, i.e.,(D0)ij ≥

0 ∀i 6= j, and (D0)ii < 0 ∀i, D0 is non-singular



and (D1)ij ≥ 0 ∀i, j such that −D01 = D11
then f(x) is a density function, i.e.,(f(x) ≥ 0) ∧
(∫

x
f(x)dx = 1

)
(∀n)(∀x ≥ 0), andX(t) is a MAP.

A. Basic MAP properties

The MAP with representation(D0,D1) has PH distributed
stationary interarrival times with representation(π,D0),
whereπ is the stationary phase distribution after an arrival.
Matrix P = (−D0)

−1
D1 describes the state transition proba-

bilities of the discrete time Markov chain (DTMC) embedded
at the arrival epochs. The probability density function of the
PH marginal and itskth raw moment are

f(t) = πeD0t (−D0)1 (2)

and

µk = E(Xk) = k!π (−D0)
−k 1 (3)

respectively.
The lag-k correlation of a MAP is

corr (X0, Xk) =
E(X0Xk)− E2(X)

E(X2)− E2(X)

=
π(−D0)

−1
P

k(−D0)
−11− µ2

1

µ2 − µ2
1

.

(4)

A non-redundant MAP(m) (i.e. a MAP for which no equiv-
alent MAP(o) with o < m exists) is determined by the
so-called basic moment set, containingm2 reduced (joint)
moments [7]. In case of MAP(2) a process is defined by four
parameters. They are the first 3 moments defining the PH(2)
marginal distribution and the lag-1 correlation defining the,
geometrically decaying, correlation structure of the process.

B. The moment boundaries of the MAP(2) set

Instead of working with the first 3 moments and the lag-
1 correlation it is often beneficial to work with dimensionless
quantities. In MAP(2) analysis the use of normalized moments
[8] and the correlation coefficient became popular. The nor-
malized moments are defined as

nk =
µk

µk−1µ1
, k ≥ 2, (5)

whilst [9] defines the shape parameterγ of the geometric
decaying autocorrelation function of the MAP(2) class as

corr (X0, Xk) =
E (X0Xk)− µ2

1

µ2 − µ2
1

= γk
n2

2 − 1

n2 − 1
. (6)

As a result of (5) and (6) we can represent a MAP(2) with
µ1 (multiple of the time unit) and 3 dimensionless quantities
n2, n3, γ. In case of parameter matchingµ1 is easy to match
independently of the other parameters since for a positive
constantc with D

′
0 = cD0, andD

′
1 = cD1 we have

µ′
1 = µ1/c,

n′
k =

µ′
k

µ′
k−1µ

′
1

=
c−kµk

c−(k−1)µk−1c−1µ1
=

µk

µk−1µ1
= nk,

E(X ′
0X

′
k) = π(−cD0)

−1
P

k(−cD0)
−11 = c−2 E(X0Xk),

P
′ = (−cD0)

−1
(cD1) = (−D0)

−1
D1 = P
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Figure 1. The PH(2) boundaries on the(n2, n3) plane

and

γ′ =
E (X ′

0X
′
1)− µ′

1
2

µ′

2

2 − µ′
1
2

=
c−2 E (X0X1)− (c−1µ1)

2

c−2µ2

2 − (c−1µ1)2
= γ.

Hence, our focus is on the matching/fitting of the dimension-
less quantitiesn2, n3, γ.

a) The boundaries of the PH(2) marginal distribution
[10]: The marginals of a MAP(2) are PH(2) distributed and
are characterized byµ1 and(n2, n3). The bounds for(n2, n3)
are as follows [10].

3

2
≤ n2. (7)

To give the bounds of the third normalized moment first we
introduce simplifying notations

p2 =
3(n2 − 2)

3n2

(

−2
√

3√
12− 6n2

− 1

)

,

a2 =
n2 − 2

p2(1− n2) +
√

p2
2 + (2p2(n2 − 2))

,

l2 =
3(a2 + 1)

a2p2 + 1
− 6a2

2 + a2p2(2a2 + 2)
, (8)

u2 =
6(n2 − 1)

n2
. (9)

Using these notations we can express the third normalized
moment bounds by its lower

l2 ≤ n3, if
3

2
≤ n2 ≤ 2 (10a)

3

2
n2 < n3, if 2 ≤ n2 (10b)

and upper bounds

n3 ≤ u2, if
3

2
≤ n2 ≤ 2 (10c)

n3 <∞, if 2 < n2. (10d)

The boundaries of the PH(2) class, together with the curve
(13), are summarized in Figure 1.



