
Phase-type Distributions

Philipp Reinecke, Levente Bodrog, and Alexandra Danilkina

Abstract Both analytical (Chapter ??) and simulation- and experimentation-based (Chapter ??) approaches
to resilience assessment rely on models for the various phenomena that may affect the system under study.
These models must be both accurate, in that they reflect the phenomenon well, and suitable for the chosen
approach. Analytical methods require models that are analytically tractable, while methods for experimen-
tation, such as fault-injection (see Chapter ??), require the efficient generation of random-variates from
the models. Phase-type (PH) distributions are a versatile tool for modelling a wide range of real-world
phenomena. These distributions can capture many importantaspects of measurement data, while retain-
ing analytical tractability and efficient random-variate generation. This chapter provides an introduction
to the use of PH distributions in resilience assessment. Thechapter starts with a discussion of the mathe-
matical basics. We then describe tools for fitting PH distributions to measurement data, before illustrating
application of PH distributions in analysis and in random-variate generation.

1 Introduction

Phase-type (PH) distributions are an often-used type of model for many phenomena in system evaluation,
e.g. service-times, delays, and failure times. This chapter provides a gentle introduction to the theory of PH
distributions and their application in common evaluation tasks. The typical workflow is shown in Figure 1:
First, data has to be obtained for the phenomenon, e.g. the delays encountered in a system. Second, the data
needs to be fitted by a phase-type distribution. This step is discussed in Section 3. The fitted distribution pro-
vides a model for the data which can be used in resilience evaluation. Phase-type distributions are equally
well-suited for analytical approaches and for methods using simulation. We discuss their application both
in matrix-analytic methods (Section 4) and in simulation (Section 5).

2 Mathematical Background

Continuous phase-type (PH) distributions represent the time to absorption in a Continuous-Time Markov
Chain (CTMC) with one absorbing state [1]. PH distributionsare commonly specified by a vector-matrix
tuple(α,A), where
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Fig. 1 Typical workflow
when applying phase-type
distributions in system evalu-
ation.
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∈ IRn×n.

Definition 0.1. Thesize of the(α,A) representation is the size of the vectorα, which is equal to the size
of the square matrixA.

Definition 0.2. Theprobability density function (PDF), cumulative distribution function (CDF), Laplace-
Stieltjes Transform (LST) of the CDF andkth moment, respectively, are defined as follows [1, 2, 3]:

f (x) = αeAxa, (1)

F(x) = 1−αeAx1l, (2)

F̃(s) = αn+1 +α(sI −A)−1a, (3)

E
[

Xk
]

= k!α(−A)−k1l. (4)

wherea = −A1l, and 1l is the column vector of ones of appropriate size. Note that phase-type distributions
have rational LST and that the eigenvalues of the transient generator matrix are the poles of the LST of the
distribution [4].

The vector-matrix representation of a PH distribution is not unique. In general, there exists another
representation(β ,B) of sizem that represents the same phase-type distribution. Representations may differ
both in size (n 6= m) and in the contents of the tuples. In particular, every PH distribution has aMarkovian
representation(α,A), whereα ≥ 0, ai j ≥ 0,1≤ i 6= j ≤ n anda=−A1l ≥ 0. In this case,A is the transient
part of the generator matrix of the associated CTMC

A =

(

A a
0 0

)

.

Another representation of the same size can be computed by a similarity transformation, as follows:
WhenB is invertible andB1l = 1l, then(αB,B−1AB) is another representation of the same distribution,
since its CDF is

1−αBeB−1ABx1l = 1−αBB−1eAxB1l = 1−αeAx1l.

The sizes of the(α,A) and the(αB,B−1AB) representations are the same in this case, but it is also
possible to generate representations of the same distribution with another size, using a non-square matrixW .

2.1 PH Classes

Based on the structure of the underlying Markov chain, several classes of phase-type distributions can be
distinguished. These classes differ in the statistical properties they can represent. Furthermore, the structure
of a PH representation often has an impact on its application, as some structures allow more efficient
solutions.
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(a) General phase-type distribution containing cycles.
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(b) Phase-type distribution without cycles (acyclic phase-type
distribution).

Fig. 2 CTMC representations for general and acyclic phase-type distributions.

The most important distinction is the one into Acyclic and General Phase-type distributions: Every
acyclic phase-type (APH) distribution has at least one Markovian representation without cycles in the sub-
generator, while for general phase-type distributions cycles are allowed. This is illustrated in Figure 2: The
distribution on the left contains a cycle, that is, a backward transition from state 4 to state 2. The distribution
on the right does not contain this transition and therefore there are no cycles.
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(a) Hyper-Erlang distribution with two branches.
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(b) Hyper-exponential distribution with four branches.

Fig. 3 CTMC representations for Hyper-Erlang and hyper-exponential distributions.

Most approaches in fitting and application of PH distributions focus on the APH class, as this class
offers better tractability than the general PH class. Within APH, we distinguish two important sub-classes:
The first one is the class of Hyper-Erlang distributions (HErD). Hyper-Erlang distributions are mixtures of
Erlang-distributions with different lengths and rates. They can be specified by a tuple(β ,m,b,λ ), where
β is the vector of initial probabilities of each Erlang branch, m is the number of Erlang branches,b is the
vector of the lengths of the Erlang branches, andλ is a vector containing the rates. The size of a Hyper-
Erlang distribution is given by the sum of the lengths of the branches, i.e.n = b1l. The general structure
is illustrated in Figure 3(a), where we show a hyper-Erlang distribution with m = 2 branches of length
b1 = 3 andb2 = 2, respectively. The initial probabilities and the transition rates are given byβ = (β1,β2)
andλ = (λ1,λ2). The size of this representation isn = b1 + b2 = 5. One important example is the Erlang
distribution, i.e. a Hyper-Erlang distribution with only one branch and initial probabilityβ1 = 1.

