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Abstract Both analytical (Chapter ??) and simulation- and expertate@mn-based (Chapter ??) approaches
to resilience assessment rely on models for the variousgohena that may affect the system under study.
These models must be both accurate, in that they reflect #gvgopienon well, and suitable for the chosen
approach. Analytical methods require models that are &nally tractable, while methods for experimen-
tation, such as fault-injection (see Chapter ??), reqbieeetficient generation of random-variates from
the models. Phase-type (PH) distributions are a versatilefor modelling a wide range of real-world
phenomena. These distributions can capture many impaatgpects of measurement data, while retain-
ing analytical tractability and efficient random-variatengration. This chapter provides an introduction
to the use of PH distributions in resilience assessment.chbpter starts with a discussion of the mathe-
matical basics. We then describe tools for fitting PH distitms to measurement data, before illustrating
application of PH distributions in analysis and in randoaniate generation.

1 Introduction

Phase-type (PH) distributions are an often-used type ofetrfod many phenomena in system evaluation,
e.g. service-times, delays, and failure times. This chiggte/ides a gentle introduction to the theory of PH
distributions and their application in common evaluatiasks. The typical workflow is shown in Figure 1:
First, data has to be obtained for the phenomenon, e.g. tagsdencountered in a system. Second, the data
needs to be fitted by a phase-type distribution. This steijgtaidsed in Section 3. The fitted distribution pro-
vides a model for the data which can be used in resiliencaiatiah. Phase-type distributions are equally
well-suited for analytical approaches and for methodsgusimulation. We discuss their application both
in matrix-analytic methods (Section 4) and in simulatioadton 5).

2 Mathematical Background

Continuous phase-type (PH) distributions represent the tb absorption in a Continuous-Time Markov
Chain (CTMC) with one absorbing state [1]. PH distributi@me commonly specified by a vector-matrix
tuple(a,A), where
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Definition 0.1. Thesize of the (a,A) representation is the size of the vectgrwhich is equal to the size
of the square matriA.

Definition 0.2. The probability density function (PDF), cumulative distribution function (CDF), Laplace-
Sidtjes Transform (LST) of the CDF anckth moment, respectively, are defined as follows [1, 2, 3]:

f(x) = ae*a, (1)
F(x) = 1—ae™1, 2)
F(s) = any1+a(sl —A) 1a, (3)
E [xk} — Ka(—A)k1. (4)

wherea= —A1, and 1 is the column vector of ones of appropriate sizé¢eNat phase-type distributions
have rational LST and that the eigenvalues of the transiemeiator matrix are the poles of the LST of the
distribution [4].

The vector-matrix representation of a PH distribution i$ aoique. In general, there exists another
representatio(3, B) of sizemthat represents the same phase-type distribution. Reyietiems may differ
both in size ( # m) and in the contents of the tuples. In particular, every Rtridiution has aarkovian
representatiofia, A), wherea > 0,a; > 0,1 <i# j <nanda= —Al> 0. In this caseA is the transient
part of the generator matrix of the associated CTMC

~ Aa
A= ( ; 0) |
Another representation of the same size can be computed ioyilargty transformation, as follows:
WhenB is invertible andB1 = 1, then(aB,B~1AB) is another representation of the same distribution,

since its CDF is .
1—aBe® ABX1=1-—aBB 1Bl =1—ae’*1l.

The sizes of théa,A) and the(aB,B~*AB) representations are the same in this case, but it is also
possible to generate representations of the same disbribwith another size, using a non-square matvix

2.1 PH Classes

Based on the structure of the underlying Markov chain, sd\@asses of phase-type distributions can be
distinguished. These classes differ in the statisticgbgrites they can represent. Furthermore, the structure
of a PH representation often has an impact on its applicaiersome structures allow more efficient
solutions.
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(a) General phase-type distribution containing cycles. (b) Phase-type distribution without cycles (acyclic phageety
distribution).

Fig. 2 CTMC representations for general and acyclic phase-typellistons.

The most important distinction is the one into Acyclic andn&el Phase-type distributions: Every
acyclic phase-type (APH) distribution has at least one Maidn representation without cycles in the sub-
generator, while for general phase-type distributionsasyare allowed. This is illustrated in Figure 2: The
distribution on the left contains a cycle, that is, a baclkditeainsition from state 4 to state 2. The distribution
on the right does not contain this transition and therefoeeg are no cycles.
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(a) Hyper-Erlang distribution with two branches. (b) Hyper-exponential distribution with four branches.

Fig. 3 CTMC representations for Hyper-Erlang and hyper-expoaédistributions.

Most approaches in fitting and application of PH distribonsidocus on the APH class, as this class
offers better tractability than the general PH class. WithiPH, we distinguish two important sub-classes:
The first one is the class of Hyper-Erlang distributions (BEHyper-Erlang distributions are mixtures of
Erlang-distributions with different lengths and ratese¥ttan be specified by a tup{g,m,b,A), where
B is the vector of initial probabilities of each Erlang branohis the number of Erlang branchésis the
vector of the lengths of the Erlang branches, anid a vector containing the rates. The size of a Hyper-
Erlang distribution is given by the sum of the lengths of thenches, i.en = bll. The general structure
is illustrated in Figure 3(a), where we show a hyper-Erlaiggrithution with m = 2 branches of length
b1 = 3 andb, = 2, respectively. The initial probabilities and the traiogitrates are given bg = (B1, 32)
andA = (A1,A2). The size of this representationris= b; + b, = 5. One important example is the Erlang
distribution, i.e. a Hyper-Erlang distribution with onlye branch and initial probabilit§; = 1.