Table I
THE MAP(2) γ BOUNDS IN TERMS OF THE NORMALIZED MOMENTS

γ bound

condition lower upper

n2 < 2 −n2(n3−6)+6
3n2−6

−
2

„

1
2
(n2−2)+ 1

2

q

n2
2
−

2n2n3
3

«

2

n2−2

n2 > 2 ∧ n3 < 9 − 12
n2

−n2(n3−6)+6
3n2−6

1

n2 > 2 ∧ 9 − 12
n2

≥ n3

n2(n3−9)−

s

n2

“

n2

`

18n2+n3(n3−18)−27
´

+24n3

”

+12

n2(n3−9)+

s

n2

“

n2

`

18n2+n3(n3−18)−27
´

+24n3

”

+12

1

The boundaries of theγ parameter are provided in [1] and
are summarized in Table I.

C. MAP(2) canonical form

The canonical form (CF) of the MAP(2) class has two
variants depending on the sign of the correlation parameter
[1]. In both variants the canonical form is given in terms of
the rate parameters0 < λ1 ≤ λ2 and probabilities0 ≤ a ≤ 1
and0 ≤ b ≤ 1.

b) The canonical form whenγ ≥ 0, CF 1: For a MAP(2)
with positive γ the canonical matrix representation has the
form

D0 =

(
−λ1 (1− a)λ1

0 −λ2

)

, D1 =

(
aλ1 0

(1 − b)λ2 bλ2

)

.

(11)

Additional requirements on the parameters area, b 6= 1 for
recurrency. The stationary phase distribution after an arrival
for CF 1 isπ = ( 1−b

1−ab

b−ab

1−ab ) .
c) The canonical form whenγ < 0, CF 2: For negative

γ MAP(2) has the canonical form

D0 =

(
−λ1 (1− a)λ1

0 −λ2

)

, D1 =

(
0 aλ1

bλ2 (1− b)λ2

)

.

(12)

Additional requirements on the parameters areb 6= 0 for
recurrency andλ1 6= λ2 if a = 1 for a valid order two process.
The stationary phase distribution after an arrival for CF 2 is
π = ( b

1+ab
1− b

1+ab ) .

III. A PPROXIMATE FITTING ALGORITHMS

The availability of explicit expressions that define the pa-
rameters of the canonical MAP(2) form based on the moment
set (µ1, n2, n3, γ) makes moments matching an obvious job
when the moments to be fitted are within the MAP(2) moment
bounds (Section II-B). Unfortunately, to find the best MAP(2)
approximate of a moment set which is outside the valid
MAP(2) moment boundaries is a far more complex task.

This section compares some general purpose optimization
algorithms for solving this problem. The general fitting ap-
proach is to optimize some distance measure over the MAP(2)
class.

There are various options for defining a distance of the
moment sets. We made several comparisons and found that
with respect to the properties we are interested in (the benefit
of optimizing with Algorithm 2) all reasonable distances
behave similarly. Throughout the paper we use the Euclidean
distance, or simply distance, of the basic moment sets

d
(
(µ1, n2, n3, γ), (µ′

1, n
′
2, n

′
3, γ

′)
)

=
√

(µ1 − µ′
1)

2 + (n2 − n′
2)

2 + (n3 − n′
3)

2 + (γ − γ′)2.

As there is no widely applied measure for fitting and since
the Euclidean distance is the most natural distance over the
three dimensional space, we use this distance measure to show
how the decomposition of the MAP(2) bounds can improve
the moment fitting. The same concept can be applied for any
other distance measure to which the moment bounds, given in
Table I, can be transformed, e.g., weighted moment distance.
We do not search for the “the best” distance measure in the
paper.

A. Global optimization

Having the boundaries of the MAP(2) class in the moment
space and a non MAP(2) point (a point outside the valid
MAP(2) moment set) it seems obvious to define a distance
and minimize it subject to the MAP(2) set. In case of a convex
surface it is numerically stable but in case of the MAP(2) class
there are two tangential parts of the subset over the(n2, n3)
plane and also theγ boundaries are built up of five separate
surfaces.

The problem is that the accuracy of such a fitting method
highly depends on the performance of the applied optimization
algorithm, especially in case of a concave and not differen-
tiable surface. How does the distance “change” between the
tangential subspaces especially as the MAP(2) class does not
contain the point of tangency? How can the method “leave”
local minima to find the global one? In which way does it
depend on its initial settings? etc. . .