The second sub-class of APH we consider is the class of Hyper-Exponential distributions (HEx) of
ordern, specified by initial probability vectorα and rate vectorλ . Figure 3(b) shows an example for a
hyper-exponential distribution of sizen = 4. From this example, it is obvious that the hyper-exponential
distributions are a subclass of the hyper-Erlang distributions, as every hyper-exponential distribution is a
hyper-Erlang distribution with branch length vectorb = 1l. Furthermore, settingn = 1 andα1 = 1 yields
the exponential distribution with rateλ1.

2.2 Canonical Representations

While in general representations for phase-type distributions are not unique, several canonical forms have
been defined. For each PH distribution, the canonical form ofa given sizen is unique in the sense that there
exists no representation of the same sizen with the structure of the canonical form, but different parameters.
Therefore, by comparing canonical forms, we can determine whether PH distributions given by different
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representations are identical. More important, however, is the use of canonical forms in fitting, analysis, and
simulation, where their typically low number of parametersand simple structure enable efficient methods.

In the following we discuss Cumani’s Canonical Form 1 (CF-1)[5] and the Monocyclic form introduced
in [6], as these are the most common ones.

λ1 λ2 λ3 λ4

(a) APH distribution in CF-1 form.

λ1 λ2 (1 − z2)λ2λ2

z2λ2

(b) General phase-type distribution in monocyclic form.

Fig. 4 Canonical representations for phase-type distributions.

2.2.1 The Canonical Form for APH Distributions

The Canonical Form 1 (CF-1) was defined in [5]. The structure of its underlying CTMC is shown in Fig-
ure 4(a): The Markov chain can be entered at any statei = 1. . .(n + 1) (with probability αi), but the
absorbing state can only be reached by traversing all remaining states. Furthermore, the ratesλi are ordered
such thatλi ≤ λi+1 for all i. The formal definition is as follows:

Definition 0.3. [5] The Canonical Form 1 (CF-1 form) is a bi-diagonal representation(α,Λ) whereα is
Markovian and the ratesai in Λ are in increasing order:a1 ≤ a2 ≤ ·· · ≤ an.

[5, 7] showed that every acyclic phase-type distribution with a Markovian representation of sizen has a
unique CF-1 representation of the same size.1 The CF-1 form for an APH given as(α,A) can be obtained
by a similarity transformation. A procedure for constructing the similarity transformation matrix is given
in [8].

Note that transforming an APH representation of sizen to the CF-1 form considerably reduces the
number of parameters: A general APH representation hasn initial probabilitiesα1, . . . ,αn andn2 entries
in the subgenerator matrixA, i.e. the number of parameters isn + n2. In the CF-1 formA is an upper
bi-diagonal matrix withai,i = −ai+1,i. The CF-1 form therefore has 2n parameters.

2.2.2 The Monocyclic Form for General PH Distributions

General PH distributions may have complex poles, and the poles of a PH distribution are given by the
eigenvalues of the subgenerator matrixA. As the eigenvalues of a bi-diagonal representation(α,Λ) are
equal to the entries of the diagonal andA ∈ IRn×n it is easy to see that a bi-diagonal structure like the CF-1
form cannot represent phase-type distributions with complex poles.

For this reason, [6] proposed the Monocyclic form as a chain of Feedback-Erlang (FE) blocks, defined
as follows:

Definition 0.4. A Feedback-Erlang (FE) block is given by a tuple(b,λ ,z) of the lengthb, transition rate
λ , and feedback probabilityz ∈ [0 : 1). The Feedback-Erlang block consists of an Erlang-distribution with
lengthb and rateλ and an additional (feedback) transition from the last stateof the block to the first state.

Figure 5 illustrates this concept. Note that the casesz = 0 andb = 1 are allowed. Forz = 0, the Feedback-
Erlang is simply an Erlang of orderb, while for b = 1 it is an exponential distribution. The importance of

1 Smaller CF-1 representations may exist if there is redundancy inthe original representation [1, 8, 9].
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Fig. 5 Structure of a
Feedback-Erlang block.
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this structure lies in the fact that forz > 0 andb > 1 the block has a conjugate-complex pair of eigenval-
ues [6]. Therefore, a chain of FE blocks can be used to represent the complex eigenvalue pairs of a general
phase-type distribution.

Based on this observation, [6] define the Monocyclic representation as a chain of Feedback-Erlang
blocks:

Definition 0.5. A Monocyclic representation is given by the tuple(α,m,b,λ ,z), where the vectorα ∈ IRb1l

specifies the initial state probabilities, andb, λ andz define the length, rate, and feedback probability of
them Feedback-Erlang blocks.

The FE blocks are positioned such that the absolute values ofthe dominant eigenvaluesri are in ascend-
ing order:ri ≤ ri+1.

Any PH distribution has a monocyclic representation [6]. Ifthe representation of the PH distribution is
PH-simple [7] and of sizen, then the size of the monocyclic representation isn′ ≥ n. This potential size
expansion makes the monocyclic representation less efficient in analytical studies, but its simple and still
Markovian structure makes it promising for simulation studies.

The structure of a Monocyclic representation is shown in Figure 4(b). Note that ifzi = 0 for all FE
blocksi = 1, . . . ,b the Monocyclic form is equivalent to the CF-1 form. That is, the CF-1 form is actually
a special case of the Monocyclic form.

2.3 Properties

One nice property of the PH distributions class is that it is closed for minimum/maximum, summation, etc.
From the point of view of applying PH distributions to fittingdata, the main problem of the class is the
incomplete exploration of the moment bounds of the general PH distribution. However, there are results on
them for several particular cases.

The feasible first moment range of the PH class is the set of non-negative numbers as PH gives a non-
negative random variable.