The second sub-class of APH we consider is the class of Hypponential distributions (HEXx) of
ordern, specified by initial probability vectoor and rate vectoA. Figure 3(b) shows an example for a
hyper-exponential distribution of size= 4. From this example, it is obvious that the hyper-expomnti
distributions are a subclass of the hyper-Erlang distidimst as every hyper-exponential distribution is a
hyper-Erlang distribution with branch length vector= 1. Furthermore, setting = 1 anda; = 1 yields
the exponential distribution with ratg .

2.2 Canonical Representations

While in general representations for phase-type distidmstiare not unique, several canonical forms have
been defined. For each PH distribution, the canonical forengifen sizen is unique in the sense that there
exists no representation of the same sinéth the structure of the canonical form, but different paeders.
Therefore, by comparing canonical forms, we can determinetier PH distributions given by different
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representations are identical. More important, howeséhg use of canonical forms in fitting, analysis, and
simulation, where their typically low number of parametansl simple structure enable efficient methods.

In the following we discuss Cumani’s Canonical Form 1 (CE5]1 and the Monocyclic form introduced
in [6], as these are the most common ones.

ot v ot

(a) APH distribution in CF-1 form. (b) General phase-type distribution in monocyclic form.

Fig. 4 Canonical representations for phase-type distributions.

2.2.1 The Canonical Form for APH Distributions

The Canonical Form 1 (CF-1) was defined in [5]. The structdiiesainderlying CTMC is shown in Fig-
ure 4(a): The Markov chain can be entered at any statel...(n+ 1) (with probability a;), but the

absorbing state can only be reached by traversing all rengpstates. Furthermore, the rafesre ordered
such thatA; < Aj, 1 for all i. The formal definition is as follows:

Definition 0.3. [5] The Canonical Form 1 (CF-1 form) is a bi-diagonal representati¢a,A) wherea is
Markovian and the rateg in A are in increasing ordegy < ap < --- < ap.

[5, 7] showed that every acyclic phase-type distributiothvei Markovian representation of sinehas a
unique CF-1 representation of the same $iZéne CF-1 form for an APH given ar,A) can be obtained
by a similarity transformation. A procedure for constragtithe similarity transformation matrix is given
in [8].

Note that transforming an APH representation of size the CF-1 form considerably reduces the
number of parameters: A general APH representatiomhaiial probabilitiesas, . .., a, andn? entries
in the subgenerator matrik, i.e. the number of parametersris- n?. In the CF-1 formA is an upper
bi-diagonal matrix withe; j = —a;+1;. The CF-1 form therefore hasiparameters.

2.2.2 The Monocyclic Form for General PH Distributions

General PH distributions may have complex poles, and thespol a PH distribution are given by the
eigenvalues of the subgenerator matixAs the eigenvalues of a bi-diagonal representatmm\ ) are
equal to the entries of the diagonal ahd: R™" it is easy to see that a bi-diagonal structure like the CF-1
form cannot represent phase-type distributions with cempbles.

For this reason, [6] proposed the Monocyclic form as a chaFeedback-Erlang (FE) blocks, defined
as follows:

Definition 0.4. A Feedback-Erlang (FE) block is given by a tuplgb, A, z) of the lengthb, transition rate
A, and feedback probabiliye [0 : 1). The Feedback-Erlang block consists of an Erlang-digiobuvith
lengthb and rateA and an additional (feedback) transition from the last statbe block to the first state.

Figure 5 illustrates this concept. Note that the case$ andb = 1 are allowed. Foz = 0, the Feedback-
Erlang is simply an Erlang of orddx, while for b = 1 it is an exponential distribution. The importance of

1 Smaller CF-1 representations may exist if there is redundantheioriginal representation [1, 8, 9].
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Fig. 5 Structure of a
Feedback-Erlang block.

this structure lies in the fact that far> 0 andb > 1 the block has a conjugate-complex pair of eigenval-
ues [6]. Therefore, a chain of FE blocks can be used to représe complex eigenvalue pairs of a general
phase-type distribution.

Based on this observation, [6] define the Monocyclic repredg®mn as a chain of Feedback-Erlang
blocks:

Definition 0.5. A Monocyclic representation is given by the tupléa, m,b, A, z), where the vectoor € R
specifies the initial state probabilities, abdA andz define the length, rate, and feedback probability of
them Feedback-Erlang blocks.

The FE blocks are positioned such that the absolute valube afominant eigenvaluesare in ascend-
ing order:rj <rjij.

Any PH distribution has a monocyclic representation [6fhE representation of the PH distribution is
PH-simple [7] and of siz@, then the size of the monocyclic representation’iz n. This potential size
expansion makes the monocyclic representation less efficieanalytical studies, but its simple and still
Markovian structure makes it promising for simulation s&sd

The structure of a Monocyclic representation is shown irufégd(b). Note that i = O for all FE
blocksi = 1,...,bthe Monocyclic form is equivalent to the CF-1 form. That sg ICF-1 form is actually
a special case of the Monocyclic form.

2.3 Properties

One nice property of the PH distributions class is that itésed for minimum/maximum, summation, etc.
From the point of view of applying PH distributions to fittirtata, the main problem of the class is the
incomplete exploration of the moment bounds of the gendtiadiBtribution. However, there are results on
them for several particular cases.

The feasible first moment range of the PH class is the set chegative numbers as PH gives a non-
negative random variable.