In the following example we used several, numerical, non-
linear optimization methods to find the closest fitting MAP(2)
to an external point based on the Euclidean distance. The
investigated optimization methods are

• Nelder-Mead [11],



Table II
RESULT OF FITTING ON(1, 22, 0) BY SEVERAL MOMENT FITTING

ALGORITHMS

method distance result(n2, n3, γ)

Nelder-Mead 19.0378 (2.005, 3.015, 0.9993)
differential evolution 18.8955 (2.0918, 3.1379, 0.2645)
simulated annealing 19.8389 (1.5756, 2.1694, 0.00069)

random search 19.3223 (1.8448, 2.6963, 0.0431)

OMAM
√

1601
2

≃ 20 ( 3
2
, 2, 0)

decomp. numerical fitting 1 (2, 22, 0)

• differential evolution [12],
• simulated annealing [13], [14] and
• random search.

All of them have several settings and each of them needs spe-
cial attention that we left for the automatic setup mechanism
of Mathematica.

To demonstrate the performance of the investigated opti-
mization methods we simply take a point on the(n2, n3, 0)
plane, namely(1, 22, 0), to fit to. The results are given in the
first 4 rows of Table II for each of the algorithms.

According to our experiences the results in Table II are
typical. The performance of the general purpose optimization
methods are similarly poor. In the rest of the paper we report
only the results of the Nelder-Mead method among the general
purpose optimization methods, but the other (differentialevo-
lution, simulated annealing and random search) exhibit similar
properties.

B. Ordered Moment Adjusting Method (OMAM)

If one knows the exact boundaries of the MAP(2) class
and looks for a MAP(2) fitting of a non MAP(2) moment set
(n2, n3, γ) there are several possibilities. Setting the moments
out of the valid range separately gives the best approximation
moment by moment. At the first sight it seems that this is
enough, but doing so completely ignores the “perpendicular
directions of a gradient defined as a measure in the moment
space”. This latter behavior results in a suboptimal solution of
an optimization problem trying to minimize the given measure
over the moment space in several steps. The problem of this
policy is that the result depends on the order of the adjust-
ment. We show this through an example using Algorithm 1
describing OMAM.

Having the outer, non MAP(2), pointM = (8, 9, 0) the
resulting moment set of the fitting after the loop, through
lines 1 and 5 in Algorithm 1, isM̂1 = (6, 9, 0) . While if the
adjustment ofn3 precedes that ofn2 then the resulting MAP
will have the coordinateŝM2 = (8, 12, 0) . This small example
shows the importance of the fitting order of the moments.

The distance ofM̂1 from the outer point (M ) is d1 =

d
(

M̂1, M
)

= 2 and the distance ofM̂2 is d2 =

d
(

M̂2, M
)

= 3. Although d1 < d2 none of them gives

the aimed closest MAP point since the distance ofM̂ =

Algorithm 1 ordered moment adjusting method

INPUT: v = (n2, n3, γ)
OUTPUT: (D0,D1)

1: for i = 0 to 2 do
2: if (v)i falls out of the feasible range of that “moment”

then
3: adjust it to be on the closer bound given either in [15]

or in [1]
4: else
5: leave(v)i unchanged
6: (D0,D1)← v

7: return (D0,D1)

(
86
13 , 129

13 , 0
)

is d = d
(

M̂, M
)

= 6√
13

< 2. Here we note
that the above approximate points are on the open border of
the MAP(2), i.e., they are not MAP(2)s themselves, but they
demonstrate clearly the problem with OMAM.

A possible usage of Algorithm 1 is the case when the fitting
of different moments has different priorities. Moments with
lower priority are then adjusted later.

IV. D ECOMPOSED NUMERICAL FITTING METHOD

Since the problem of global optimization based method
results from the fact that the MAP(2) bounding surface is
concave and not differentiable, we try to utilize the knowledge
about the MAP(2) boundaries (see Section II-B).

Technically the MAP(2) boundaries are built up of ten
parts. Here we give the formal description of them as well
as the decomposed numerical fitting method based on the
partitioning.

A. Division of the MAP(2) bounding surface

The bounding surface of the MAP(2) moments set can
be divided into parts with nice surface properties. Indeed
the definition of the surface in Table I already suggests the
evident way of dividing the surfaces into parts. This division
is presented in Table III where the parts are numbered from I
to X.

