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Abstract

Today’s traffic theory count upon stochastic modeling and as a part of this
tendency the present thesis deals with second order Markovian arrival pro-
cesses and Markovian modeling of traffic systems.

Accordingly the thesis can be divided into two main parts. In the first
part there is a minimal canonical representation and moment bounds given
for second order Markovian arrival processes. Utilizing the minimal prop-
erty of the canonical form there are also fitting methods proposed one of
them enhances the effectiveness of fitting and the other of them introduces
a completely new approach of fitting.

In the second part we do performance evaluation of the load-balanced
switches, a simple switching architecture. Starting from the detailed model,
of high complexity, of the switch we do further analysis assuming ON/OFF
input processes and further on identical input processes, of low complexity.

As the main problem of the switch is the packet loss probability, which
comes from the finite buffer capacity, we also propose a packet loss minimiza-
tion technique.

In both parts we validate our numerical results – where applicable – by
the comparison with simulation results or by the comparison with other,
previously existing, methods.





Kivonat

Napjainkban a forgalomelmélet egyre többet alkalmazott eszköze a szto-
chasztikus modellezés, azon belül is a markovi modellek. E disszertáció is
a másodrendű Markov érkezési folyamatot és távközlő rendszerek markovi
modellezését tartalmazza.

Ennek megfelelően a disszertáció két részre osztható. Az első rész a
másodrendű Markov érkezési folyamat momentumkorlátait, illetve egy mi-
nimális kanonikus alakját adja meg. Illetve, kihasználva a kanonikus alak
minimális mivoltát, szintén e részben két illesztő eljárást adunk. Az egyik
eljárás az eddig használt általános eljárás hatékonyságát jav́ıtja, mı́g a másik
egy teljesen új megközeĺıtést képvisel.

A második rész a terhelés-kiegyenĺıtő kapcsoló teljeśıtményelemzését tar-
talmazza. Ez egy nagyon egyszerű kapcsoló elrendezés, amelynek fokoza-
tosan jutunk el a részletes (de nagybonyolultságú) modelljétől, az ON/OFF
modelljén át az azonos bemeneti forgalmat feltételező (kisbonyolultságú) mo-
delljéig.

A kapcsoló legfőbb problémájának a véges pufferkapacitásból következő
csomagvesztés tűnik ezért szintén javaslatot teszünk egy csomagvesztést mi-
nimalizáló eljárásra.

Mindkét részben – ahol értelme van – szimulációval kapott eredményekkel,
vagy egyéb (korábban létező) eljárásokkal való összehasonĺıtással igazoljuk
elméleti eredményeink helyességét.
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Part I

Second order Markovian arrival
processes
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Chapter 1

Introduction to the field

The first part of the thesis covers the second order Markovian arrival pro-
cesses (MAP(2)). The importance of MAP(2) comes from its compactness,
serving either as arrival or service process in applications, and from the nice
properties which are not available for higher order MAPs. These nice prop-
erties make MAP(2) popular among researchers for fitting arbitrary arrival
processes.

The general fitting approaches, in most of the cases, are some kind of
multidimensional optimization over a parameter set usually with analytically
unknown boundaries. The lack of knowledge on the constraints makes such
an optimization method less robust and makes it fail in most of the cases.
For this reason it is worth to find the appropriate constraints subject to the
optimization is done. Determining the moment boundaries of the MAP(2)
class would serve this expectation on the constraints.

After we have determined the constraints we can propose specific fitting
methods utilizing our knowledge on the constraints.

1.1 Background

Markovian arrival processes (MAPs) are widely applied in stochastic model-
ing [21], [15], [10], [34], [29], [11], [32], [33]. Their popularity comes from their
relatively easy applicability and the associated efficient numerical methods
(referred to as matrix analytic methods) [27]. MAPs can approximate a wide
range of stochastic processes from the simplest renewal processes to the long
range dependent, fractal-like and heavy tailed ones [21], [15], [10]. Since it
is an important modeling technique researchers pay particular attention to
exploring the MAP(n) class but up to now there are still open questions. One
of these open questions is, what are the boundaries of the MAP(n) class?
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This question is only answered for second order MAPs in Chapter 2. The
first results on the second order MAPs are given in [17] which presents a
basic moment set matching method for hyperexponential MAP(2)s – MAP
with hyperexponential marginal distribution. In the next step [18] provides
the same results for general acyclic MAPs (AMAPs) and finally [8] proves
the equivalence of matrix exponential processes, MAPs and AMAPs of sec-
ond order as well as provides a minimal canonical representation of the two
dimensional arrival processes.

The knowledge on MAP(2) boundaries can be useful in developing simple
models of complex systems as well as in utilizing it as basic building block
of large models [11]. Although [8] introduced a moment matching method,
together with the derivation of the MAP(2) boundaries, it is not utilized yet
for special fitting techniques or to simplify the existingfitting algorithms.

In Chapter 3, recalling the results of [7], we give two fitting algorithms
utilizing the MAP(2) boundaries and the canonical form. The first method
searches for an optimal point in the valid MAP(2) moment space by min-
imizing the Euclidean distance of the moment sets. The difficulty of this
approach comes from the fact that the boundary of the valid MAP(2) mo-
ment space is very irregular. Practically the proposed approach is to divide
the MAP(2) boundary into “nice” subsurfaces on which the minimization
for the distance is constrained. We show that it is worth to do so as the
constrained problems can be solved easier than global optimization problems
that do not take care of the exact boundaries.

The second fitting algorithm fits MAPs of high order with MAPs of low
order based on the distance of the finite or infinite dimensional joint density
functions. In this generally applicable approach we restrict our attention to
the case when the low order MAP is MAP(2), because we make use of the
MAP(2) canonical form.

We will demonstrate the performance of the proposed algorithms by
means of fitting the cumulative distribution function, the correlation struc-
ture and the queueing behavior.

1.2 Distributions with second order rational

Laplace transforms

Let X be a continuous non-negative random variable with cumulative distri-
bution function

F (t) = Pr(X < t) = 1− veHt1,
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where row vector v is referred to as the initial vector, square matrix H as the
generator and 1 as the closing vector. Without loss of generality (see [28]),
throughout the thesis we assume that the closing vector, 1, is a column vector
of ones, i.e., 1 = ( 1,1,...,1 )T. As X is a continuous random variable, it has no
probability mass at zero, i.e., v1 = 1. The density, its Laplace transform and
the moments of X can be computed as

f(t) = veHt(−H)1, (1.1)

f ∗(s) = E
(
e−sX

)
= v (sI−H)−1 (−H)1, (1.2)

and

µn = E (Xn) = n!v (−H)−n 1. (1.3)

In this part, the cardinality of vector v and of matrix H is assumed to
be 2. We consider the following three cases:

• If f(t) ≥ 0 and
∫∞
0

f(t)dt = 1, then X has a ME(2) distribution. The
elements of v and H may be arbitrary real numbers.

• If v = π is a probability vector and H = A is a transient Markovian
generator matrix (i.e., the generator matrix of a transient continuous-
time Markov chain (CTMC)), then X has a PH(2) distribution.

• If v = π is a probability vector and H = A is an acyclic transient
Markovian generator matrix, then X has an APH(2) distribution.

By ME(2), PH(2) and APH(2), we also denote the three corresponding
sets of distributions. Generally, we use different notations for the matrix-
exponential (ME, MEP) and the Markovian (PH, MAP) representations to
emphasize that different constraints apply to them.

Recall that π is a probability vector when (π)i ≥ 0, π1 = 1 (where
the latter condition is fulfilled a priori). Matrix A is a transient Markovian
generator when (A)ii < 0, Aij ≥ 0∀i 6= j, A1 ≤ 0, A1 6= 0. Matrix A
is an acyclic transient Markovian generator, when A is a transient Markovian
generator matrix and there is no loop in A, i.e., (A)12 or (A)21 is zero.
Without loss of generality, we consider upper triangular acyclic generators
in this paper, i.e., (A)21 = 0. Scalars like (A)ij denote the ijth element of
matrix A.