It is proven that the feasible range of the squared coefficient of variation for the PH of sizen (PH(n)) is

cv2 ≥
1
n
, (5)

where the equality holds for then dimensional Erlang distribution (Erl(n)).[10]
For higher moments there is no general knowledge, however there are several special cases for which

some insights on the moment bounds exist, like e.g., the moment bounds of the APH(2) ≡ PH(2) class
[11], the moment bounds of the PH(3) class implied by the canonical form given in [12], the bound of the
general APH class within the PH is known according to the APH canonical form and there exists also a
numerical method to determine the general PH bound in [13].

From the fitting perspective thereduced moment problem (when a distribution function is determined
based on its moments) can also be crucial which is only solvedfor the wider class of distributions the
matrix exponentials.[14]
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Fig. 6 Example data and its
approximation with a phase-
type distribution.
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Table 1 Performance measures defined in [15]

Performance Measure Definition
Area difference between distribution functions∆F ∆F =

∫ ∞
0 |F̂(x)−F(x)|dt

Area difference between densities∆ f ∆ f =
∫ ∞

0 | f̂ (x)− f (x)|dt

Relative error in the first moment (meanc1) e1 = |ĉ1−c1|
c1

Relative error in the second central moment (variancec2) e2 = |ĉ2−c2|
c1

Relative error in the third central moment (skewnessc3) e3 = |ĉ3−c3|
c3

3 Fitting Measurement Traces With PH Distributions

As illustrated in Figure 1, the first step in applying phase-type distributions in resilience evaluation is to fit
a PH distribution to a data set. Consider Figure 6, where we show both a histogram of some data and the
density of a phase-type distribution approximating the data. Our aim is to approximate the data as closely
as possible, in order to obtain correct results when using the approximating distribution later on. In this
section we provide the basics for fitting data sets with phase-type distributions. We discuss costs, quality
metrics, and introduce three established fitting tools.

3.1 Costs of Fitting PH Distributions to Data

Since a PH distribution is defined by the tuple(α,A), the problem of fitting translates to finding an initial
probability vectorα and a sub-generator matrixA of appropriate sizen. While, in general, higher-order
PH distributions can provide a better approximation [16], they are more expensive in both analysis and
simulation. Furthermore, the time required for fitting a distribution increases withn, as more parameters
have to be fitted. Consequently, careful choice ofn is important.

As will be shown in Sections 4 and 5, the cost of using a PH distribution depends not only on the sizen,
but also on the structure of the representation. The same holds for the fitting problem. Here, the number of
free parameters to be fitted can be reduced significantly by choosing an appropriate representation: If we
assume the sizen of the representation to be constant, then general phase-type distributions in an arbitrary
Markovian representation haven + n2 free parameters, asα is a row vector of lengthn, andA is a matrix
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of sizen× n. If we assume that the representation is Monocyclic, we havea chain ofm Feedback-Erlang
blocks, each with a length parameterb j, rate parameterλ j and feedback probabilityz j, and an initial
probability vector of sizen. As m ≤ n, the upper limit for the number of free parameters is 3n+n. Limiting
ourselves to the APH class, we can utilise the CF-1 canonicalform, which has only 2n free parameters:n
transition rates andn initial probabilities. Finally, if we consider only HErD distributions in representations
as shown in Figure 3(a), the number of free parameters reduces to 3m: m initial probabilities for them
Erlang branches,m lengths for the Erlang branches, andm transition rates.

3.2 Quality Measures

Fitting a phase-type distribution to data requires carefulchoice of the right fitting tool, as well as of fitting
parameters such as sub-class and size. As just discussed, the approximation problem becomes less com-
plex if data is fitted with subclasses of phase-type distributions, however, fitting quality may decrease as
well, as subclasses cannot represent all properties of the general PH class. For example, hyperexponential
distributions cannot approximate distributions with oscillating densities [17].

In order to assess the quality of data approximation, quality measures are required. An intuitive method
consists in simply comparing the shape of the empirical PDF or CDF to that of the approximating PH
distribution. This gives not only absolute differences, but also gives a visual impression how well the shape
of the empirical PDF/CDF was approximated (e.g. in Figure 6 the approximated density fits the data quite
well).

While a visual impression often yield a good initial assessment, a more formal approach requires exact
definitions of quality measures. Table 1 shows the standard quality measures for PH fitting, as defined
in [15]. The first two performance measures formalise the visual comparison of empirical and approximated
data, by computing the distance between both curves. The last three measures capture how well the fitted
distribution approximates the empirical moments of the data. Based on these performance measures we can
decide which tool to use, and which fitting is most appropriate for the requirements and future application
of approximation results. For instance, for use in a stochastic model whose behaviour primarily depends
on the first three moments, one would aim to get small relativemoment errors, while in other applications
fitting the shape of the density may be more important.

3.3 Introduction to PH-Fitting Tools

Here we outline three tools for data approximation with phase-type distributions: Moment Matching, G-FIT
and PhFit. They mainly differ with respect to the algorithmsthey employ and the subclass of PH distri-
butions they support. There are two general and relevant classes of algorithms: Analytical and statistical
methods, where the former relies on direct computation of the parameters and the latter is based on the
maximum likelihood method for parameter estimation, typically implemented as an iterative procedure.