Additionally we define the curve

m2 = 9− 12

n2
. (13)

Subsurfaces III, VIII, IX and X are vertical surfaces in the
(n2, n3, γ) space. In particular

• subsurface III is the vertical bound between subsurfaces
I and II,

• subsurface VIII is the vertical bound between subsurfaces
V and VII, alongn2 = 2,

• subsurface IX is the vertical bound between subsurfaces
IV and VII and

• subsurface X is the vertical bound between subsurfaces
V and VII, alongn3 = 3

2n2 for n2 ≥ 4

applying the appropriate constraints on all coordinates.
Figure 2(a) summarizes all the nonvertical surfaces appear-

ing in Table III, whilst Figure 2(b) enlarges the same for



Table III
THE MAP(2) BOUNDING SUBSURFACES

the surface given by its coordinates ID condition(s)
“

n2, n3,−n2(n3−6)+6
3n2−6

”

I 3
2
≤ n2 < 2, l2 ≤ n3 ≤ u2

0

@n2, n3,−
1
2

„

n2+
q

n2
2
−

2n2n3
3

−2

«

2

n2−2

1

A II 3
2
≤ n2 < 2, l2 ≤ n3 ≤ u2

(n2, l2, γ) III 3
2
≤ n2 < 2, −n2(l2−6)+6

3n2−6
< γ < −

1
2

„

n2+

q

n2
2
−

2n2l2
3

−2

«

2

n2−2
“

n2, n3,−n2(n3−6)+6
3n2−6

”

IV 2 < n2 < 4, 3
2
n2 < n3 < m2

0

B

B

@

n2, n3,

n2(n3−9)−

s

n2

“

n2

`

18n2+n3(n3−18)−27
´

+24n3

”

+12

n2(n3−9)+

s

n2

“

n2

`

18n2+n3(n3−18)−27
´

+24n3

”

+12

1

C

C

A

V 2 < n2 < 4, m2 ≤ n3

0

B

B

@

n2, n3,

n2(n3−9)−

s

n2

“

n2

`

18n2+n3(n3−18)−27
´

+24n3

”

+12

n2(n3−9)+

s

n2

“

n2

`

18n2+n3(n3−18)−27
´

+24n3

”

+12

1

C

C

A

VI 4 ≤ n2, 3
2
n2 < n3

(n2, n3, 1) VII 2 < n2, 3
2
n2 < n3

(2, n3, γ) VIII 3 < n3,
n3−

√
(n3−3)2−3

n3+
√

(n3−3)2−3
< γ < 1

`

n2, 3
2
n2, γ

´

IX 2 < n2 < 4, 1 − n2

2
< γ < 1

`

n2, 3
2
n2, γ

´

X 4 ≤ n2,
n2(n2−6)−

q

n
2
2
(n2−2)2+8

n2(n2−6)+
q

n
2
2
(n2−2)2+8

< γ < 1

subsurfaces I and II. In Figure 2(a) there are also the lower
boundingγ surfaces (subsurfaces I, IV, V and VI) mapped
onto the base plane on which the same division of the(n2, n3)
plane appears as in Figure 1.

B. The decomposed numerical fitting method

Based on the poor performance of the general purpose
optimization methods and the structure of the MAP(2) mo-
ments bounding surface it seems reasonable to decompose the
problem into optimization over nice surfaces and take the best
of the obtained solutions. We name this approach decomposed
numerical fitting method.

Similar to the global optimization based fitting methods
in Section III-A our fitting algorithm also tries to minimize
the Euclidean distance between the given outer point and
the MAP(2) subspace. The difference is that here we use
the decomposition of the bounding surface and the associated
constraints, i.e., the computational complexity of the method
is the same as the global optimization based but the probability
of finding the global optimum is enlarged.

Our method utilizes that the Euclidean distance between an
outer point and a region lies on the border of that region.
Accordingly it goes through the bounding subsurfaces, given
in Table III, finds the minima of the distance between the
actual subsurface and the outer point and return with the
closest point and its distance from the outer point. This is
expressed briefly in Algorithm 2.

V. FITTING HIGH ORDER MAPS WITH LOW ORDERMAPS

There are several modeling situations when the size of
the MAP models needs to be reduced for efficient numerical

Algorithm 2 decomposed numerical fitting
method
INPUT: M = (n2, n3, γ) the outer point
OUTPUT: (D0,D1, d) the closest MAP(2) and its distance

from M
1: d =∞
2: while there is unchecked subsurfacedo
3: find the closest point (̃M ) on the actual surface from

M
4: calculate the Euclidean distance of̃M and M d̃ =

d(M, M̃)
5: if d̃ < d then
6: d = d̃
7: M̂ = M̃
8: consider the “next” subsurface
9: (D0,D1)← M̂

10: return (D0,D1, d)

computations. E.g., there are fitting methods which generate
large MAPs that allow an easy setting of the required param-
eters [6]; in queuing network analysis the size of the traffic
descriptors might increase during the course of the analysis,
etc. In these situations it is necessary to reduce the size ofthe
MAP eventually.