To ensure that f(t) in (1.1) is a density function, H generally has to
fulfill the necessary condition that its eigenvalues are real and negative (con-
sequently H is non-singular). In the second order case, we can fully classify
these density functions.
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Theorem 1. [14] For second order representations (1.1), the Laplace trans-
form f ∗(s) has the form

f ∗(s) =
1 + s/σ

(1 + s/λ1) (1 + s/λ2)
. (1.4)

Function f(t) in (1.1) represents a density function, if and only if λ1, λ2 and
σ are all real and

0 < min (λ1, λ2) ≤ σ ≤ ∞. (1.5)

The poles and the zero of f ∗(s) are −λ1, −λ2 and −σ, respectively, with
all of them being on the negative real axis. Without loss of generality, let
λ1 ≤ λ2 (or −λ1 ≥ −λ2). The density function can be written as

f(t) =

{
σ−λ1

λ2−λ1

λ2

σ
λ1e

−λ1t + σ−λ2

λ1−λ2

λ1

σ
λ2e

−λ2t, if λ1 < λ2,
λ1

σ
λ1e

−λ1t +
(
1− λ1

σ

)
λ2

1te
−λ1t, if λ1 = λ2.

(1.6)

A matrix representation of distributions with the rational Laplace trans-
form (1.4) does not necessarily have a probabilistic/Markovian structure for
vector v and matrix H. This can already be seen from the visualization of
the two-branch canonical representation

v =
(

σ−λ1

λ2−λ1

λ2

σ
σ−λ2

λ1−λ2

λ1

σ

)
, H =

(
−λ1 0
0 −λ2

)

(1.7)

in Figure 1.1. This representation can be interpreted as a transient CTMC
(more precisely, a Bernoulli mixture of two exponentials), if and only if λ1 ≤
σ ≤ λ2, where λ1 6= λ2 in order to avoid stochastic equivalence with the
scalar exponential distribution. Only in this case, which corresponds to a
squared coefficient of variation c2

v = µ2

µ1
2 − 1 ≥ 1, v is probabilistic. In the

other permissible range according to (1.5), σ > λ2, however, (1.7) is still a
valid ME(2) representation for a density function, but v is not a probability
vector.

The notational differences between phase-type and matrix-exponential
representations could be highlighted by many other representations, where
e.g., both the row sum and the diagonal element of H may be positive in
contrast with phase-type generators. Despite these differences, the three
classes for second order distributions, i.e., acyclic PH(2), arbitrary PH(2)
and ME(2), can easily be shown to be identical, which we formally state in
the following theorem.

Theorem 2. The distribution sets ME(2), PH(2) and APH(2) are equiva-
lent, i.e., ME(2) ≡ PH(2) ≡ APH(2).
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λ2

λ1

σ−λ1

λ2−λ1

λ2

σ

σ−λ2

λ1−λ2

λ1

σ

Figure 1.1. ME(2) representation (1.7)

λ2λ1

λ1

σ
1− λ1

σ

Figure 1.2. ME(2) representation (1.8)

Proof. Based on the definition of these classes, we have APH(2) ⊂ PH(2) ⊂
ME(2). Here, we only prove that any ME(2) distribution has an APH(2)
representation.

Let us rewrite the Laplace transform f ∗(s) of the density function (see
(1.4)) as

f ∗(s) =
1− λ1/σ

(1 + s/λ1) (1 + s/λ2)
+

λ1/σ

(1 + s/λ2)
.

This structure reveals an analogy to a Laplace transform of a Bernoulli mix-
ture of a hypoexponential density and an exponential density, which leads us
to the following matrix-exponential representation

v =
(
p 1− p

)
(= π), H =

(
−λ1 λ1

0 −λ2

)

(= A), (1.8)

with p = 1 − λ1

σ
. Figure 1.2 visualizes this acyclic ME(2) representation. It

is easily verified that (1.1) with these settings for v and H yields (1.6). Due
to condition (1.5), i.e., λ1 ≤ σ, it follows 0 ≤ λ1

σ
≤ 1 so that representation

(1.8) is indeed a valid APH(2) representation (π,A).

Thus, we can represent any ME(2) distribution as an APH(2) distribution
via (1.8) based on which we identify a ME(2) distribution with the triple
{p, α, λ1}, where α = λ1/λ2. The valid ranges of the parameters are 0 ≤ p ≤
1, 0 ≤ α ≤ 1, λ1 > 0. In this triple, p and α define the “shape” of the
distribution and λ1 affects only its “intensity”. Introducing parameter α will
also help us to formulate bounds more simply in the sequel of this part.
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The (π,A) representation is not unique. A set of different APH rep-
resentations can describe the same distribution. For example, for later use
introduce

π(a) =
(

p

1−αa
1− p

1−αa

)
, A(a) =

(
−λ1 (1− a)λ1

0 −λ2

)

, (1.9)

which results in a valid APH representation when 0 ≤ a ≤ min(1, 1−p

α
). If

a = 1, we require α 6= 1. Otherwise, the two-dimensional representation (1.9)
reduces to a (scalar) exponential distribution.

1.3 Arrival processes of second order

Let X(t) be the number of arrivals at time t in an interval-stationary arrival
process, defined by matrices H0 and H1, whose sequence of interarrival times
is X0, X1, . . . The joint density of X0, X1, . . . , Xk is

f(x0, x1, . . . , xk) = veH0x0H1e
H0x1H1 . . . eH0xkH11, (1.10)

where v is the solution of v(−H0)
−1H1 = v and v1 = 1.

Again, we focus on the cardinality of 2 for H0 and H1. Similar to the
previous section, we consider three cases:

• If f(x0, x1, . . . , xk) ≥ 0 ∀k ≥ 0 and ∀x1, x2, . . . , xk ≥ 0 and
∫

x1
. . .
∫

xk
f(x0, x1, . . . , xk)dx1 . . . dxk = 1 ∀k ≥ 0, then X(t) is a

matrix-exponential process, MEP(2).

• If H0 = D0 is a transient Markovian generator matrix and H1 = D1 ≥
0, such that −D01 = D11, then X(t) is a Markovian arrival process,
MAP(2).

• If H0 = D0 is an acyclic transient Markovian generator matrix and
H1 = D1 ≥ 0, such that −D01 = D11, then X(t) is an acyclic Marko-
vian arrival process, AMAP(2).

In analogy to the distribution sets ME(2), PH(2) and APH(2), we also de-
note the above three sets of processes by MEP(2), MAP(2) and AMAP(2),
respectively. Whether these acronyms are used for the specific set or an
element thereof will be apparent from the context.

When X(t) is a MEP(2), it has the following properties:

• The stationary interarrival time distribution is matrix-exponential with
parameters v and H0. Therefore, H0 fulfills the conditions of ME dis-
tributions provided in the previous section.
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• Starting from an arbitrary initial vector (v0), the respective initial vec-
tors at the consecutive interarrivals (v1,v2, . . . ) satisfy vi = vi−1G,
where G = (−H0)

−1H1. Matrix G has the following properties:

– vG = v and G1 = 1.

– 1 = G1 implies that the respective initial vectors of the consecu-
tive arrivals (v1,v2, . . . ) satisfy vi1 = 1, if v01 = 1.

– 1 = G1 = (−H0)
−1H11 implies −H01 = H11.

When X(t) is a MAP(2), it has the following additional properties:

• The phases of the system at arrival epochs form a DTMC with tran-
sition probability matrix P = (−D0)

−1D1, i.e., the elements of P are
between 0 and 1 (P is a stochastic matrix).

• v = π is a probability vector. It is the stationary distribution of the
embedded DTMC, i.e., πP = π, π1 = 1.