It is proven that the feasible range of the squared coefficievariation for the PH of size (PH(n)) is

1
o > = (5)

where the equality holds for thredimensional Erlang distribution (Er)).[10]

For higher moments there is no general knowledge, howeeee thre several special cases for which
some insights on the moment bounds exist, like e.g., the mbbmunds of the APKR) = PH(2) class
[11], the moment bounds of the RB) class implied by the canonical form given in [12], the bouhthe
general APH class within the PH is known according to the ARHaomical form and there exists also a
numerical method to determine the general PH bound in [13].

From the fitting perspective theduced moment problem (when a distribution function is determined
based on its moments) can also be crucial which is only sdieethe wider class of distributions the
matrix exponentials.[14]
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Fig. 6 Example data and its
approximation with a phase-
type distribution.

histogram of a data sample and the approximated density
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Table 1 Performance measures defined in [15]
Performance Measure Definition
Area difference between distribution functioa& AF = [ [F(x) —F(x)|dt
Area difference between densitia$ Af = [ 1f(x)— f(x)|dt
Relative error in the first moment (meap) e = %

Relative error in the second central moment (varianges, = [C=c|

Lo
Relative error in the third central moment (skewnegs e; = [Ca—cql

C3

3 Fitting Measurement Traces With PH Distributions

As illustrated in Figure 1, the first step in applying phageetdistributions in resilience evaluation is to fit
a PH distribution to a data set. Consider Figure 6, where wesdfoth a histogram of some data and the
density of a phase-type distribution approximating thed@ur aim is to approximate the data as closely
as possible, in order to obtain correct results when usiagatiproximating distribution later on. In this
section we provide the basics for fitting data sets with ptigge distributions. We discuss costs, quality
metrics, and introduce three established fitting tools.

3.1 Costs of Fitting PH Distributionsto Data

Since a PH distribution is defined by the tupte, A), the problem of fitting translates to finding an initial
probability vectora and a sub-generator matiix of appropriate sizex. While, in general, higher-order
PH distributions can provide a better approximation [1Bgyt are more expensive in both analysis and
simulation. Furthermore, the time required for fitting atidi®ition increases witim, as more parameters
have to be fitted. Consequently, careful choice &f important.

As will be shown in Sections 4 and 5, the cost of using a PHiigion depends not only on the siag
but also on the structure of the representation. The sanas fai the fitting problem. Here, the number of
free parameters to be fitted can be reduced significantly bgsihg an appropriate representation: If we
assume the sizeof the representation to be constant, then general phasedigtributions in an arbitrary
Markovian representation have+ n? free parameters, asis a row vector of lengtm, andA is a matrix
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of sizen x n. If we assume that the representation is Monocyclic, we laasleain ofm Feedback-Erlang
blocks, each with a length parametsy, rate parameted; and feedback probability;, and an initial
probability vector of siz&. Asm < n, the upper limit for the number of free parametersris-3. Limiting
ourselves to the APH class, we can utilise the CF-1 canofocal, which has only & free parameters
transition rates andinitial probabilities. Finally, if we consider only HErD sliributions in representations
as shown in Figure 3(a), the number of free parameters redocan: m initial probabilities for them
Erlang branchesnlengths for the Erlang branches, amdransition rates.

3.2 Quality Measures

Fitting a phase-type distribution to data requires careffigice of the right fitting tool, as well as of fitting
parameters such as sub-class and size. As just discusseahtoximation problem becomes less com-
plex if data is fitted with subclasses of phase-type distidms, however, fitting quality may decrease as
well, as subclasses cannot represent all properties ofethergl PH class. For example, hyperexponential
distributions cannot approximate distributions with dating densities [17].

In order to assess the quality of data approximation, qualgasures are required. An intuitive method
consists in simply comparing the shape of the empirical PDEDF to that of the approximating PH
distribution. This gives not only absolute differenced,dlgo gives a visual impression how well the shape
of the empirical PDF/CDF was approximated (e.g. in Figurkesapproximated density fits the data quite
well).

While a visual impression often yield a good initial assesstreemore formal approach requires exact
definitions of quality measures. Table 1 shows the standaality measures for PH fitting, as defined
in [15]. The first two performance measures formalise thealisomparison of empirical and approximated
data, by computing the distance between both curves. Théhtee measures capture how well the fitted
distribution approximates the empirical moments of thedaased on these performance measures we can
decide which tool to use, and which fitting is most approprfat the requirements and future application
of approximation results. For instance, for use in a stadhasodel whose behaviour primarily depends
on the first three moments, one would aim to get small relativenent errors, while in other applications
fitting the shape of the density may be more important.

3.3 Introduction to PH-Fitting Tools

Here we outline three tools for data approximation with ghigge distributions: Moment Matching, G-FIT
and PhFit. They mainly differ with respect to the algoriththey employ and the subclass of PH distri-
butions they support. There are two general and relevassetaof algorithms: Analytical and statistical
methods, where the former relies on direct computation efgarameters and the latter is based on the
maximum likelihood method for parameter estimation, tgflicimplemented as an iterative procedure.