A possible way for this reduction is to match a smaller
MAP to the low order moments of the large MAP [16]. It
is an efficient approach as long as the low order moments of
the large MAP are inside the moments bounds of the small
one. But when it is not the case the problems discussed in the
previous sections arise.
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Figure 2. The moment bounds of the set of MAP(2) distributionin the (n2, n3, γ) space

In this section we present an alternative approach for fitting
large MAPs with smaller ones. To utilize the known bounds of
the MAP(2) class we assume that the small MAP is MAP(2),
but the approach is applicable for larger MAPs as well.

Due to the fact that the stochastic process we would like
to approximate is a MAP, whose analytical properties are
known, we can go beyond minimizing moments based distance
measures. We can define distances between joint densities of
finite and also for infinite number of inter-arrivals.

Equation (1) gives the joint density of the interarrival times
of a MAP X(t). Having two MAPs of orderm and o, with
joint densitiesf(·) and g(·), and representations(D0,D1)
and (G0,G1), and stationary phase distributionsπ and γ,
respectively, the integral of the product of their joint densities
can be expressed as

Lfg(n) =

∫

x

f(x1, x2, · · · , xn)g(x1, x2, · · · , xn)dx

=

∫

x

(
πeD0x1D1e

D0x2D1 · · · eD0xnD11)
⊗
(
γeG0x1G1e

G0x2G1 · · · eG0xnG11) dx

=

∫

x

(π ⊗ γ)
(
eD0x1 ⊗ eG0x1

)
(D1 ⊗G1)× . . .

×
(
eD0xn ⊗ eG0xn

)
(D1 ⊗G1) (1⊗ 1) dx

= (π ⊗ γ)

(∫

x1

eD0x1 ⊗ eG0x1dx1

)

(D1 ⊗G1)× . . .

×
(∫

xn

eD0xn ⊗ eG0xndxn

)

(D1 ⊗G1) (1⊗ 1)

= (π ⊗ γ)
︸ ︷︷ ︸

ν

(

− (D0 ⊕G0)
−1

(D1 ⊗G1)
)n

︸ ︷︷ ︸

Nn

(1⊗ 1)
︸ ︷︷ ︸1

=νN
n1.

(14)

Here n is the number of considered interarrivals, i.e., the
number of the considered samples in the two arrival processes.

A. Computing distances between MAPs based onL(n)

The compact, and easy to compute form of (14) can be
utilized also in evaluating the distances of MAPs. Assume that
there is a given MAP with representation(D0,D1) and we
are looking for a smaller MAP with representation(G0,G1).
In this case, the optimization problem of the distance of the
joint density functions of the two MAPs is

min
G0,G1

d
(
f(x), g(x)

)
=

= min
G0,G1

∫

x

(
f(x)− g(x)

)2
dx

= min
G0,G1

(∫

x

f(x)f(x)dx +

∫

x

g(x)g(x)dx

−2

∫

x

f(x)g(x)dx

)

= min
G0,G1

(

Lff(n) + Lgg(n)− 2Lfg(n)

)

.

(15)

Using (14) for the three terms on the right hand side of (15)
the function that has to be minimized can be easily computed.

Furthermore, knowing the general canonical form of the
second order MAPs, as given in (11) and (12), with four
variables(a, b, λ1, λ2) the optimization in (15) reduces to a
four dimensional minimization problem.

B. Reducing the MAP order according to the dominant Eigen-
value ofN

Based on the spectral decomposition ofN equation (14)
can be rewritten as

Lfg(n) = νN
n1 =

s∑

i=1

αi∑

j=0

aijλ
n−j
i , (16)

whereλi are the roots, with multiplicityαi, of the minimal
polynomial ofN andaij are the appropriate constants. If the
size of the fitted and the original MAPs arem and o then



s ≤ mo. Taking the limit of (16) asn tends to∞ we have
that

lim
n→∞

Lfg(n) = lim
n→∞

νN
n1 = lim

n→∞

s∑

i=1

αi−1∑

j=0

aijλ
n−j
i = cλn

d

(17)
wherec =

∑αd−1
j=0 adjλ

−j
d is constant andλd is the dominant

eigenvalue of matrixN, i.e., Lfg(n) ∼ λn
d asn → ∞. Here

we assumed thatλd is real, which fits with our experiences.
While in the previous section we assumed a fixedn for the

exponent of (14) here we assume thatn→∞.
Let λf , λg andλfg be the dominant eigenvalues correspond-

ing to the termsLff(n), Lgg(n) and Lfg(n) respectively.
Using (17) the optimization problem simplifies to

min
G0,G1

(λf + λg − 2λfg) . (18)