The major differences of the MEP case and the MAP case are the fol-
lowing. In case of MEP the row sum and the diagonal element of H0 can be
positive, the elements of v and G can be negative or greater than one and
H1 can contain negative elements. Note, however, that row sums of H0 +H1

must be zero in both cases.
Since the interarrival times of a MEP(2) have a ME(2) distribution with

generator H0 and initial vector v, the moments of the interarrival times are
(in accordance with (1.3))

µn = n!v(−H0)
−n1. (1.11)

If X(t) is a MEP(2) (MAP(2)), matrix G (P) has two eigenvalues 1 and γ.
Parameter γ defines the geometric decay of the lag-k correlation function [19]

corr(X0, Xk) =
E
((

X0 − E(X)
)(

Xk − E(X)
))

var(X)
= γk

µ2

2
− µ2

1

µ2 − µ2
1

, (1.12)

where random variable X stands for a generic interarrival time. Since auto-
correlation functions are necessarily non-divergent, eigenvalue γ is limited to
−1 ≤ γ < 1 a priori.

The consecutive discussions are based on the observation that the first
three moments of the interarrival time (or equivalently λ1, α, p) and the lag-1
correlation coefficient (or equivalently γ, according to (1.12)) uniquely define
the stationary behavior of MEP(2)s [9].
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Chapter 2

Markovian canonical form of
second order matrix
exponential processes

2.1 Canonical AMAP(2)s

In Section 2.1.1, we present the general canonical form for second order pro-
cesses. This canonical form at first sight appears to be even more constrained
than arbitrary AMAP(2)s, due to an enforced zero element in matrix D1 be-
sides the upper triangular matrix D0. But we will show later in Section 2.2
that every MEP(2) can be transformed to this canonical form. This proves
the equivalence of classes AMAP(2), MAP(2) and MEP(2). Until this proof
is completed, we refer to all processes being represented by the canonical
form as canonical AMAP(2)s.

In Section 2.1.2, we derive the correlation bounds for canonical
AMAP(2)s. We achieve this by basing the original representation on
a parameter set which involves the correlation parameter γ. This new
parametrization enables us to formulate the correlation bounds in a sim-
ple form. In fact, it is this simplicity of the bounds that allows us to show
their validity for MEP(2)s in Section 2.2.

2.1.1 The canonical form of second order processes

We first define the general canonical form. The representation is based on
the rate parameters λ1 and λ2 and probabilities a and b, where a corresponds
to the parameter with the same name in the APH representation (1.9). De-
pendent on the characteristics of the correlation structure (see Corollary 1
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below), there are two variants of the canonical form.

Definition 1. The first canonical representation of MAP(2)s is defined as

D0 =

(
−λ1 (1− a)λ1

0 −λ2

)

, D1 =

(
aλ1 0

(1− b)λ2 bλ2

)

. (2.1)

The second canonical form is given by

D0 =

(
−λ1 (1− a)λ1

0 −λ2

)

, D1 =

(
0 aλ1

bλ2 (1− b)λ2

)

, (2.2)

where 0 < λ1 ≤ λ2, 0 ≤ a ≤ 1 and 0 ≤ b ≤ 1. Additionally, we require that

• a, b 6= 1 in the first canonical form (for recurrency) and

• b 6= 0 in the second canonical form (for recurrency) and

• λ1 6= λ2, if a = 1 in the second canonical form.

For correlated processes, a and b must be nonzero.

Several characteristics of the canonical form depend only on parameters
a and b

Corollary 1. The correlation parameter γ of the first canonical form is given
by

γ = ab. (2.3)

The correlation parameter γ of the second canonical form is given by

γ = −ab. (2.4)

The phase probability vector at stationary arrival epochs in case of the first
canonical form is

π =
(

1−b
1−ab

b−ab
1−ab

)
, (2.5)

In case of the second canonical form, it is

π =
(

b
1+ab

1− b
1+ab

)
. (2.6)
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Basing the representations on parameters λ1, α, p, γ

We may also express the canonical forms in terms of the four parameters
λ1, α, p, γ. Parameters α = λ1

λ2
and p were already introduced in Section 1.2

(see (1.9)). To complete the transformation, we still need to express param-
eters a and b in terms of λ1, α, p, γ.

According to (1.9), we can get several representations of the same APH(2)
distribution with different settings of a in its valid range. On the other hand,
the phase probability vector π of the canonical AMAP(2) is given by (2.5)
for positive γ and (2.6) for negative γ. (For γ = 0, the canonical AMAP(2)
simply reduces to an APH(2) renewal process with trivial relations, e.g.,
a = b = 0 in the first canonical form.) By equating the initial vector π(a)
of the marginal APH(2) distribution and the phase probability vector π of
the canonical AMAP(2), we may determine parameters a and b in terms of
α, p, γ.

We have to distinguish two cases dependent on the sign of γ.

Case γ > 0 Equating the initial probability vector of the general APH(2)
representation in (1.9) and the phase probability vector of the first canonical
form in (2.5) together with (2.3) we get the system of equations

p

1− αa
=

1− b

1− ab
,

γ = ab.
(2.7)

This set of equations has two solutions, where a, b > 0 holds in both
solutions. If there is a valid solution at all (i.e., γ is permissible), then it is
the following one

a =
1

2α

(

1 + αγ − p(1− γ)−
√

(1 + αγ − p(1− γ))2 − 4αγ
)

,

b =
1

2

(

1 + αγ − p(1− γ) +
√

(1 + αγ − p(1− γ))2 − 4αγ
)

.
(2.8)

Case γ < 0 Equating (1.9) and (2.6) together with (2.4) we get the system
of equations

p

1− αa
=

b

1 + ab
,

γ = −ab.
(2.9)

13



For permissible γ, there is only one solution in this case

a =
−γ

p(1− γ)− αγ
,

b = p(1− γ)− αγ.

(2.10)

Thus, both canonical forms in Definition 1 can also be expressed in terms
of λ1, α, p, γ as opposed to λ1, λ2, a, b. Since λ1, λ2 are positive rates and a, b
must be probabilities, the Markovian nature of the original canonical forms
can be decided easily a priori based on the values of these parameters. The
situation is different for the representations based on λ1, α, p, γ. Whereas by
definition it must hold that λ1 > 0 and α, p ∈ [0, 1], the permissible range of
γ is not obvious.

In the next section, we exploit the knowledge about the other parameters
to determine which maximal and minimal values γ may assume so that the
canonical AMAP(2) representations based on λ1, α, p, γ are valid Markovian
arrival processes.

2.1.2 Correlation bounds of the canonical AMAP(2)s

In the following, we derive upper and lower bounds for the correlation pa-
rameter γ in terms of the shape parameters α and p. It turns out that these
bounds are independent of the rate parameter λ1.

During the derivation of both upper and lower γ bounds, we follow the
same idea. Essentially, we translate the constraints on parameters a and b,
i.e., 0 ≤ a, b ≤ 1 (with the specific exceptions mentioned in Definition 1) to
constraints on parameter γ. As the main step to this end, we express γ as a
function of parameter a, and compute the (permissible) values of a (in terms
of α and p) that produce the maximal and the minimal value of γ.

As we will see, specific choices of α and p restrict the permissible range of
probability parameter a for c2

v < 1. Therefore, we investigate these constraints
of parameter a first.

With α and p given, the condition that π(a) in (1.9) has to be a prob-
ability vector limits the range of a in [0, 1]. For the first vector compo-
nent, p

1−αa
≥ 0 always holds, if 0 ≤ a ≤ 1. From p

1−αa
≤ 1, we obtain

a ≤ min
(
1, 1−p

α

)
. The next lemma gives an easy-to-check condition to iden-

tify the upper limit of a.

Lemma 1. c2
v < 1, if and only if α > 1− p.

Proof. The squared coefficient of variation c2
v can be expressed in terms of

14



the parameters α and p as follows

1− c2
v = 2− µ2

µ1
2

=
4pλ2

(λ1 + pλ2)2

(
λ1 − (1− p)λ2

)
=

4p

(α + p)2

(
α− (1− p)

)
.