3.3.1 Analytic Approximation: Moment Matching

Analytic moment-matching methods have the advantage ofghfaist, easy to implement, and giving low
errors in the moments. On the other hand, accuracy of thedfittiay be limited by the representation.
We illustrate this using the method proposed in [3], which fikan APH(2) distribution to the first three
moments of a data set. The approach proceeds by computiragptineximation parameters directly from
the moments, as follows: An APH(2) in CF-1 form with= (a1,1— a1) and

(a1 a
A_<0 —612)7
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is defined by three parametees, a», andai. Recall from Definition 0.2 the general moments-generating
function for a PH distribution. Writing the first three momseiplicitly:

a

E[X] = m, — 2012

aiay
2(a2 + oa1ap + 0182

E[xZ]:rnZ: (1 22 2)7

N
3 6(ad + omalay + arapas + 01a3)
EX*]=mg= 3.3 )
aa,

[3] obtain a system of 3 linear equations. Solving this syster a;, ay, a1 yields an APH(2) that matches
the first three moments. However, possible solutions arigdahiby the moment bounds for the APH(2) class
(cf. Section 2.3). For combinations of moments outside tloenent bounds, the system has no solution,
i.e. data sets with these moments cannot be fitted exactly ByP&l(2). For instance, as follows from (5),
the smallest SC\&v? that can be represented by an APH(2) is

1
Pt
C >

which puts constraints on the relation of the mean and vegiaData sets witlev? < % require PH dis-
tributions of higher order. Similar constraints exist foetthird moment, although in some cases the third
moment can be approximated even when no exact fitting islpessi

3.4 Maximum Likelihood Method

The second class of fitting algorithms is based on the maxitiketihood method. The maximum-
likelihood method is a common tool for parameter estimafi@j. Using Bayes’ rule, the approach iden-
tifies the parameter s@ that is the most probable estimation for the observatiosimguthe likelhood
function

L(O|x) = P(x|©).

When fitting PH distributions to the data setthe parameter set @ = (a,A). The general approach to
maximum-likelihood parameter estimation is the Expectatilaximisation (EM) algorithm [18]:

1. Choose initial values for the parameter @et

2. E-Step (Estimation): Using the datand likelihood-function, estimate the set of parame@rs

3. M-Step: (Maximisation) Pick the sé& from the estimated values calculated in step 2 that max-
imises the likelihood-function.

4. If the abort criterion is not fulfilled, go to step 2, othése/ stop.

The EM algorithm is an iterative procedure, alternatingisein the E-Step (Expectation) and the M-
Step (Maximization). The abort criterion for step 4 can béingel as a fixed maximum value for the
likelihood function or a mimimum difference in likelihooglues for consecutive iterations. Note that for
multiple optima of the likelihood function the EM algorithmay stop at a local optimum, depending on
the initial values.

The maximum likelihood method for PH fitting has the advaatafj providing more flexibility than
analytical moment-matching methods. On the other handtedregive fitting process is usually slower than
the analytical approach. In the following we discuss twddadhose fundamental method is the maximum
likelihood approach.
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3.4.1 G-FIT for fitting Hyper-Erlang distributions

The G-FIT tool [17] approximates data using Hyper-Erlangfritiutions. Recall that the number of tran-
sition rates and the size of the initial vector of a HyperaRd distribution only depend on the number of
Erlang branches. This enables an efficient fitting methoad:eQhe numbem and lengthb of the Erlang
branches has been set, the parameters are

= (BvA )

In each iteration the EM algorithm estimatBsand A which maximise the likelihood function. G-FIT
provides convergence checks based on the maximal chang@eaimd on the relative differences of the
log-likelihood between successive iterations.

The user may specify the number and length of Erlang branatiesto fitting or let G-FIT determine
an optimal size. In the first case the user has to set a numierafg branches and their length. The
second option is more general and is useful for the unexpezttuser. It requires as input only a number
of phases for the resulting distribution. G-FIT will thertiegate optimal number of Erlang branches and
their parameters, by trying all possible combinations.

G-FIT expects an input as a text file containing the data dw.first line should be a number of data
points in the data set followed by data points themselveg;iwdre given one per line. The output is also
a text file, containing the number of Erlang branches, nurabphases, initial probabilities and transition
rates for each Erlang branch.

3.4.2 PhFit

The PhFit tool [2] approximates data using acyclic phage-tjistributions in CF-1 form. One major ad-

vantage is that the user can choose between different destaeasures for the EM algorithm, in order
to obtain an optimal fitting. The distance measures suppdoyePhFit are the relative entropy, PDF area
distance, and CDF area distance, defined as

/ f(t)log( fA t / X)|dt, and/|f — f(x)|dt, respectively,
0 t 5

where f(t) denotes the probability density function (PDF) of the ar@idistribution andf(t) the PDF

of the approximating distributiork; (t) the cummulative distribution function (CDF) of the origirfstri-

bution andF (t) the CDF of the fitted distribution. Among the fitting tools wisaliss, PhFit is the only

one with a graphical user interface. This feature is berafior finding appropriate fitting parameters and

evaluation of results.

PhFit computes optimal values for distribution paraméterQ) starting with special initial values
(a©,Q9)) according to the distance measure. PhFit picks optimalegaftom 1000 random generated
pairs of vectors. The distance measure defines the optyneaiierion. The likelihood optimization prob-
lem is solved by using the iterative linearization methobe Tirection for optimization of the distance
measure is determined by simplex algorithm. The algorittopscomputation once the relative difference
between

and

for iterationi is less than the predefined value or once the number of maximunber of iterations is
reached.

PhFit provides separate fitting for body and tail. The bodyhes part of distribution with the most
mass, whereas the tail represents rare data points. Thearsehoose the boundary where the tail begins.
The tail will be approximated with the heuristic method,ttlatermines parameters for the mixturenof
geometric- for discrete APH- ard exponential- for continious APH-distributions. Having aaeters for
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hyper-geometric or hyper-exponential distribution letmthe body fitting as described before. The result
distribution is structured by the CF-1 and the mixtures.