VI. N UMERICAL STUDY

Our experiments can be divided into two parts. In the first
part we investigate the performance of our methods by fitting
a MAP(2) on a random five dimensional MAP with moments
falling outside the MAP(2) moments region. In the second part
we apply moment matching on a random three dimensional
MAP with moments within the MAP(2) moments region. In
the second part we apply the MAP reduction approach of
Section V and also verify the moment matching method. In
both cases we compare the cumulative distribution function,
the correlation structure and the queueing behavior of the
resulting MAP(2) with the original MAP.

The methods can be applied to any experimental data
without any restrictions. In case of decomposed fitting the
goodness of fit is determined by the used distance measure
(here it is the Euclidean distance) while in case of the MAP
reduction technique one should first fit an arbitrary large
MAP to the trace and then the reduction can be applied. For
our purposes, to show the efficiency of the algorithms, it is
sufficient to evaluate the approach with random MAPs.

A. Fitting a MAP(5)

We apply the proposed methods for fitting a MAP(2) to the
random, five dimensional, MAP with matrix representation

D0 =









−3 1 0 0 0
1 −5 0 0 0
0 1 −4 0 0
1 0 0 −2 0
1 0 0 1 −5









,

D1 =









1 0 0 1 0
0 1 1 1 1
1 0 1 0 1
0 0 0 1 0
0 1 1 1 0









.

(19)

The moments of this MAP(5) are(n2 = 1.96161, n3 =
2.88108, γ = −0.237176). This point is outside the MAP(2)
moment region. Its first raw moment isµ1 = 0.560976.

Once we have(n2 = 1.96161, n3 = 2.88108, γ =
−0.237176) we fit MAP(2) to it using

• the global optimization with the Nelder-Mead method, as
described in Section III-A,

• OMAM, as described in Section III-B,
• the decomposed fitting method, as given in Section IV,

to fit
– directly the shape parameter (γ), or equivalently the

lag-1 correlation coefficientρ1 = γ
n2
2
−1

n2−1 ,

– the lag-9 correlation coefficientρ9 = γ9
n2
2

−1

n2−1 and

– a higher lag,ρ99 = γ99
n2
2

−1

n2−1 , both of them used to

express the shape parameter asγ = n

√

ρn
n2−1
n2
2

−1
and

– the dominant eigenvalue (λd) of the DTMC embed-
ded at arrival epochs.

• The joint density function fitting for the exponentn = 10,
as given in Section V-A, and

• the dominant eigenvalue based joint density function
fitting, as presented in Section V-B.

The resulting moment triples are summarized in Table IV. We
note that the MAP reduction procedure results in different first
raw moment while in the moment based fittings method we
can set the original one,µ1 = 0.560976.

It can be seen in Table IV that all the fitting methods give
quite close results in terms of the Euclidean distance. And as
we expected the decomposed moment fitting (eg) and OMAM
(ma) give significant good results.

For further investigations we first determine the correspond-
ing matrix representations for all the fitted MAP(2)s using the
four element basic moment set(µ1, n2, n3, γ).

D
(nm)
0 =

(
−1.698 0.0006

0 −1.877

)
D

(nm)
1 = ( 0 1.698

1.876 0.0006 ) (20)

D
(ma)
0 =

(
−2.069 0.944

0 −2.069

)
D

(ma)
1 = ( 0 1.125

0.903 1.167 ) (21)

D
(eg)
0 =

(
−2.093 1.002

0 −2.098

)
D

(eg)
1 = ( 0 1.091

0.955 1.143 ) (22)

D
(r9)
0 =

(
−1.763 6.553×10−5

0 −1.802

)

D
(r9)
1 = ( 0 1.7633

1.802 0 ) (23)

D
(r99)
0 =

(
−1.787 0.008

0 −1.787

)
D

(r99)
1 = ( 0 1.779

1.787 0 ) (24)

D
(ed)
0 =

(
−2.095 0.714

0 −2.096

)
D

(ed)
1 = ( 1.382 0

0.557 1.538 ) (25)

D
(lh)
0 =

(
−1.733 0.121

0 −5.939

)
D

(lh)
1 = ( 1.612 0

3.317 2.622 ) (26)