Here, moments µ1 and µ2 are computed from (1.3) with APH(2) representa-
tion (1.9). Observing that the fraction on the right-hand side (rhs) is always
positive proves the lemma.

Thus, with Lemma 1, the valid ranges of a are

a ∈
[

0,
1− p

α

]

, if c2
v < 1,

a ∈ [0, 1] , if c2
v ≥ 1.

(2.11)

We first need to express γ as a function of parameter a (and for given
α and p). In order to obtain the positive upper bounds for γ, we maximize
this function with respect to a. Analogously, to obtain the negative lower
bounds for γ, this function is minimized with respect to a. We consider these
two cases in the following two sections, respectively. At the beginning of
each section, we first investigate if the a priori restriction that γ ∈ [−1, 1) is
further constrained by the fact that parameter b of the canonical form must
be in [0, 1]. Recall that a transformation from a permissible parameter set
λ1, α, p, γ to λ1, λ2, a, b must not result in invalid parameters.

Upper bounds for correlation parameter γ

When computing the upper/positive correlation bounds (γ > 0), parameter
b can be expressed from equations (2.7) as

b = 1− p

1− αa
(1− γ), (2.12)

where p

1−αa
∈ [0, 1], if a is valid. From (2.12), it follows that any positive γ

may be chosen for b to be in [0, 1], i.e., b ∈ [0, 1] does not impose an additional
constraint on γ.

To find the upper bound, we express b from (2.7) and obtain γ as a
function of a

γ(a) =
a(1− αa− p)

1− αa− ap
. (2.13)

The upper correlation bound is the maximum of this function with respect
to a valid parameter a. This function has always two roots, one at a = 0 and
one at a = 1

α
(1− p).

15



The derivative of γ(a) is

d

da
γ(a) =

1− 2αa− p

1− αa− ap
+

a(1− αa− p)(α + p)

(1− αa− ap)2
.

To obtain the maximum value, we look for a(MAX), for which
d
da

γ(a)
∣
∣
a=a(MAX) = 0. The two solutions are

a
(MAX)
i =

α±
√

pα(α + p− 1)

α2 + αp
, i = 1, 2.

For assessing the potential extrema, we need to consider the permissi-
ble range of parameter a, in (2.11), shown to depend on c2

v. Therefore, we
distinguish the two subcases c2

v < 1 and c2
v > 1.

Subcase c2
v < 1, where a ∈

[
0, 1−p

α

]
In this case, function γ(a) has a

maximum in the valid region, since it has roots at the borders of the valid
region (at a = 0 and at a = 1−p

α
) and has a positive derivative at a = 0. This

maximum is tighter than γ(a) = 1, since – if a < 1 – it always holds that
γ(a) < 1 according to (2.13). Note that a = 1 is not admitted for γ > 0 (see
first canonical form in (2.1) of Definition 1).

From the two solutions of d
da

γ(a) = 0, only the one where the square root
appears with negative sign is a real maximum, since the second derivative is
negative only in this case. Thus, parameter a that maximizes γ(a) is

a(MAX) =
α−

√

pα(α + p− 1)

α2 + αp
.

Finally the upper limit of γ is

γ(MAX) = γ(a(MAX)) =
α + p(α + p− 1)− 2

√

pα(−1 + p + α)

(p + α)2
. (2.14)

Subcase c2
v > 1, where a ∈ [0, 1] In this case, function γ(a) is positive and

increases monotonically in (0, 1
α+p

). From Lemma 1, it follows that if c2
v > 1

holds, 1
α+p

> 1. Therefore the maximum of γ(a) is at the right-hand border
of the valid region, i.e., at a = 1

γ(MAX) = γ(a)|a=1 = 1. (2.15)
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Lower bounds for correlation parameter γ

In order to check if b ∈ [0, 1] imposes an additional constraint on γ < 0 (i.e.,
an additional lower/negative correlation bound), we use equation (2.9) to
express parameter b as

b = (1− γ)
p

1− αa
.

Obviously, this expression can be greater than 1 for γ < 0 (as p

1−αa
∈ [0, 1]).

This means that – for b to be in [0, 1] – we have the following lower bound
for γ

γ ≥ p + αa− 1

p
= γ̃(a). (2.16)

In other words, the condition b ∈ [0, 1] mandates that γ̃(a) ≤ γ < 0.
To find the lowest permissible value of γ, we first express γ as a function

of a via (2.9)

γ̂(a) =
−ap

1− aα− ap
.

We must minimize this function with respect to a without violating γ > γ̃(a)
(see (2.16)). Let us first determine the range of a, where the lower bound
γ̃(a) supersedes γ̂(a), i.e., where γ̂(a) ≤ γ̃(a) holds

−ap

1− aα− ap
≤ p + αa− 1

p
.

Solving this inequality, we find that γ̃(a) is tighter, if

a ≥ 1− p

p + α
.

Thus the possible cases are

• If a < 1−p

p+α
, the lower bound is provided by the minimum of γ̂(a) in the

range a ∈
(

0, 1−p

p+α

)

. Since γ̂(a) decreases monotonically, the minimum

is reached for the largest possible value of a.

• If a ≥ 1−p

p+α
, the lower bound is provided by γ̃(a). But γ̃(a) increases

monotonically with a. Thus the smallest value of the lower bound is
reached for the smallest value of a = 1−p

p+α
.

Based on this discussion, the optimal parameter a is a(MIN) = 1−p

p+α
, if it is

permissible.
The permissible ranges of parameter a, in (2.11), depend on c2

v so that
we again treat the two subcases c2

v < 1 and c2
v > 1 separately.
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Subcase c2
v < 1, where a ∈

[
0, 1−p

α

]
Since 1−p

p+α
< 1−p

α
, the above choice of

parameter a is optimal and permissible

a(MIN) =
1− p

p + α
.

At this point, both γ̃(a) and γ̂(a) are equal and provide the lower limit for γ

γ(MIN) = − 1− p

p + α
. (2.17)

Subcase c2
v > 1, where a ∈ [0, 1] In this case, 1−p

p+α
< 1 does not necessarily

hold.

• If 1−p

p+α
< 1, then we have the same optimal and permissible parameter

a and the same lower bound as in the case c2
v < 1. Therefore,

γ(MIN) = − 1− p

p + α
. (2.18)

• If 1−p

p+α
≥ 1, then the lower bound is determined by γ̂(a). Since γ̂(a) de-

creases monotonically, the optimal parameter a is located at the upper
border of the valid range, a(MIN) = 1, and

γ(MIN) =
p

p + α− 1
. (2.19)

Corresponding to the previous derivations of the γ bounds, Figure 2.1
depicts the partitioning of the (p, α) plane into three areas I, II, III, for which
lower and upper γ bounds are derived separately. And Table 2.1 summarizes
the same results.

Finally, we point out that the correlation bounds of the set AMAP(2) were
given in [18] in terms of the first three moments of the marginal APH(2) dis-
tribution. Indeed, these bounds can be transformed to the ones for canonical
AMAP(2)s given in Table 2.1. The more compact structure of the canoni-
cal form in Definition 1 (with one parameter less than in [18]) significantly
simplifies the derivation of γ bounds. In fact, derivations were only sketched
in [18], while we are able to give explicit proofs in this paper. More im-
portantly, it is only the new parametrization (in terms of α and p) of these
bounds that enables us to show the identity relationship between MEP(2)s
and AMAP(2)s in Section 2.2.
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α

Figure 2.1. Fragmentation of the (p, α) plane in the unit square

Table 2.1. Lower and upper γ bounds for the three areas in the (p, α) plane

γ bound

area condition lower upper

I c2
v < 1 − 1−p

p+α

α+p(α+p−1)−2
√

pα(−1+p+α)

(p+α)2

II c2
v > 1 ∧ 1−p

p+α
< 1 − 1−p

p+α
1

III c2
v > 1 ∧ 1 ≤ 1−p

p+α

p

p+α−1
1

2.2 Equivalence of MEP(2) and AMAP(2)

The results on the AMAP(2) boundaries form a rounded whole together with
the theorem on the equivalence of the second order processes. Accordingly
in this section, we show up the identity of the sets MEP(2) and canonical
AMAP(2) and we refer to [8] for the detailed proof. From this fact, the central
result of [8] actually follows, namely the equivalences MEP(2) ≡ MAP(2) ≡
AMAP(2). We achieve this by deriving necessary constraints, which apply to
the correlation parameter of an arbitrary MEP(2). The fact that the MEP(2)
correlation range does not exceed that of canonical AMAP(2)s implies that
MEP(2) is also a subset of canonical AMAP(2). As canonical AMAP(2) ⊂
AMAP(2) ⊂ MAP(2) ⊂ MEP(2) holds by definition, the identities are then
proven.