PhFit requires as input a text file containing the data in rediog order. The output consists of the
initial probability vectora and the diagonal of the subgenerator matrix. Note, howefrat,in contrast
to the definition we gave in Definition 0.3, PhFit considers @th state to be absorbing, instead of state
(n—+1). That is, the output of PhFit is reversed, compared to thativot used throughout this chapter.

4 Phase-type Distributions in Model Analysis: Matrix Analytic Methods

Figure 1 shows two ways of using a PH distribution in an ev#dna The memoryless property of the
Markov chains allows the matrix representation of the pHgge distributions as it is given in Section 2.
The matrix representation and accordingly the simple aicalyformalism to define the properties of the
PH distributions makes them very popular among researtioghsfor modeling (Section 3) and simulation
(Section 5). Furthermore in the case of complex systemsnistaut that the matrix representation of the
PH distributions allows the use of the matrix analytic meth{i9] in case of large Markov chains.

The matrix analytic methods utilize the structure of the ké&rchain which, in this chapter, is two-
dimensional. Both dimensions have their own characteri$tie first dimension represents the — usually
finite — number of phasesl(t)) of the process. The second dimension is the infinite cogntimcess
(N(t)). This results in an infinite, but well-structured, Markadvain on the block level where the blocks
describes the phase either with or without arrival. The shibek structure appears also in the generator
matrix of the Markov chain which can be upper block-bidiagjor tridiagonal in our cases.

The examples of this section shows how the matrix analytithous utilize the analytic given PH
properties during the solution of complex Markov modelse Tasult can be either the short-term or the
steady-state behavior. The methods also allow to find thetieal of infinite models by solving finite
problems.

4.1 Processes with PH marginal distribution

Processes play an important role in stochastic modelingjitteomes natural to propose the process with
PH marginal distribution. Here we investigate both the petedent identical distributed (iid) and the cor-
related arrival process with PH marginal. These are the REWwal process and the Markov arrival process
(MAP) respectively.

4.1.1 PH renewal process

Given a phase-type distribution represented by the inigator, generator matrix pajo,A) — denoted as
PH(a,A) —itis the marginal distribution of the PH renewal procesingel by the generator matrix

Q=100 Aaaol" 6)

wherea = —AT1 is the vector of absorption of the marginal distribution ifs the column vector of ones.
The diagonal block describes the phase transitions of them@kjinal and the block in the upper co-
diagonal describes the phase transitions belonging tetienal instances. The graph of the corresponding
continuous time Markov chain (CTMC) is depicted in Figure 7.
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Fig. 7 The graph of the PH renewal process

The product in the upper co-diagonal blocks expresses tileainttial distribution of the next interar-
rival is always the samen() after arrival (“absorption” in the PH marginal) regardiesf any of the other
interarrivals, i.e., the process is uncorrelated.

The generator matrix of the phase procedd is A +aa. The steady state phase distributiar) (s the
solution of the linear system of equations

el )
ml =1
The transient phase distribution is
m(t) = m(0)ett (8)

which is a vector of elementg (t) = Pr(J(t) = i) giving the probability that the process is in phasg

timet. Using the transient phase behavior the remaining time toéearrival, at time, is PH(7(t),A).
Let i(n,t) = (Pr(N(t) =n,J(t) = j)) be the number of arrivahj and the phasej] distribution at time

t. With initial conditions7(0,0) = a andn(i,0) = 0, (i > 0) the transient number of arrivals is given by

the differential equation

dr(i, t)
dt

= 11(i,H)A + 1i(i — 1, t)aa 9)

and itsz-transform, with initial conditiorr(z,0) = a, is

dr(zt)
dt

=1n(zt)A+zmn(z,t)aa = n(zt) (A +zaq). (10)

The solution of the differential equation, i.e., the tramsidistribution of the number of arrivals, is

m(zt) = aeA+2at, (11)

4.1.2 Markov arrival process

Compared to the PH renewal process the Markov arrival pso@d#\P) is the correlated arrival process
with PH marginal distribution, i.e., the phase distribuatie not restricted to be the same after every arrival
—itis arbitrary. Its two dimensional CTMC is also defined hg phase processt), describing the phase
of the marginal distribution, and by the counting prodd$s, meaning the number of arrivals. Its graph is
depicted in Figure 8 and its generator matrix is

DoD; O .....
o_|0DoDiO.
|10 0DyD;0 |’

(12)
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where the Markov arrival process is represented®by- the phase transitions without arrival — abg —
the phase transitions with one arrival. Such a MAP is denasgll AP(Dg, D1 ) .

Fig. 8 The graph of the Markov arrival process

The interarrival times of the MAMDg,D;) are PH ao,Do), PH(a1,Do) ... The — correlated — phase
distribution embedded at arrival instances forms a disdiete Markov chain (DTMC) with state transition
probability matrixP = (—Dg) ~*Dj.

The joint probability density function of the interarriviithes, Xo andXy, is

f)(OYXk(X(),Xk) = TTGDOXOD;|_|:’I(7leDoXkD;]_]l7 (13)

whererris the embedded stationary phase distribution at arrigghirces, i.e., it is the solution of the linear
system of equations

mP=rm
(14)
ml =1
The stationary interarrival time distribution is PH, Do) with nth moment
E[X"] =nlm(—Dg) "1 (15)

and the joint moment of two interarrivals is

E [XoXy] = / / XoXi TTEP2%0 D4 PK—1ePoXcD; 1 dxdx
X0 Xk (16)
= 11(Dg) 1 PX(Dg) 1.