D
(ld)
0 =

(
−1.7137 0.162

0 −4.7576

)
D

(ld)
1 = ( 1.551 0

2.367 2.391 ) (27)

Once we have the matrix representation we can calculate
the fitted parameters. In case of methods (r9), (r99) these
are ρ

(r9)
9 = −0.000120081 and ρ

(r99)
99 = 3.20821 × 10−6,

respectively, while the original MAP(5) has the parameter
values ρ9 = 0.0000320486 and ρ99 = 1.41312 × 10−33.
The bad match of the correlation parameters are caused by
their very low values and accordingly the limited numerical
accuracy which attracts our attention to the numerical stability
of the decomposed fitting method for low values although it
seems more accurate than the global optimizations in the same
space.

In case of the fitting method (ed) the dominant eigenvalue
of the DTMC embedded at arrival epochs is fitted. For the
original MAP(5) it isλd = 0.484103 and for the fitted MAP(2)
it is γ = 0.484102 which is a very good match.



Table IV
RESULT OF FITTINGM = (1.96161, 2.88108,−0.237176) BY ALL THE CONSIDERED FITTING ALGORITHMS

result

method abbr. distance µ1 (n2, n3, γ)

global optimization (nm) 0.7750 (2.00498, 3.0149,−0.999348)
ordered moment adjusting method (ma)0.0178 (1.96161, 2.89884,−0.237176)

decomposed fitting ofγ (eg) 0.0067 (1.95541, 2.88361,−0.237174)
decomposed fitting ofρ9 (r9) 0.7731 (2.00024, 3.00072,−0.999963)

decomposed fitting ofρ99 (r99) 0.7686 (1.99999, 2.99997,−0.995528)
decomposed fitting ofλd (ed) 0.7213 (1.95541, 2.88361, 0.484102)

joint density based (lh) 0.6723 0.566744 (2.0254, 3.04949, 0.410575)
dominant eigenvalue of (lh) (ld) 0.7198 0.569103 (2.032, 3.06588, 0.454837)

d) PH(2) fitting: The cumulative distribution function
(CDF) of the PH marginal distributions for the original
MAP(5) and for all the fitted MAP(2)s are calculated using
their matrix representations in (19) and in (20) through (27)
and their stationary phase distributions as

F (x) = 1− πeD0x1, (28)

whereπ is the stationary phase distribution after an arrival and
D0 is the transient generator of the PH marginal of the MAP.
The resulting MAP(2)s fit the MAP(5) reasonably well, the
CDFs show a good match with the original one in Figure 3(a).
Figure 3(b) shows that (nm) fits best the body and (eg), (ed),
(lh) and (ld) the tail of the distribution.

e) Lag-k fitting: The correlation structure of all the
original and the fitted MAPs are calculated by the consecutive
evaluation of (4) and is depicted in Figure 3(c). Those methods
which find a correlation parameter close to 1 result in a
very slow correlation decay, these are the decomposed fitting
method based higher correlation fittings, i.e., (r9) and (r99),
and the Nelder-Mead method based global optimization (nm).
The decomposed fitting method basedγ fitting (eg) fits the first
lag correlation well since it is closely related toρ1 but all the
other correlation coefficients are fitted badly. The reason is that
this MAP(5) does not have geometrically decaying correlation
structure. In case of (ed) the dominant eigenvalue is matched,
but if n2 < 2, which is the case now, the calculation of the
correlation coefficient contains a minus sign, see (6), thusthe
lag-k curve is reflected to thex-axis.

Figure 3(c) together with Figure 5(c) points out that the
MAP(2) set has geometrically decaying correlation function,
as given in (6), i.e., it is only possible to capture a geometric
correlation structure.

f) Queueing behavior:The queue length distributions
generated by MAP arrivals are observed in an infinite buffer
system with deterministic service time (MAP/D/1 queueing
system) for two utilization levels,ρ = 0.3 and ρ = 0.7, in
Figure 4. The utilization of the system is set throughD, the
deterministic service time, asρ = D

µ1
.

The queueing behavior of the MAP(5) and the fitted
MAP(2)s with utilization level ρ = 0.3 are depicted in
Figure 4(a) and all the MAP(2)s fit the original well.