3.3.1 Analytic Approximation: Moment Matching

Analytic moment-matching methods have the advantage of being fast, easy to implement, and giving low
errors in the moments. On the other hand, accuracy of the fitting may be limited by the representation.
We illustrate this using the method proposed in [3], which can fit an APH(2) distribution to the first three
moments of a data set. The approach proceeds by computing theapproximation parameters directly from
the moments, as follows: An APH(2) in CF-1 form withα = (α1,1−α1) and

A =

(

−a1 a1

0 −a2

)

,
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is defined by three parameters,a1,a2, andα1. Recall from Definition 0.2 the general moments-generating
function for a PH distribution. Writing the first three moments explicitly:

E[X ] = m1 =
a1 +α1a2

a1a2
,

E[X2] = m2 =
2(a2

1 +α1a1a2 +α1a2
2)

a2
1a2

2

,

E[X3] = m3 =
6(a3

1 +α1a2
1a2 +α1a1a2

2 +α1a3
2)

a3
1a3

2

,

[3] obtain a system of 3 linear equations. Solving this system for a1,a2,α1 yields an APH(2) that matches
the first three moments. However, possible solutions are limited by the moment bounds for the APH(2) class
(cf. Section 2.3). For combinations of moments outside the moment bounds, the system has no solution,
i.e. data sets with these moments cannot be fitted exactly by an APH(2). For instance, as follows from (5),
the smallest SCVcv2 that can be represented by an APH(2) is

cv2 =
1
2
,

which puts constraints on the relation of the mean and variance. Data sets withcv2 < 1
2 require PH dis-

tributions of higher order. Similar constraints exist for the third moment, although in some cases the third
moment can be approximated even when no exact fitting is possible.

3.4 Maximum Likelihood Method

The second class of fitting algorithms is based on the maximum-likelihood method. The maximum-
likelihood method is a common tool for parameter estimation[18]. Using Bayes’ rule, the approach iden-
tifies the parameter setΘ that is the most probable estimation for the observations, using the likelhood
function

L(Θ |x) = P(x|Θ).

When fitting PH distributions to the data setx, the parameter set isΘ = (α,A). The general approach to
maximum-likelihood parameter estimation is the Expectation-Maximisation (EM) algorithm [18]:

1. Choose initial values for the parameter setΘ .
2. E-Step (Estimation): Using the datax and likelihood-function, estimate the set of parametersΘ .
3. M-Step: (Maximisation) Pick the setΘ from the estimated values calculated in step 2 that max-

imises the likelihood-function.
4. If the abort criterion is not fulfilled, go to step 2, otherwise stop.

The EM algorithm is an iterative procedure, alternating between the E-Step (Expectation) and the M-
Step (Maximization). The abort criterion for step 4 can be defined as a fixed maximum value for the
likelihood function or a mimimum difference in likelihood values for consecutive iterations. Note that for
multiple optima of the likelihood function the EM algorithmmay stop at a local optimum, depending on
the initial values.

The maximum likelihood method for PH fitting has the advantage of providing more flexibility than
analytical moment-matching methods. On the other hand, theiterative fitting process is usually slower than
the analytical approach. In the following we discuss two tools whose fundamental method is the maximum
likelihood approach.



Phase-type Distributions 9

3.4.1 G-FIT for fitting Hyper-Erlang distributions

The G-FIT tool [17] approximates data using Hyper-Erlang distributions. Recall that the number of tran-
sition rates and the size of the initial vector of a Hyper-Erlang distribution only depend on the number of
Erlang branches. This enables an efficient fitting method: Once the numberm and lengthb of the Erlang
branches has been set, the parameters are

Θ = (β ,λ ).

In each iteration the EM algorithm estimatesβ and λ which maximise the likelihood function. G-FIT
provides convergence checks based on the maximal change inΘ and on the relative differences of the
log-likelihood between successive iterations.

The user may specify the number and length of Erlang branchesprior to fitting or let G-FIT determine
an optimal size. In the first case the user has to set a number ofErlang branches and their length. The
second option is more general and is useful for the unexperienced user. It requires as input only a number
of phases for the resulting distribution. G-FIT will then estimate optimal number of Erlang branches and
their parameters, by trying all possible combinations.

G-FIT expects an input as a text file containing the data set. The first line should be a number of data
points in the data set followed by data points themselves, which are given one per line. The output is also
a text file, containing the number of Erlang branches, numberof phases, initial probabilities and transition
rates for each Erlang branch.

3.4.2 PhFit

The PhFit tool [2] approximates data using acyclic phase-type distributions in CF-1 form. One major ad-
vantage is that the user can choose between different distance measures for the EM algorithm, in order
to obtain an optimal fitting. The distance measures supported by PhFit are the relative entropy, PDF area
distance, and CDF area distance, defined as

∫ ∞

0
f (t)log(

f (t)

f̂ (t)
)dt,

∞
∫

0

|F̂(x)−F(x)|dt, and

∞
∫

0

| f̂ (x)− f (x)|dt, respectively,

where f (t) denotes the probability density function (PDF) of the original distribution andf̂ (t) the PDF
of the approximating distribution,F(t) the cummulative distribution function (CDF) of the original distri-
bution andF̂(t) the CDF of the fitted distribution. Among the fitting tools we discuss, PhFit is the only
one with a graphical user interface. This feature is beneficial for finding appropriate fitting parameters and
evaluation of results.

PhFit computes optimal values for distribution parameter(α,Q) starting with special initial values
(α(0),Q(0)) according to the distance measure. PhFit picks optimal values from 1000 random generated
pairs of vectors. The distance measure defines the optimality criterion. The likelihood optimization prob-
lem is solved by using the iterative linearization method. The direction for optimization of the distance
measure is determined by simplex algorithm. The algorithm stops computation once the relative difference
between

(α(i−1),A(i−1))

and
(α(i),A(i))

for iteration i is less than the predefined value or once the number of maximumnumber of iterations is
reached.

PhFit provides separate fitting for body and tail. The body isthe part of distribution with the most
mass, whereas the tail represents rare data points. The usercan choose the boundary where the tail begins.
The tail will be approximated with the heuristic method, that determines parameters for the mixture ofm
geometric- for discrete APH- andm exponential- for continious APH-distributions. Having parameters for
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hyper-geometric or hyper-exponential distribution leadsto the body fitting as described before. The result
distribution is structured by the CF-1 and the mixtures.