Similar to ME(2) distributions, the (H0,H1) representation of MEP(2)
processes is not unique. In order to evaluate some necessary constraints of
the MEP(2) class, we need to start from a non-degenerate representation of
the interarrival time distribution. A representation is degenerate, if vi = 0 or
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(H01)i = 0 for i = 1 or i = 2. The acyclic representation (1.8) is degenerate,
while the one in (1.9) is non-degenerate for all 0 < a < 1−p

α
. We start from

the following non-degenerate representation (H0,H1), whose interarrival time
distribution is according to (1.9)

v =
(

pλ2

λ2−λ1a
1− pλ2

λ2−λ1a

)

,

H0 =

(
−λ1 (1− a)λ1

0 −λ2

)

,

H1 =

(
aλ1(1− q1) aλ1q1

λ2q2 λ2(1− q2)

)

.

(2.20)

From any different MEP(2) representation, (Ĥ0, Ĥ1), this representation
can be obtained through a similarity transform with a matrix B, i.e.,
H0 = B−1Ĥ0B, H1 = B−1Ĥ1B, where matrix B satisfies B1 = 1 and(

B−1Ĥ0B
)

21
= 0. If (Ĥ0, Ĥ1) and (H0,H1) represent the same process,

such a matrix B exists.
Note that −H01 = H11, as required (see Section 1.3). The eigenvalues

of (−H0)
−1H1 are 1 and a(1 − q1 − q2). Recall from Section 1.3 that the

eigenvalue of (−H0)
−1H1 less than 1 corresponds to γ. From γ = a(1−q1−q2)

and v(−H0)
−1H1 = v, we have

q2 =
p(γ − 1)

aα− 1
and q1 = 1− γ

a
− p(γ − 1)

aα − 1
.

At this point, with the ME(2) distribution being fixed, the correlation
parameter γ is the only “free” parameter in representation (2.20). The main
constraint that limits γ of the MEP(2) class is that the joint density (1.10),
f(x0, x1, . . . , xk), must be non-negative. This constraint may be reformulated
in terms of conditional densities. The kth interarrival time with density

f(xk|X0 = x0, . . . , Xk−1 = xk−1) =

veH0x0H1e
H0x1H1 . . . eH0xk−1H1

veH0x0H1eH0x1H1 . . . eH0xk−1H11eH0xkH11
must be a valid ME(2) distribution ∀k ≥ 0 and ∀x1, x2, . . . , xk ≥ 0. Random
variable Xk has a valid ME(2) distribution, if its initial vector

vk(x0, x1, . . . , xk−1) =
veH0x0H1e

H0x1H1 . . . eH0xk−1H1

veH0x0H1eH0x1H1 . . . eH0xk−1H11 (2.21)

is in the valid range defined by H0. The valid range of representation (2.20)
is

0 ≤
(
vk(x0, x1, . . . , xk−1)

)

1
≤ 1

1− aα
=

λ2

λ2 − λ1a
(2.22)
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according to representation (1.9) and Theorem 2. For second order distribu-
tions, it is sufficient to check if the first element of vector vk falls into the
valid range, since the property

(
vk(·)

)

1
+
(
vk(·)

)

2
= 1 ensures the validity of

the second element of vk(·).
In fact, in [8], there is only the validity of vector vk for two limit-

ing cases discussed, from which correlation bounds for parameter γ are
obtained. These bounds already constrain the permissible range of γ to
the one of the canonical AMAP(2) representation in Table 2.1 of Sec-
tion 2.1.2 such that MEP(2) ⊂ canonical AMAP(2). Since the subset re-
lation, canonical AMAP(2) ⊂ AMAP(2) ⊂ MAP(2) ⊂ MEP(2), is granted
by the definition of the processes and the identity of the interarrival distribu-
tions is given by Theorem 2, the equivalence of Theorem 3 is then established.

Theorem 3. The process sets MEP(2), MAP(2) and AMAP(2) are equiva-
lent, i.e.,

MEP(2) ≡ MAP(2) ≡ AMAP(2).

For our purposes, in this thesis, there is no mean of the detailed proof
of Theorem 3, i.e., we refer to it without proving it. The detailed proof is
provided in [8].
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Chapter 3

Canonical form based second
order Markovian arrival process
fitting

3.1 The moment boundaries of the MAP(2)

set

A non-redundant MAP(m), i.e., if there does not exist an equivalent MAP(o)
with o < m, is determined by the so-called basic moment set, containing m2

reduced (joint) moments [9]. In case of MAP(2) a process is defined by
four parameters. They are the first 3 moments defining the PH(2) marginal
distribution and the lag-1 correlation defining the, geometrically decaying,
correlation structure of the process.

Instead of working with the first 3 moments and the lag-1 correlation it is
often beneficial to work with dimensionless quantities. In MAP(2) analysis
the use of normalized moments [31] and the correlation coefficient became
popular. The normalized moments are defined as

nk =
µk

µk−1µ1
, k ≥ 2, (3.1)

whilst [19] defines γ as the shape parameter of the geometric decaying auto-
correlation function of the MAP(2) class, as

corr (X0, Xk) =
E (X0Xk)− µ2

1

µ2 − µ2
1

= γk
n2

2
− 1

n2 − 1
. (3.2)

As a result of (3.1) and (3.2) we can represent a MAP(2) with µ1 (multiple
of the time unit) and 3 dimensionless quantities (n2, n3, γ). In case of param-
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eter matching µ1 is easy to match independently of the other parameters
since for a positive constant c with D′

0 = cD0, and D′
1 = cD1 we have

µ′
1 =

µ1

c
,

n′
k =

µ′
k

µ′
k−1µ

′
1

=
c−kµk

c−(k−1)µk−1c−1µ1

=
µk

µk−1µ1

= nk,

E(X ′
0X

′
k) = π(−cD0)

−1Pk(−cD0)
−11 = c−2 E(X0Xk),

P′ = (−cD0)
−1 (cD1) = (−D0)

−1 D1 = P

and

γ′ =
E (X ′

0X
′
1)− µ′

1
2

µ′
2

2
− µ′

1
2

=
c−2 E (X0X1)− (c−1µ1)

2

c−2µ2

2
− (c−1µ1)2

= γ.

Hence, our focus is on the matching/fitting of the dimensionless set of quan-
tities (n2, n3, γ).

The boundaries of the PH(2) marginal distribution [6] The
marginals of a MAP(2) are PH(2) distributed and are characterized by µ1

and (n2, n3). The bounds for (n2, n3) are as follows [6].

3

2
≤ n2. (3.3)

To give the bounds of the third normalized moment first we introduce sim-
plifying notations

p2 =
3(n2 − 2)

3n2

(

−2
√

3√
12− 6n2

− 1

)

,

a2 =
n2 − 2

p2(1− n2) +
√

p2
2 + (2p2(n2 − 2))

,

l2 =
3(a2 + 1)

a2p2 + 1
− 6a2

2 + a2p2(2a2 + 2)
, (3.4)

u2 =
6(n2 − 1)

n2
. (3.5)

Using these notations we can express the third normalized moment bounds
by its lower

l2 ≤ n3, if
3

2
≤ n2 ≤ 2 (3.6a)

3

2
n2 < n3, if 2 ≤ n2 (3.6b)
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Figure 3.1. The PH(2) boundaries on the (n2, n3) plane

and upper bounds

n3 ≤ u2, if
3

2
≤ n2 ≤ 2 (3.6c)

n3 <∞, if 2 < n2. (3.6d)

The boundaries of the PH(2) class, together with the curve (3.8), is summa-
rized in Figure 3.1.