Table V
THE MEAN QUEUE LENGTHS OF THE DIFFERENT SCENARIOS

ρ

0.3 0.7

MAP(5) 0.365512305 1.524539289
(nm) 0.364296716 1.518172962
(eg) 0.362108709 1.488329671
(r9) 0.364158514 1.516371585

(r99) 0.364150473 1.51627773
(ed) 0.361219149 1.45877668
(lh) 0.367979806 1.558582197
(ld) 0.368298067 1.57042874

For ρ = 0.7, depicted in Figure 4(b), all the fitting proce-
dures fit the original queue length distribution well. TableV
summarizes the mean queue length for all the original and the
fitted MAPs in case of both utilization levels.

B. Matching inside the MAP(2) moments region

The MAP(3) with matrix representation

D0 =





−0.1198 0.0008 0.0002
0 −0.7509 0.0022
0 0 −1.8641



 ,

D1 =





0, 0915 0.025 0.0023
0.0022 0.6589 0.0876

1.71× 10−5 0.2432 1.6209





(29)

has moments inside the MAP(2) moments region:(n2 =
3.00618, n3 = 10.0002, γ = 0.773409). The first raw moment
is µ1 = 0.999279.

For further investigation the matrix representation of the
fitted MAP(2)s are

D
(eg)
0 =

(
−0.1648 0.0368

0 −1.1109

)
D

(eg)
1 = ( 0.128 0

0.0046 1.1063 ) (30)

D
(lh)
0 =

(
−0.7455 0.109

0 −1.8626

)
D

(lh)
1 = ( 0.6365 0

0.22 1.6426 ) (31)

D
(ld)
0 =

(
−0.7486 0.11

0 −1.8634

)
D

(ld)
1 = ( 0.6386 0

0.221 1.6425 ) . (32)

Using the matrix representations in (29) and in (30) through
(32) we can determine the important parameters of the MAPs.
The CDF is plotted in Figure 5(a) and the relative errors of
the CDF in Figure 5(b).
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Figure 3. The comparison of cumulative distribution functions of the PH marginals and the correlation functions of the processes
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Figure 4. The queueing behavior of the MAPs
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Figure 5. The comparison of cumulative distribution functions of the PH marginals and the correlation structure of the processes

Based on the relative error diagram we could say that the
MAP reduction performs better as expected.

Once more the lag correlation structure is investigated,
as given in Figure 5(c) where two important things can be
concluded. The moment based decomposed fitting method
matches the correlation structure in this case, i.e., the input
MAP(3) has geometric decaying correlation structure. The two
MAP reductions give exactly the same result which means
that the tail fitting in Section V-B is capable of performing
similarly as the joint density function based fitting method.
And another important conclusion of Figures 5(a), 5(b) and
5(c) is that even if the lag correlation structure is not captured
that accurately the marginal distribution can be captured well.

This shows the independence of the marginal distribution and
the correlation structure in practice.

Finally, we observed the queueing behavior of the processes
in the same MAP/D/1 system as in the previous section
with utilization levels ρ = 0.3 and ρ = 0.7 depicted in
Figures 6(a) and 6(b), respectively. The mean queue lengths
of the original, the matching and the joint density based
fittings are summarized in Table VI. The “relatively bad”
results of the moment distance based fitting/matching confirms
that the Euclidean (or any equivalent) measure minimization
based moment fitting/matching technique cannot capture all
the important properties of a process in any arbitrary case.
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Figure 6. The queueing behavior of the MAPs

Table VI
THE MEAN QUEUE LENGTHS OF THE DIFFERENT SCENARIOS

ρ

0.3 0.7

MAP(3) 0.400511251 2.69909765
(eg) 0.373380958 1.851639028
(lh) 0.393725813 2.433117353
(ld) 0.393397716 2.421863393

In this experiment the decomposed fitting method could
not fit the queue length distribution neither in case of lower
nor in case of higher utilization levels. This confirms the
previous conclusions that the practically exact fitting of the
lag correlation structure does not ensure a better fit of the
queue length distribution in this scenario.

VII. C ONCLUSION

We proposed to add two technical details to the existing
MAP fitting methodology. The first one is to improve the
efficiency of moments distance optimization procedures with
a decomposition to nice components of the MAP bounding
surface. The other proposal is to compute the distance of
joint distribution functions of MAPs by efficiently computable
matrix expressions.

We developed fitting procedures based on these proposals
and evaluated their properties. Our experiences verified the ex-
pected advantages. The decomposed numerical fitting method
reduces the numerical instability of the global optimization
procedures applied for the whole boundary and the density
function based distance measure resulted in an numerically
efficient well behaving approximation.

During this paper we utilized the special results available
currently only for the MAP(2) class. The proposed procedures
are directly applicable for higher order MAPs when the
analytical description (canonical form, moment bounds) of
those classes become known.
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