The covariance of two interarrivals is

cov(Xo, X) = E[XoX] — E*[X] (17)
and using (15), (16) and (17) the lagorrelation of the MAP is
__Cov(Xo, %)

com(Xo. X = Eron— g (18)

4.2 The quas birth-death process

The quasi birth-death (QBD) process [19, 1] is also definethbyphase process3(()) and the counting
precess N(t)). But in case of the QBD process the counting, or the “levpfgcess is allowed to be
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decreased by one as well as to stay on the same level or torleased by one. It is thus the “multiphase”
extension of the birth death precess which is for exampladheion of the M/M/1 queueing system. The
generator matrix of the QBD process has block-tridiagooahf

L'FO...
BLFO.
Q=loBLFoO|"

(19)

where the blocks or level transition matrices are

L’ local state transitions inside the first — irregular — block,
B backward (level) state transitions,

L local state transitions on the regular levels and

F forward (level) state transitions.

The graph of the QBD is depicted in Figure 9.

F F
B B
Fig. 9 The graph of the quasi birth-death process

We give the solution method of the QBD through the analysiheMAP/PH/1 queueing system with
arrival process MARDg, D1 ) and service time Pkh,A). The level transition matrices are

L' =Dg®I
B=Il®aa
L=DgA
F=Di®l,

wherea= —A1 andl is the appropriate size identity matrix. The operaterand& are the Kronecker
product and sum respectively.

The generator matrix of the phase proceds is B+ L +F and if it is irreducible then the steady state
phase distribution is the solution of the linear system afadipns

mH=0 (20)
ml = 1.
The QBD process is stable if its stationary drift is less tharo
d=mnF1-mnB1<0. (22)
The steady state solution of the QBD is the solution of theitgisystem of linear equations
vQ=0
© (22)
vli=1

Partitioningv according to the blocks @ is
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v=(voViVvz...)
and substituting the partitions into (22) we get
voL'+VviB=0 (23)
and
Vi-iF+viL +v;;1B=0 Vi>1 (24)

Assuming that the Markov chain is irreducible = v;_1R = VR’ (Vi), i.e., its solution is the matrix
geometric distribution, the general equation (24) can beitten as

VORTIF+ VoR'L +VoR*B =0
VoR™ (F+RL+R?B) =0
with a solution determined by
F+RL +R?B=0. (25)

If the QBD is stable there is one of the solutiongfvhose eigenvalues are within the unit circle on the
complex plane.

As all the eigenvalues of the relevaRis within the unit circle there exists the limit of the sgfi R =
(- R)’l. Using the convergence the normalizing conditiorvafan be expressed as

vi=Svil=SvR1=voYR1I=vo(I-R)'1=1 (26)
2" 2

Now substitutingR into (23) and using (26) we have a linear system of equations

Vo (L' +RB) =0

27
vo(l—=R)t1=1 @7
for the zeroth block ofr. All the other blocks can be calculated uswngandR as
vi=VoR!, Vi. (28)

By these considerations the infinite problem of solving tfD0Qn (22) is reduced to be the solution of
the finite problems in (25), (27) and (28). By this reductiba matrix analytic methods indirectly allows
the utilization of the PH distribution in the solution of infie systems.

5 Phase-type Distributions in Random-Variate Generation

While phase-type distributions enable efficient solutiasaalytical models, they have applications be-
yond analytical approaches. For instance, PH distribatzan be used to simulate realistic service-times
in models that cannot be solved by analytical methods arslrgguire simulation, and for generating de-
lays in test-beds. These applications require the effigeneration of random variates from phase-type
distributions.

Phase-type distributed samples may be generated by pleyenGTMC until absorption, and by nu-
merical inversion of the distribution function [20]. In tliellowing we focus on methods that ‘play’ the
CTMC. Note that these methods require the Markovian reptaten.
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The methods discussed in the following utilise random vasidrom the uniform, exponential, Erlang,
and geometric distributions. We assume that random vanwité uniform distribution or{0, 1) are given,
and denote these ly. Using the inversion method, a sample with exponentiatidigion with rateA is
then drawn by

Exp(A) = —%In(u).

A sample from the Erlang distribution with degreand rateh is generated by

1 b
Erl(b,A) = —Xln ('I_lUi> .

Note that this way of sampling BB, A) is more efficient than the functional equivalent of drawimg
exponentially distributed samples and summing them upaumse the In operation is applied only once.
Finally, a sample from the geometric distribution (stagtfrom 0) with parametep is obtained by

In(U)J
In(p) |~

The most natural way to generate a PH-distributed samplddyyng the CTMC proceeds as follows:
First, we select a statdoy drawing an integer sample distributed according to th@lmprobability vector
a. Afterwards, in each step the next state is selected acuptdithe next-state probability vector. The
sojourn time for staté is obtained as a sample from the exponential distributicth wate —A;;. Letting
g denote the row vector with 1 at positionand O everywhere else, tiit ay method can be given in
pseudocode as follows:

Gedp) = {

Procedure Pl ay:

1) x:= 0. Draw ana-distributed discrete sampidor the initial state.

2) The chain is in state
— draw ang (—diag(1/a;i,0)A + I )-distributed discrete sample for the next state,
— x+ = Exp(—ai),
— if the next state is the absorbing ome=(n+ 1) go to 3), otherwise go to 2)

3) Returnx.