The boundaries of the γ parameter They are provided in Table 2.1 of
Chapter 2 in terms of parameters (p, α). The same correlation bounds are
summarized in Table 3.1 in terms of the normalized moments.

3.2 Approximate fitting algorithms

The availability of explicit expressions that define the parameters of the
canonical MAP(2) form based on the moment set (µ1, n2, n3, γ) makes mo-
ments matching an obvious job when the moments to be fitted are within
the MAP(2) moments bounds (Section 3.1). Unfortunately, to find the best
MAP(2) approximate of a moment set which is outside the valid MAP(2)
moments boundaries is a far more complex task.
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Table 3.1. The MAP(2) γ bounds in terms of the normalized moments

condition lower γ bound

n2 < 2 −n2(n3−6)+6
3n2−6

n2 > 2 ∧ n3 < 9− 12
n2

−n2(n3−6)+6
3n2−6

n2 > 2 ∧ 9− 12
n2
≥ n3

n2(n3−9)−

s

n2

(

n2

(
18n2+n3(n3−18)−27

)
+24n3

)

+12

n2(n3−9)+

s

n2

(

n2

(
18n2+n3(n3−18)−27

)
+24n3

)

+12

condition upper γ bound

n2 < 2 −
2

„

1
2
(n2−2)+ 1

2

q

n2
2−

2n2n3
3

«2

n2−2

n2 > 2 ∧ n3 < 9− 12
n2

1

n2 > 2 ∧ 9− 12
n2
≥ n3 1

This section compares some general purpose optimization algorithms for
solving this problem. The general fitting approach is to optimize some dis-
tance measure over the MAP(2) class.

There are various options for defining a distance of the moment set. We
made several comparisons and found that with respect to the properties we
are interested in (the benefit of optimizing with Algorithm 2) all reason-
able distances behave similarly. Throughout the paper we use the Euclidean
distance, or simply distance, of the basic moment set

d
(
(µ1, n2, n3, γ), (µ′

1, n
′
2, n

′
3, γ

′)
)

=
√

(µ1 − µ′
1)

2 + (n2 − n′
2)

2 + (n3 − n′
3)

2 + (γ − γ′)2. (3.7)

As there is no widely applied measure for fitting and since the Euclidean
distance is the most natural distance over the three dimensional space, we use
this distance measure to show how the decomposition of the MAP(2) bounds
can improve the moment fitting. The same concept can be applied for any
other distance measures to which the moment bounds, given in Table 3.1,
can be transformed, e.g., weighted moment distance. We do not search for
“the best” distance measure in the paper.
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3.2.1 Global optimization

Having the boundaries of the MAP(2) class in the moment space and a
non MAP(2) point (a point outside the valid MAP(2) moment set) it seems
obvious to define a distance and minimize it subject to the MAP(2) set. In
case of a convex surface it is numerically stable but in case of the MAP(2)
class there are two tangential parts of the subset over the (n2, n3) plane (see
Figure 3.1) and also the γ boundaries are built up of five separate surfaces
(see Table 3.1).

The problem is that the accuracy of such a fitting method highly de-
pends on the performance of the applied optimization algorithm, especially
in case of a concave and not differentiable surface. How does the optimiza-
tion method “change” between the tangential subspaces as the MAP(2) class
does not contain the point of tangency? How can it “leave” the local minima
to find the global one? In which way does it depend on its initial settings?
etc. . .

In the following example we used several, numerical, nonlinear optimiza-
tion methods to find the closest fitting MAP(2) to an external point based
on the Euclidean distance (3.7). The investigated optimization methods are

• Nelder-Mead [30],

• differential evolution [35],

• simulated annealing [40], [26] and

• random search.

All of them have several settings and each of them needs special attention
that we left for the automatic setup mechanism of Mathematica.

To demonstrate the performance of the investigated optimization methods
we simply take a point on the (n2, n3, 0) plane, namely (1, 22, 0), to fit to.
The results are given in the first 4 rows of Table 3.2 for each of the algorithms.

According to our experiences the results in Table 3.2 are typical. The
performance of the general purpose optimization methods are similarly poor.
In the rest of the paper we report only the results of the Nelder-Mead method
among the general purpose optimization methods, but the other (differential
evolution, simulated annealing and random search) exhibit similar properties.

3.2.2 Ordered moment adjusting method (OMAM)

If one knows the exact boundaries of the MAP(2) class and looks for a
MAP(2) fitting of a non MAP(2) moment set (n2, n3, γ) there are several
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Table 3.2. Result of fitting on (1, 22, 0) by several moment fitting algorithms

method distance result (n2, n3, γ)

Nelder-Mead 19.0378 (2.005, 3.015, 0.9993)
differential evolution 18.8955 (2.0918, 3.1379, 0.2645)
simulated annealing 19.8389 (1.5756, 2.1694, 0.00069)

random search 19.3223 (1.8448, 2.6963, 0.0431)

OMAM
√

1601
2
≃ 20 (3

2
, 2, 0)

decomposed numerical fitting 1 (2, 22, 0)

possibilities. Setting the moments out of the valid range separately gives the
best approximation moment by moment. At the first sight it seems that this
is enough, but doing so completely ignores the “perpendicular directions of
the gradient of a measure in the moment space”. This latter behavior results
in a suboptimal solution of an optimization problem trying to minimize the
given measure over the moment space. The problem of this policy is that
the result depends on the order of the adjustment. We show this through an
example using Algorithm 1 describing OMAM.

Algorithm 1 ordered moment adjusting method

INPUT: v = (n2, n3, γ)
OUTPUT: (D0,D1)
1: for i = 0 to 2 do
2: if (v)i falls out of the feasible range of that “moment” then
3: adjust it to be on the closer bound given either in [36] or in [8]
4: else
5: leave (v)i unchanged
6: end if
7: end for
8: (D0,D1)← v
9: return (D0,D1)

Having the outer, non MAP(2), point M = (8, 9, 0) the resulting moment
set of the fitting after the loop, through lines 1 and 7 in Algorithm 1, is
M̂1 = (6, 9, 0) . While if the adjustment of n3 precedes that of n2 then the
resulting MAP will have the coordinates M̂2 = (8, 12, 0) . This small example
shows the importance of the fitting order of the moments.

The distance of M̂1 from the outer point (M) is d1 = d
(

M̂1, M
)

= 2 and
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the distance of M̂2 is d2 = d
(

M̂2, M
)

= 3. Although d1 < d2 none of them

gives the aimed closest MAP point since the distance of M̂ =
(

86
13

, 129
13

, 0
)

is

d = d
(

M̂, M
)

= 6√
13

< 2. Here we note that the above approximate points

are on the open border of the MAP(2), i.e., they are not valid MAP(2)s
themselves, but they demonstrate clearly the problem with OMAM.

A possible usage of Algorithm 1 is the case when the fitting of different
moments has different priorities.

3.3 Decomposed numerical fitting method

Since the problem of global optimization based method results from the fact
the MAP(2) bounding surface is concave and not differentiable, we try to
utilize the knowledge about the MAP(2) boundaries (see Section 3.1).

Technically the MAP(2) boundaries are built up of ten parts. Here we
give the formal description of them as well as the decomposed numerical
fitting method based on the partitioning.

3.3.1 Division of the MAP(2) bounding surface

The bounding surface of the MAP(2) moment set can be divided into parts
with nice surface properties. Indeed the definition of the surface in Table 3.1
already suggests the evident way of dividing the surfaces into parts. This
division is presented in Table 3.3 where the parts are numbered from I to X.