PhFit requires as input a text file containing the data in ascending order. The output consists of the
initial probability vectorα and the diagonal of the subgenerator matrix. Note, however,that in contrast
to the definition we gave in Definition 0.3, PhFit considers the 0th state to be absorbing, instead of state
(n+1). That is, the output of PhFit is reversed, compared to the notation used throughout this chapter.

4 Phase-type Distributions in Model Analysis: Matrix Analytic Methods

Figure 1 shows two ways of using a PH distribution in an evaluation. The memoryless property of the
Markov chains allows the matrix representation of the phase-type distributions as it is given in Section 2.
The matrix representation and accordingly the simple analytical formalism to define the properties of the
PH distributions makes them very popular among researchersboth for modeling (Section 3) and simulation
(Section 5). Furthermore in the case of complex systems it turns out that the matrix representation of the
PH distributions allows the use of the matrix analytic methods [19] in case of large Markov chains.

The matrix analytic methods utilize the structure of the Markov chain which, in this chapter, is two-
dimensional. Both dimensions have their own characteristic. The first dimension represents the – usually
finite – number of phases (J(t)) of the process. The second dimension is the infinite counting process
(N(t)). This results in an infinite, but well-structured, Markov chain on the block level where the blocks
describes the phase either with or without arrival. The sameblock structure appears also in the generator
matrix of the Markov chain which can be upper block-bidiagonal or tridiagonal in our cases.

The examples of this section shows how the matrix analytic methods utilize the analytic given PH
properties during the solution of complex Markov models. The result can be either the short-term or the
steady-state behavior. The methods also allow to find the solution of infinite models by solving finite
problems.

4.1 Processes with PH marginal distribution

Processes play an important role in stochastic modeling thus it comes natural to propose the process with
PH marginal distribution. Here we investigate both the independent identical distributed (iid) and the cor-
related arrival process with PH marginal. These are the PH renewal process and the Markov arrival process
(MAP) respectively.

4.1.1 PH renewal process

Given a phase-type distribution represented by the initialvector, generator matrix pair(α,A) – denoted as
PH(α ,A) – it is the marginal distribution of the PH renewal process defined by the generator matrix

Q =









A aα 0 . . . . .
0 A aα 0 .
0 0 A aα 0
. . . . . . . . . . . . . .









, (6)

wherea = −A1 is the vector of absorption of the marginal distribution if1 is the column vector of ones.
The diagonal block describes the phase transitions of the PHmarginal and the block in the upper co-
diagonal describes the phase transitions belonging to the renewal instances. The graph of the corresponding
continuous time Markov chain (CTMC) is depicted in Figure 7.
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Fig. 7 The graph of the PH renewal process

The product in the upper co-diagonal blocks expresses that the initial distribution of the next interar-
rival is always the same (α) after arrival (“absorption” in the PH marginal) regardless of any of the other
interarrivals, i.e., the process is uncorrelated.

The generator matrix of the phase process isH = A +aα. The steady state phase distribution (π) is the
solution of the linear system of equations

πH = 0

π1= 1.
(7)

The transient phase distribution is
π(t) = π(0)eHt (8)

which is a vector of elementsπi(t) = Pr(J(t) = i) giving the probability that the process is in phasei at
time t. Using the transient phase behavior the remaining time to thenext arrival, at timet, is PH(π(t),A) .

Let π(n, t) = (Pr(N(t) = n,J(t) = j)) be the number of arrival (n) and the phase (j) distribution at time
t. With initial conditionsπ(0,0) = α andπ(i,0) = 0,(i > 0) the transient number of arrivals is given by
the differential equation

dπ(i, t)
dt

= π(i, t)A +π(i−1, t)aα (9)

and itsz-transform, with initial conditionπ(z,0) = α, is

dπ(z, t)
dt

= π(z, t)A + zπ(z, t)aα = π(z, t)(A + zaα) . (10)

The solution of the differential equation, i.e., the transient distribution of the number of arrivals, is

π(z, t) = αe(A+zaα)t . (11)

4.1.2 Markov arrival process

Compared to the PH renewal process the Markov arrival process (MAP) is the correlated arrival process
with PH marginal distribution, i.e., the phase distribution is not restricted to be the same after every arrival
– it is arbitrary. Its two dimensional CTMC is also defined by the phase processJ(t), describing the phase
of the marginal distribution, and by the counting processN(t), meaning the number of arrivals. Its graph is
depicted in Figure 8 and its generator matrix is

Q =









D0 D1 0 . . . . .
0 D0 D1 0 .
0 0 D0 D1 0
. . . . . . . . . . . . . .









, (12)
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where the Markov arrival process is represented byD0 – the phase transitions without arrival – andD1 –
the phase transitions with one arrival. Such a MAP is denotedas MAP(D0,D1) .

(D1) ji

(D1)ii

(D1)i j

(D1) j j

(D1)ii

(D1) ji

D1

(D1)i j

(D1) j j

(D1)ii

(D1) ji

D1

(D1)i j

(D1) j j

. . .

. . .

. . .

. . .

. . .
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(D0) ji
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(D0)i j
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i

D0

(D0)i j

(D0) ji

Fig. 8 The graph of the Markov arrival process

The interarrival times of the MAP(D0,D1) are PH(α0,D0) , PH(α1,D0) . . . The – correlated – phase
distribution embedded at arrival instances forms a discrete time Markov chain (DTMC) with state transition
probability matrixP = (−D0)

−1D1.
The joint probability density function of the interarrivaltimes,X0 andXk, is

fX0,Xk(x0,xk) = πeD0x0D1Pk−1eD0xk D11, (13)

whereπ is the embedded stationary phase distribution at arrival instances, i.e., it is the solution of the linear
system of equations

πP = π
π1= 1.