In [21], Neuts and Pagano observe that when traversing @mstate than once, tHel ay method adds
up multiple samples from the same exponential distribufidre sum ok; exponential distributions of the
same rate\;j, however, is the Erlang distribution with lengkhand rateA;;. As shown above, drawing a
sample from the Erlang distribution of lengkhrequires only one logarithm operation, as opposek to
logarithms when drawing individual exponential sampldsug; Neuts and Pagano propose the following
method, which, instead of drawing exponential samples &ohevisit to a stateé, counts the number of
visits and then draws one Erlang-distributed sample fon state:

Pr ocedur e Count :

1) x:=0,k :=0, (i=1,..,n), Draw ana-distributed discrete sampidor the initial state.
2) The chain is in state

- ki +=1,

— draw ang (—diag(1/a;i,0)A + I )-distributed discrete sample for the next state,

— if the next state is the absorbing one go to 3) otherwise to 2)
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3) fori=1,...,n; do x += Erlki, —a;); done
4) Returnx.

If the distribution is in Monocyclic form, we can derive ahet method from the structural properties
of the Monocyclic representation. Recall that this repnéstgon consists of a chain of Feedback-Erlang
blocks. With such a chain, possible state transitions ardgiermined by the structure in two ways: First,
when we leave a Feedback-Erlang blgckhe next state will be the first state of the next Feedbaddrigr
block j + 1. This implies that no new sample is required for choosimgstirccessor block. Second, recall
from Figure 5 that each FE block consists of a chaimpf- 1 states with exactly one outgoing transition
(to the next state), and only one state with two outgoingsitenms (the feedback state). Thus, within each
FE block the only state where the next state is not deternbgete structure is the last one. Furthermore,
as the last state has only two outgoing transitions, thecehof staying within blockj or entering the
next block j 4+ 1 corresponds to a Bernoulli experiment with parameteConsequently, the number of
‘loops’ in each block follows a geometric distribution witarameter;. Therefore, in order to generate
the sample corresponding to tiitn Feedback-Erlang block, we add a geometrically distetutumber of
exponentially distributed random variates with the sart@Xa As discussed when introducing t@eunt
method, an efficient way of doing this is to draw a sample frantEdang distribution of the appropriate
length. These considerations lead to the following method:

Procedure Monocycl i c:

1) x:= 0. Draw ana-distributed discrete sample for the initial state,
2) the chain is in stateof blocki (for the left-most state of the block= by)

- c=Gedz),

— X+ = Erl(ch; +1, A)

— if the next block is the absorbing state go to 3), otherised 1,1 =i+ 1 and go to 2)
3) Returnx.

The first three methods are applicable to general PH disioisl If we restrict our attention to sub-
classes, more efficient methods can be designed. Firstideoriee APH class in CF-1 form. As a special
case of the Monocyclic form, the CF-1 form is a chain of staté¢eere each state has exactly one successor
state (cf. Figure 4(a)), and thus the next state is not chometsiomly. Hence, once an initial state has
been selected, the random variate is simply the sum of expiatig distributed samples from each of the
successor statés:

Procedure Sinpl ePl ay:

1) x:= 0. Draw ana-distributed discrete sample for the initial state.
2) The chainis in state

— X+ = Exp(—ai),

— i+=1,

— if the next state is the absorbing state go to 3), otherwaos®e &).
3) Returnx.

2 Note that the transition rates in the CF-1 form are usually aetical, hence we cannot simply draw an Erlang-distributed
sample.
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If we assume a Hyper-Erlang distribution, represented awstin Figure 3(a), we can simplify the
procedureCount , by using our knowledge that each of the branches is an Edestigbution:

Procedure Sinpl eCount :

1) Draw af-distributed discrete sample to choose an Erlang branch
2) Return Er{b;, A;).

5.1 Costs of generating PH-distributed numbers

In the previous section we argue that the methods for gengratndom variates differ in their efficiency.
We will now treat the costs of random number generation fréwasg-type distributions in a more formal
way. All of the algorithms use exponential random variat@sthe sojourn times and uniform random
variates for choosing the initial statBl ay and Count additionally use uniform random variates for
choosing successor states, whilefimmocycl i ¢ algorithm needs geometrically distributed numbers for
the number of loops in each Feedback-Erlang block. In omeiraw from an exponential or geometric
distribution, we need uniform random variates and logaritiperations. Therefore, we define the following
two metrics for measuring algorithm complexity:

Definition 0.6. Let #uni and #n be the number of uniform variates and logarithm operaticespectively,
that are required for generating one PH-distributed randamate from a given PH distributiofur, A).

Using these metrics, we can compare the complexity of theriéthgns. We consider both worst-case and
average costs.

5.1.1 Worst-Case Costs

Let Ai denote the length of the longest possible path through thd@TFor thePl ay method, we draw
one exponentially distributed random variate for eacharsed state, and hence need one logarithm and
one uniform random variate per step, as well as an additiemé&rm for choosing the next state. For this
method, #ni and #n are proportional ta."However,n’is not defined if there are cycles in the CTMC.
Therefore, worst-case costs are not definedPfaay .

The same problem with the unknown maximum number of stateisals occurs with th€ount
method. However, in this case we only draw Erlang-distedusamples (one for each state). Therefore,
the maximum number of logarithm operations is bounded bythmber of states:l# = n. Similarly, for
the Monocycl i ¢ method we draw one Erlang-distributed and one geometyicidtributed sample for
each Feedback-Erlang block. The latter requires anothetdgarithm operations, in addition to the one
for generating the Erlang sample. As the worst case occuesiwile start in the first block, the worst-case
number of traversed FE blocksng and thus #h = 3m.