Additionally we define the curve

m2 = 9− 12

n2
. (3.8)

Subsurfaces III, VIII, IX and X are vertical surfaces in the (n2, n3, γ)
space. In particular

• subsurface III is the vertical bound between subsurfaces I and II,

• subsurface VIII is the vertical bound between subsurfaces V and VII,
along n2 = 2,

• subsurface IX is the vertical bound between subsurfaces IV and VII
and

• subsurface X is the vertical bound between subsurfaces V and VII,
along n3 = 3

2
n2 for n2 ≥ 4
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Table 3.3. The MAP(2) bounding subsurfaces

the surface given by its coordinates ID condition(s)
(

n2, n3,−n2(n3−6)+6
3n2−6

)

I 3
2 ≤ n2 < 2, l2 ≤ n3 ≤ u2



n2, n3,−
1
2

„

n2+
q

n2
2−

2n2n3
3

−2

«2

n2−2



 II 3
2 ≤ n2 < 2, l2 ≤ n3 ≤ u2

(n2, l2, γ) III 3
2 ≤ n2 < 2, −n2(l2−6)+6

3n2−6 < γ < −
1
2

„

n2+
q

n2
2−

2n2l2
3

−2

«2

n2−2
(

n2, n3,−n2(n3−6)+6
3n2−6

)

IV 2 < n2 < 4, 3
2n2 < n3 < m2




n2, n3,

n2(n3−9)−

s

n2

(

n2

(
18n2+n3(n3−18)−27

)
+24n3

)

+12

n2(n3−9)+

s

n2

(

n2

(
18n2+n3(n3−18)−27

)
+24n3

)

+12




 V 2 < n2 < 4, m2 ≤ n3




n2, n3,

n2(n3−9)−

s

n2

(

n2

(
18n2+n3(n3−18)−27

)
+24n3

)

+12

n2(n3−9)+

s

n2

(

n2

(
18n2+n3(n3−18)−27

)
+24n3

)

+12




 VI 4 ≤ n2,

3
2n2 < n3

(n2, n3, 1) VII 2 < n2,
3
2n2 < n3

(2, n3, γ) VIII 3 < n3,
n3−
√

(n3−3)2−3

n3+
√

(n3−3)2−3
< γ < 1

(
n2,

3
2n2, γ

)
IX 2 < n2 < 4, 1− n2

2 < γ < 1
(
n2,

3
2n2, γ

)
X 4 ≤ n2,

n2(n2−6)−
√

n2
2(n2−2)2+8

n2(n2−6)+
√

n2
2(n2−2)2+8

< γ < 1
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applying the appropriate constraints on all coordinates.
Figure 3.2(a) summarizes all the nonvertical surfaces appearing in Ta-

ble 3.3, whilst Figure 3.2(b) enlarges, and shows from an other view, the same
for subsurfaces I and II. In Figure 3.2(a) there are also the lower bounding γ
surfaces (subsurfaces I, IV, V and VI) mapped onto the base plane on which
the same division of the (n2, n3) plane appears as in Figure 3.1.

In the following we go through again the fancy subsurfaces, i.e., subsur-
faces I, II, IV, V and VI, in Figures 3.3 and afig:map2ssfacesb. Excluding
subsurface II, which is part of the upper border, each of them are the lower
surface of the border. In a small drawing in the upper left corner of each
figure we showed up the projection of the actual subsurface on the (n2, n3).
In the small drawing there appear the projection of all the actually non
visualized subsurfaces in grey.
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Figure 3.2. The bounds of the MAP(2) class in the (n2, n3, γ) moment space
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3.3.2 The decomposed numerical fitting method

Based on the poor performance of the general purpose optimization methods
and the structure of the MAP(2) moments bounding surface it seems rea-
sonable to decompose the problem into optimization over nice surfaces and
take the best of the obtained solutions. We name this approach decomposed
numerical fitting method.

Similar to the global optimization based fitting methods in Section 3.2.1
our fitting algorithm also tries to minimize the Euclidean distance between
the given outer point and the MAP(2) subspace. The difference is that
here we use the decomposition of the bounding surface and the associated
constraints, i.e., the computational complexity of the method is the same
as the global optimization based but the probability of finding the global
optimum is enlarged.

Our method utilizes that the distance between an outer point and a region
lies on the border of that region. Accordingly it goes through the bounding
subsurfaces, given in Table 3.3, finds the minima of the distance between
each subsurface and the outer point and returns the closest point and its
distance from the outer point. This is expressed briefly in Algorithm 2.

Algorithm 2 decomposed numerical fitting method

INPUT: M = (n2, n3, γ) the outer point
OUTPUT: (D0,D1, d) the closest MAP(2) and its distance from M
1: d =∞
2: while there is unchecked subsurface do
3: find the closest point (M̃) on the actual surface from M
4: calculate the Euclidean distance of M̃ and M d̃ = d(M, M̃)
5: if d̃ < d then
6: d = d̃
7: M̂ = M̃
8: end if
9: consider the “next” subsurface

10: end while
11: (D0,D1)← M̂
12: return (D0,D1, d)
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3.4 Fitting high order MAPs with low order

MAPs

There are several modeling situations when the size of the MAP models
needs to be reduced for efficient numerical computations. E.g., there are
fitting methods which generate large MAPs that allow an easy setting of the
required parameters [11]; in queuing network analysis the size of the traffic
descriptors might increase during the course of the analysis, etc. . . In these
situations it is necessary to reduce the size of the MAP eventually.

A possible way for this reduction is to match a smaller MAP to the low
order moments of the large MAP [20]. It is an efficient approach as long as
the low order moments of the large MAP are inside the moments bounds of
the small one. But when it is not the case the problems discussed in the
previous sections arise.

In this section we present an alternative approach for fitting large MAPs
with smaller ones. To utilize the known bounds of the MAP(2) class we
assume that the small MAP is MAP(2), but the approach is applicable for
larger MAPs as well.

Due to the fact that the stochastic process we would like to approximate is
a MAP, whose analytical properties are known, we can go beyond minimizing
moments based distance measures. We can define distances between joint
densities of finite and also for infinite number of interarrivals.

Equation (1.10) gives the joint density of the interarrival times of a MAP
X(t). Having two MAPs of order m and o, with joint densities f(·) and g(·),
and representations (D0,D1) and (G0,G1), and stationary phase distribu-
tions π and γ, respectively, the integral of the product of their joint densities
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can be expressed as

Lfg(n) =

∫

x

f(x1, x2, · · · , xn)g(x1, x2, · · · , xn)dx

=

∫

x

(
πeD0x1D1e

D0x2D1 · · · eD0xnD11)
⊗
(
γeG0x1G1e

G0x2G1 · · · eG0xnG11) dx

=

∫

x

(π ⊗ γ)
(
eD0x1 ⊗ eG0x1

)
(D1 ⊗G1)× . . .

×
(
eD0xn ⊗ eG0xn

)
(D1 ⊗G1) (1⊗ 1) dx

= (π ⊗ γ)

(∫

x1

eD0x1 ⊗ eG0x1dx1

)

(D1 ⊗G1)× . . .

×
(∫

xn

eD0xn ⊗ eG0xndxn

)

(D1 ⊗G1) (1⊗ 1)

= (π ⊗ γ)
︸ ︷︷ ︸

ν

(
− (D0 ⊕G0)

−1 (D1 ⊗G1)
)n

︸ ︷︷ ︸

Nn

(1⊗ 1)
︸ ︷︷ ︸1

=νNn1.

(3.9)

Here n is the number of considered interarrivals, i.e., the number of the
considered samples in the two arrival processes.

3.4.1 Computing distances between MAPs based on

L(n)

The compact, and easy to compute, form of (3.9) can be utilized also in
evaluating the distances of MAPs. Assume that there is a given MAP with
representation (D0,D1) and we are looking for a smaller MAP with repre-
sentation (G0,G1). In this case, the optimization problem of the distance of
the joint density functions of the two MAPs is

min
G0,G1

d
(
f(x), g(x)

)

= min
G0,G1

∫

x

(
f(x)− g(x)

)2
dx

= min
G0,G1

(∫

x

f(x)f(x)dx +

∫

x

g(x)g(x)dx− 2

∫

x

f(x)g(x)dx

)

= min
G0,G1

(

Lff (n) + Lgg(n)− 2Lfg(n)

)

.