(14)

The stationary interarrival time distribution is PH(π,D0) with nth moment

E [Xn] = n!π (−D0)
−n
1 (15)

and the joint moment of two interarrivals is

E [X0Xk] =
∫

x0

∫

xk

x0xkπeD0x0D1Pk−1eD0xk D11dx0dxk

= π (D0)
−1Pk (D0)

−1
1.

(16)

The covariance of two interarrivals is

cov(X0,Xk) = E[X0Xk]−E2 [X ] (17)

and using (15), (16) and (17) the lagk correlation of the MAP is

corr(X0,Xk) =
cov(X0,Xk)

E[X2]−E2 [X ]
. (18)

4.2 The quasi birth-death process

The quasi birth-death (QBD) process [19, 1] is also defined bythe phase process (J(t)) and the counting
precess (N(t)). But in case of the QBD process the counting, or the “level”,process is allowed to be
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decreased by one as well as to stay on the same level or to be increased by one. It is thus the “multiphase”
extension of the birth death precess which is for example thesolution of the M/M/1 queueing system. The
generator matrix of the QBD process has block-tridiagonal form

Q =









L ′ F 0 . . .
B L F 0 .
0 B L F 0
. . . . . . . . . .









, (19)

where the blocks or level transition matrices are

L ′ local state transitions inside the first – irregular – block,
B backward (level) state transitions,
L local state transitions on the regular levels and
F forward (level) state transitions.

The graph of the QBD is depicted in Figure 9.

B

F

B

F

. . .

. . .

. . .

LLL ′

Fig. 9 The graph of the quasi birth-death process

We give the solution method of the QBD through the analysis ofthe MAP/PH/1 queueing system with
arrival process MAP(D0,D1) and service time PH(α ,A) . The level transition matrices are

L ′ = D0⊗ I

B = I ⊗aα
L = D0⊕A

F = D1⊗ I ,

wherea = −A1 and I is the appropriate size identity matrix. The operators⊗ and⊕ are the Kronecker
product and sum respectively.

The generator matrix of the phase process isH = B+L +F and if it is irreducible then the steady state
phase distribution is the solution of the linear system of equations

πH = 0

π1= 1.
(20)

The QBD process is stable if its stationary drift is less thanzero

d = πF1−πB1< 0. (21)

The steady state solution of the QBD is the solution of the infinite system of linear equations

νQ = 0

ν1= 1.
(22)

Partitioningν according to the blocks ofQ is
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ν =
(

ν0 ν1 ν2 . . .
)

and substituting the partitions into (22) we get

ν0L ′ +ν1B = 0 (23)

and

ν i−1F+ν iL +ν i+1B = 0 ∀i ≥ 1. (24)

Assuming that the Markov chain is irreducibleν i = ν i−1R = ν0Ri (∀i), i.e., its solution is the matrix
geometric distribution, the general equation (24) can be rewritten as

ν0Ri−1F+ν0RiL +ν0Ri+1B = 0

ν0Ri−1(F+RL +R2B
)

= 0

with a solution determined by

F+RL +R2B = 0. (25)

If the QBD is stable there is one of the solutions ofR whose eigenvalues are within the unit circle on the
complex plane.

As all the eigenvalues of the relevantR is within the unit circle there exists the limit of the sum∑∞
i=0Ri =

(I −R)−1 . Using the convergence the normalizing condition ofν can be expressed as

ν1=
∞

∑
i=0

ν i1=
∞

∑
i=1

ν0Ri1= ν0

∞

∑
i=1

Ri1= ν0 (I −R)−1
1= 1. (26)

Now substitutingR into (23) and using (26) we have a linear system of equations

ν0
(

L ′ +RB
)

= 0

ν0 (I −R)−1
1= 1

(27)

for the zeroth block ofν . All the other blocks can be calculated usingν0 andR as

ν i = ν0Ri, ∀i. (28)

By these considerations the infinite problem of solving the QBD in (22) is reduced to be the solution of
the finite problems in (25), (27) and (28). By this reduction the matrix analytic methods indirectly allows
the utilization of the PH distribution in the solution of infinite systems.

5 Phase-type Distributions in Random-Variate Generation

While phase-type distributions enable efficient solutions for analytical models, they have applications be-
yond analytical approaches. For instance, PH distributions can be used to simulate realistic service-times
in models that cannot be solved by analytical methods and thus require simulation, and for generating de-
lays in test-beds. These applications require the efficientgeneration of random variates from phase-type
distributions.

Phase-type distributed samples may be generated by playingthe CTMC until absorption, and by nu-
merical inversion of the distribution function [20]. In thefollowing we focus on methods that ‘play’ the
CTMC. Note that these methods require the Markovian representation.
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The methods discussed in the following utilise random variates from the uniform, exponential, Erlang,
and geometric distributions. We assume that random variates with uniform distribution on(0,1) are given,
and denote these byU . Using the inversion method, a sample with exponential distribution with rateλ is
then drawn by

Exp(λ ) = −
1
λ

ln(U).

A sample from the Erlang distribution with degreeb and rateλ is generated by

Erl(b,λ ) = −
1
λ

ln

(

b

∏
i=1

Ui

)

.

Note that this way of sampling Erl(b,λ ) is more efficient than the functional equivalent of drawingb
exponentially distributed samples and summing them up, because the ln operation is applied only once.
Finally, a sample from the geometric distribution (starting from 0) with parameterp is obtained by

Geo(p) =

⌊

ln(U)

ln(p)

⌋

.

The most natural way to generate a PH-distributed sample by playing the CTMC proceeds as follows:
First, we select a statei by drawing an integer sample distributed according to the initial probability vector
α. Afterwards, in each step the next state is selected according to the next-state probability vector. The
sojourn time for statei is obtained as a sample from the exponential distribution with rate−λii. Letting
ei denote the row vector with 1 at positioni, and 0 everywhere else, thePlay method can be given in
pseudocode as follows:

Procedure Play:

1) x := 0. Draw anα-distributed discrete samplei for the initial state.
2) The chain is in statei

– draw anei(−diag〈1/aii,0〉A + I)-distributed discrete sample for the next state,
– x+ = Exp(−aii),
– if the next state is the absorbing one (i = n+1) go to 3), otherwise go to 2)

3) Returnx.