For APH in CF-1 form and using th& npl ePl ay method, the worst case is if the chain is entered
at state = 1, since in that case we have to traverse the whole chain, Tikas. Obviously, for a Hyper-
Erlang distribution in CF-1 formm = n holds as well. However, if we consider the Hyper-Erlang feumal
simulation using thé&i npl eCount method, the worst case is equivalent to choosing the lorigestg
branch. In that case = maxb; < n. The worst-case costs can be computed as follows: With elasg,
we need one uniform random variate to choose the initiad stthen using the APHh) class in CF-1 form
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Table 2 Theoretical Costs of generating PH distributed random \esifiom different PH classes and using different PH
representations (where= (n,n—1,...,1), n* = a(diag(1/a;)A)*1).

Worst Case| Average Case
PH Class #uni #In|  #uni #In
HEXx(n) Si npl eCount 2 1 2 1
HErD(n) Si npl eCount |maxbi+1 1| Bb'+1 1
APH(n) Si npl ePl ay n+1 n|avi+1 av'

PH(n) Pl ay 0 | 2n+1 n
PH(n) Count 0 n| 2n+1 n
Monocycl i ¢ o 3mlwT +ayTwdT

we needn™= n uniforms andn™= n logarithms for the consecutive phases. With the HErD claskthe
Si npl eCount method we need = maxb; additional random variates and one logarithm to obtain an
Erlang-distributed random number. We summarise thesétsasuhe left half of Table 2.

5.1.2 Average Costs

In general, we do not expect to have worst-case behaviotigrbunore interested in average costs. This
measure is based on the average number of state transifidosbsorption,

n= a(diag(1/a;)A) 1.

Applying thePl ay method for the general PH class, in each step we need tworomifandom variates
(one for the exponential sample and one for choosing the staté, see above), and one logarithm oper-
ation. As before, applying th€ount procedure instead, the number of logarithmslis# n, while the
number of uniforms staysuti = n.

Canonical forms enable explicit expressionsrfoFor Mond a, m,b, A, z) we introduce vectow of size

m, whosédth element is the probability of starting from Feedbackakd blocki (e.g.c = 2?1:1 aj), vector

¢ of sizem, whoseith element igp; = % + ZT‘:M 1%_ (the mean number of steps spent in a Feedback-
Erlang block from the first feedback, i.e. excluding the stpm the initial state to the feedback state in
the first passage through the initial block), veafoof sizen whoseith element indicates how many phases
are needed to reach the next Feedback-Erlang block (dag>if2 thenyy = by, o = by — 1).

Using these notations the mean number of steps till absori
n=wd’ +ay’,

wherea " contains the number of steps if there is no feedback (i.e. =0, fori =1,...,m) andw¢ T
contains the additional number of steps due to the loopsifr-dedback-Erlang block.

The mean number of In operations is

0 =wdT,

whered is a row vector of sizen whoseith element indicates the number of required In operations
starting from block. 9; = y7;(1+ 2 sgr(z)), since a degenerate Feedback-Erlang block it 0 is
Erlang(, A;) distributed which requires one In operation and a non degee ¢ > 0) Feedback-Erlang
block requires three In operations, two In operationsferGedz) and one for Erich; +1, A;).

For the APH class in CF-1 form, there exists an even simplpression, as the number of traversed
states depends only on the initial state, which in turn i®mheined by the initial probability vectaa.
Thus, for APH in CF-1 form,

n=av', wherev=(n,n—1,...,1).

Equivalently, for the HErD class is a weighted sum of the lengths of the Erlang branches:
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5.2 Optimisation

Considering the costs for the different methods discussetia previous sections, it becomes clear that
both the representation of the distribution and the methae flan impact on the efficiency of PH random
variate generation. One immediate question is then: Whhaeisptimal representation to generate random
variates efficiently? While the answer to this question isyeitavailable for the general PH case, [22]
presents the following result for APH in CF-1 form:

Lemma 0.7.[22] Given a Markovian representation (a,A) in CF-1 form, the representation (a*,A*) that
reverses the order of the rates is optimal with respect to n'if a* is a stochastic vector. In this case, all
bi-diagonal representations are Markovian.

The proof given in [22] relies on the observation that swagvo adjacent rates, a1 moves probability
mass towards the end of the chain onlgif< a.1. Thus, reversing the CF-1 order (whexe< g1 for

all i) gives an initial probability vectoo where probability mass is concentrated at the higher isdice
Recalling from aboven = av' for APH, i.e. high probability for states close to absorptimplies low
average costs.

Note, however, that reversing the CF-1 form may resullrinith negative entries [22]. In this case,
the tuple(a*, A*) still represents the same distribution, but the represientdoes not have a Markovian
interpretation anymore, and thoss not defined, nor ca8i npl ePl ay be applied. The optimal ordering
can then be found by exhaustive search ovenlaflossible orderings, or by heuristics that try to find a
Markovian representation that is as similar as possibledodversed CF-1. The heuristics presented in [22]
either start from the CF-1 form and apply pair-wise swapgpimgtil the result would be non-Markovian, or
start from the reversed CF-1 and try to reach a Markoviaressptation.

6 Conclusion

In this chapter we introduced the basics of using phasedigigbutions as tools in resilience evaluation,
discussing the complete workflow from fitting to applicatiarboth analytical and simulation methods.
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