In [21], Neuts and Pagano observe that when traversing a state more than once, thePlay method adds
up multiple samples from the same exponential distribution. The sum ofki exponential distributions of the
same rateλii, however, is the Erlang distribution with lengthki and rateλii. As shown above, drawing a
sample from the Erlang distribution of lengthki requires only one logarithm operation, as opposed toki

logarithms when drawing individual exponential samples. Thus, Neuts and Pagano propose the following
method, which, instead of drawing exponential samples for each visit to a statei, counts the number of
visits and then draws one Erlang-distributed sample for each state:

Procedure Count:

1) x := 0, ki := 0, (i = 1, ..,n), Draw anα-distributed discrete samplei for the initial state.
2) The chain is in statei

– ki += 1,
– draw anei(−diag〈1/aii,0〉A + I)-distributed discrete sample for the next state,
– if the next state is the absorbing one go to 3) otherwise to 2)
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3) for i = 1, . . . ,n; do x += Erl(ki,−aii); done
4) Returnx.

If the distribution is in Monocyclic form, we can derive another method from the structural properties
of the Monocyclic representation. Recall that this representation consists of a chain of Feedback-Erlang
blocks. With such a chain, possible state transitions are predetermined by the structure in two ways: First,
when we leave a Feedback-Erlang blockj, the next state will be the first state of the next Feedback-Erlang
block j +1. This implies that no new sample is required for choosing the successor block. Second, recall
from Figure 5 that each FE block consists of a chain ofm j −1 states with exactly one outgoing transition
(to the next state), and only one state with two outgoing transitions (the feedback state). Thus, within each
FE block the only state where the next state is not determinedby the structure is the last one. Furthermore,
as the last state has only two outgoing transitions, the choice of staying within blockj or entering the
next block j + 1 corresponds to a Bernoulli experiment with parameterz j. Consequently, the number of
‘loops’ in each block follows a geometric distribution withparameterz j. Therefore, in order to generate
the sample corresponding to thejth Feedback-Erlang block, we add a geometrically distributed number of
exponentially distributed random variates with the same rateλ j. As discussed when introducing theCount
method, an efficient way of doing this is to draw a sample from an Erlang distribution of the appropriate
length. These considerations lead to the following method:

Procedure Monocyclic:

1) x := 0. Draw anα-distributed discrete sample for the initial state,
2) the chain is in statel of block i (for the left-most state of the block,l = bi)

– c = Geo(zi),
– x+ = Erl(cbi + l,λi)
– if the next block is the absorbing state go to 3), otherwisel = bi+1, i = i+1 and go to 2)

3) Returnx.

The first three methods are applicable to general PH distributions. If we restrict our attention to sub-
classes, more efficient methods can be designed. First, consider the APH class in CF-1 form. As a special
case of the Monocyclic form, the CF-1 form is a chain of states, where each state has exactly one successor
state (cf. Figure 4(a)), and thus the next state is not chosenrandomly. Hence, once an initial state has
been selected, the random variate is simply the sum of exponentially distributed samples from each of the
successor states:2

Procedure SimplePlay:

1) x := 0. Draw anα-distributed discrete sample for the initial state.
2) The chain is in statei.

– x+ = Exp(−aii),
– i+ = 1,
– if the next state is the absorbing state go to 3), otherwise go to 2).

3) Returnx.

2 Note that the transition rates in the CF-1 form are usually not identical, hence we cannot simply draw an Erlang-distributed
sample.
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If we assume a Hyper-Erlang distribution, represented as shown in Figure 3(a), we can simplify the
procedureCount, by using our knowledge that each of the branches is an Erlangdistribution:

Procedure SimpleCount:

1) Draw aβ -distributed discrete sample to choose an Erlang branchi.
2) Return Erl(bi,λi).

5.1 Costs of generating PH-distributed numbers

In the previous section we argue that the methods for generating random variates differ in their efficiency.
We will now treat the costs of random number generation from phase-type distributions in a more formal
way. All of the algorithms use exponential random variates for the sojourn times and uniform random
variates for choosing the initial state.Play andCount additionally use uniform random variates for
choosing successor states, while theMonocyclic algorithm needs geometrically distributed numbers for
the number of loops in each Feedback-Erlang block. In order to draw from an exponential or geometric
distribution, we need uniform random variates and logarithm operations. Therefore, we define the following
two metrics for measuring algorithm complexity:

Definition 0.6. Let #uni and #ln be the number of uniform variates and logarithm operations,respectively,
that are required for generating one PH-distributed randomvariate from a given PH distribution(α,A).

Using these metrics, we can compare the complexity of the algorithms. We consider both worst-case and
average costs.

5.1.1 Worst-Case Costs

Let ñ denote the length of the longest possible path through the CTMC. For thePlay method, we draw
one exponentially distributed random variate for each traversed state, and hence need one logarithm and
one uniform random variate per step, as well as an additionaluniform for choosing the next state. For this
method, #uni and #ln are proportional to ˜n. However, ˜n is not defined if there are cycles in the CTMC.
Therefore, worst-case costs are not defined forPlay.

The same problem with the unknown maximum number of state traversals occurs with theCount
method. However, in this case we only draw Erlang-distributed samples (one for each state). Therefore,
the maximum number of logarithm operations is bounded by thenumber of states: #ln = n. Similarly, for
theMonocyclic method we draw one Erlang-distributed and one geometrically-distributed sample for
each Feedback-Erlang block. The latter requires another two logarithm operations, in addition to the one
for generating the Erlang sample. As the worst case occurs when we start in the first block, the worst-case
number of traversed FE blocks ism, and thus #ln = 3m.

For APH in CF-1 form and using theSimplePlay method, the worst case is if the chain is entered
at statei = 1, since in that case we have to traverse the whole chain. Thus, ñ = n. Obviously, for a Hyper-
Erlang distribution in CF-1 form, ˜n = n holds as well. However, if we consider the Hyper-Erlang formand
simulation using theSimpleCount method, the worst case is equivalent to choosing the longestErlang
branch. In that case, ˜n = maxbi ≤ n. The worst-case costs can be computed as follows: With everyclass,
we need one uniform random variate to choose the initial state. When using the APH(n) class in CF-1 form
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Table 2 Theoretical Costs of generating PH distributed random variates from different PH classes and using different PH
representations (whereν = (n,n−1, . . . ,1), n∗ = α(diag〈1/aii〉A)−11l).

Worst Case Average Case
PH Class #uni #ln #uni #ln

HEx(n) SimpleCount 2 1 2 1
HErD(n) SimpleCount maxbi +1 1 βbT +1 1
APH(n) SimplePlay n+1 n ανT +1 ανT

PH(n) Play ∞ ∞ 2n̄+1 n̄
PH(n) Count ∞ n 2n̄+1 n

Monocyclic ∞ 3m ωϕT +αψTωϑ T

we need ˜n = n uniforms and ˜n = n logarithms for the consecutive phases. With the HErD class and the
SimpleCount method we need ˜n = maxbi additional random variates and one logarithm to obtain an
Erlang-distributed random number. We summarise these results in the left half of Table 2.

5.1.2 Average Costs

In general, we do not expect to have worst-case behaviour, but are more interested in average costs. This
measure is based on the average number of state transitions up to absorption,

n̄ = α(diag〈1/aii〉A)−11l.

Applying thePlay method for the general PH class, in each step we need two uniform random variates
(one for the exponential sample and one for choosing the nextstate, see above), and one logarithm oper-
ation. As before, applying theCount procedure instead, the number of logarithms is #ln = n, while the
number of uniforms stays #uni = n̄.

Canonical forms enable explicit expressions for ¯n. For Mono(α,m,b,λ ,z) we introduce vectorω of size
m, whoseith element is the probability of starting from Feedback-Erlang blocki (e.g.ω1 = ∑b1

j=1 α j), vector

ϕ of sizem, whoseith element isϕi = zibi
1−zi

+∑m
j=i+1

b j
1−z j

(the mean number of steps spent in a Feedback-
Erlang block from the first feedback, i.e. excluding the steps from the initial state to the feedback state in
the first passage through the initial block), vectorψ of sizen whoseith element indicates how many phases
are needed to reach the next Feedback-Erlang block (e.g. ifb1 ≥ 2 thenψ1 = b1,ψ2 = b1−1).

Using these notations the mean number of steps till absorption is

n̄ = ωϕT +αψT,

whereαψT contains the number of steps if there is no feedback (i.e., ifzi = 0, for i = 1, . . . ,m) andωϕT

contains the additional number of steps due to the loops in the Feedback-Erlang block.
The mean number of ln operations is

ℓ∗ = ωϑ T,

whereϑ is a row vector of sizem whoseith element indicates the number of required ln operations
starting from blocki. ϑi = ∑m

j=i(1+ 2 sgn(z j)), since a degenerate Feedback-Erlang block withzi = 0 is
Erlang(l,λi) distributed which requires one ln operation and a non degenerate (zi > 0) Feedback-Erlang
block requires three ln operations, two ln operations forc = Geo(zi) and one for Erl(cbi + l,λi).

For the APH class in CF-1 form, there exists an even simpler expression, as the number of traversed
states depends only on the initial state, which in turn is determined by the initial probability vectorα.
Thus, for APH in CF-1 form,

n̄ = ανT, whereν = (n,n−1, . . . ,1).

Equivalently, for the HErD class, ¯n is a weighted sum of the lengths of the Erlang branches:
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n̄ = αbT.

5.2 Optimisation

Considering the costs for the different methods discussed in the previous sections, it becomes clear that
both the representation of the distribution and the method have an impact on the efficiency of PH random
variate generation. One immediate question is then: What is the optimal representation to generate random
variates efficiently? While the answer to this question is notyet available for the general PH case, [22]
presents the following result for APH in CF-1 form:

Lemma 0.7.[22] Given a Markovian representation (α,A) in CF-1 form, the representation (α∗,A∗) that
reverses the order of the rates is optimal with respect to n̄ if α∗ is a stochastic vector. In this case, all
bi-diagonal representations are Markovian.

The proof given in [22] relies on the observation that swapping two adjacent ratesai,ai+1 moves probability
mass towards the end of the chain only ifai < ai+1. Thus, reversing the CF-1 order (whereai ≤ ai+1 for
all i) gives an initial probability vectorα where probability mass is concentrated at the higher indices.
Recalling from above, ¯n = ανT for APH, i.e. high probability for states close to absorption implies low
average costs.

Note, however, that reversing the CF-1 form may result inα with negative entries [22]. In this case,
the tuple(α∗,A∗) still represents the same distribution, but the representation does not have a Markovian
interpretation anymore, and thus ¯n is not defined, nor canSimplePlay be applied. The optimal ordering
can then be found by exhaustive search over alln! possible orderings, or by heuristics that try to find a
Markovian representation that is as similar as possible to the reversed CF-1. The heuristics presented in [22]
either start from the CF-1 form and apply pair-wise swappings until the result would be non-Markovian, or
start from the reversed CF-1 and try to reach a Markovian representation.

6 Conclusion

In this chapter we introduced the basics of using phase-typedistributions as tools in resilience evaluation,
discussing the complete workflow from fitting to applicationin both analytical and simulation methods.
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