(3.10)

Using (3.9) for the three terms on the right hand side of (3.10) the function
that has to be minimized can be easily computed.
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Furthermore, knowing the general canonical form of the second order
MAPs, as given in (2.1) and (2.2), with four variables (a, b, λ1, λ2), the opti-
mization in (3.10) reduces to a four dimensional minimization problem.

3.4.2 Reducing the MAP order according to the dom-

inant eigenvalue of N

Based on the spectral decomposition of N equation (3.9) can be rewritten as

Lfg(n) = νNn1 =

s∑

i=1

αi∑

j=0

aijλ
n−j
i , (3.11)

where λi are the roots, with multiplicity αi, of the minimal polynomial of N
and aij are the appropriate constants. If the size of the fitted and the fitting
MAPs are m and o then s ≤ mo. Taking the limit of (3.11) as n tends to ∞
we have that

lim
n→∞

Lfg(n) = lim
n→∞

νNn1 = lim
n→∞

s∑

i=1

αi−1∑

j=0

aijλ
n−j
i = cλn

d (3.12)

where c =
∑αd−1

j=0 adjλ
−j
d is constant and λd is the dominant eigenvalue of

matrix N, i.e., Lfg(n) ∼ λn
d as n → ∞. Here we assumed that λd is real,

which fits with our experiences.
While in the previous section we assumed a fixed n for the exponent of

(3.9) here we assume that n→∞.
Let λf , λg and λfg be the dominant eigenvalues corresponding to the

terms Lff (n), Lgg(n) and Lfg(n) respectively. Using (3.12) the optimization
problem simplifies to

min
G0,G1

(λf + λg − 2λfg) . (3.13)

3.5 Numerical study

Our experiments can be divided into two parts. In the first part we inves-
tigate the performance of our methods by fitting a MAP(2) on a random
five dimensional MAP with moments falling outside the MAP(2) moments
region. In the second part we apply moment matching on a random three
dimensional MAP with moments within the MAP(2) moments region. In
the second part we also apply the MAP reduction approach of Section 3.4
that verifies the moment matching method. In both cases we compare the
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cumulative distribution function, the correlation structure and the queueing
behavior of the resulting MAP(2) with the original MAP.

The methods can be applied to any experimental data without any re-
strictions. In case of decomposed fitting the goodness of fit is determined by
the used distance measure (here it is the Euclidean distance) while in case of
the MAP reduction technique one should first fit an arbitrary large MAP to
the trace and then the reduction can be applied. For our purposes, to show
the efficiency of the algorithms, it is sufficient to evaluate the approach with
random MAPs.

3.5.1 Fitting a MAP(5)

We apply the proposed methods for fitting a MAP(2) to the random, five
dimensional, MAP with matrix representation

D0 =









−3 1 0 0 0
1 −5 0 0 0
0 1 −4 0 0
1 0 0 −2 0
1 0 0 1 −5









,

D1 =









1 0 0 1 0
0 1 1 1 1
1 0 1 0 1
0 0 0 1 0
0 1 1 1 0









.

(3.14)

The moments of this MAP(5) are (n2 = 1.96161, n3 = 2.88108, γ =
−0.237176). This point is outside the MAP(2) moment region. Its first raw
moment is µ1 = 0.560976.

Once we have (n2 = 1.96161, n3 = 2.88108, γ = −0.237176) we fit
MAP(2) to it using

• the global optimization with the Nelder-Mead method, as described in
Section 3.2.1,

• OMAM, as described in Section 3.2.2,

• the decomposed fitting method, as given in Section 3.3, to fit

– directly the shape parameter (γ), or equivalently the lag-1 corre-

lation coefficient ρ1 = γ
n2
2
−1

n2−1
,

– the lag-9 correlation coefficient ρ9 = γ9
n2
2
−1

n2−1
and
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Table 3.4. Result of fitting M = (0.560976, 1.96161, 2.88108,−0.237176) by
all the considered fitting algorithms

result

method abbr. dist. µ1 (n2, n3, γ)

global optimization (nm) 0.7750 (2.005, 3.0149,−0.9993)
OMAM (ma) 0.0178 (1.9616, 2.8988,−0.2372)

decomposed fitting of γ (eg) 0.0067 (1.9554, 2.8836,−0.2372)
decomposed fitting of ρ9 (r9) 0.7731 (2.0002, 3.0007,−0.9999)

decomposed fitting of ρ99 (r99) 0.7686 (1.9999, 2.9999,−0.9955)
decomposed fitting of λp (ed) 0.7213 (1.9554, 2.8836, 0.4841)

joint density based (lh) 0.6723 0.5667 (2.0254, 3.0495, 0.4106)
dom. eigenvalue of (lh) (ld) 0.7198 0.5691 (2.032, 3.0659, 0.4548)

– a higher lag, ρ99 = γ99
n2
2
−1

n2−1
, both of them used to express the

shape parameter as γ = n

√

ρn
n2−1
n2
2
−1

and

– the dominant eigenvalue (λd) of the DTMC embedded at arrival
epochs.

• The joint density function fitting for the exponent n = 10, as given in
Section 3.4.1, and

• the dominant eigenvalue based joint density function fitting, as pre-
sented in Section 3.4.2.

The resulting moment triples are summarized in Table 3.4. We note that the
MAP reduction procedure results in different first raw moment while in the
moment based fittings method we can set the original one, µ1 = 0.560976.

It can be seen in Table 3.4 that all the fitting methods give quite close re-
sult in terms of the Euclidean distance. And as we expected the decomposed
moment fitting (eg) and OMAM (ma) give significant good results.

For further investigations we first determine the corresponding matrix
representations for all the fitted MAP(2)s using the four element basic mo-
ment set (µ1, n2, n3, γ).

D
(nm)
0 =

(−1.698 0.0006
0 −1.877

)
D

(nm)
1 = ( 0 1.698

1.876 0.0006 ) (3.15)

D
(ma)
0 =

(−2.069 0.944
0 −2.069

)
D

(ma)
1 = ( 0 1.125

0.903 1.167 ) (3.16)

D
(eg)
0 =

( −2.093 1.002
0 −2.098

)
D

(eg)
1 = ( 0 1.091

0.955 1.143 ) (3.17)
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D
(r9)
0 =

(
−1.763 6.553×10−5

0 −1.802

)
D

(r9)
1 = ( 0 1.7633

1.802 0 ) (3.18)

D
(r99)
0 =

(−1.787 0.008
0 −1.787

)
D

(r99)
1 = ( 0 1.779

1.787 0 ) (3.19)

D
(ed)
0 =

( −2.095 0.714
0 −2.096

)
D

(ed)
1 = ( 1.382 0

0.557 1.538 ) (3.20)

D
(lh)
0 =

(−1.733 0.121
0 −5.939

)
D

(lh)
1 = ( 1.612 0

3.317 2.622 ) (3.21)

D
(ld)
0 =

(−1.7137 0.162
0 −4.7576

)
D

(ld)
1 = ( 1.551 0

2.367 2.391 ) (3.22)

Once we have the matrix representation we can calculate the fitted pa-
rameters. In case of methods (r9), (r99) these are ρ

(r9)
9 = −0.000120081

and ρ
(r99)
99 = 3.20821× 10−6 respectively while the original MAP(5) has the

parameters values ρ9 = 0.0000320486 and ρ99 = 1.41312 × 10−33. The bad
match of the correlation parameters are caused by their very low values and
accordingly the bad numerical accuracy which attracts our attention to the
numerical stability of the decomposed fitting method for low values although
it seems more accurate than the global optimizations in the same space.

In case of the fitting method (ed) the dominant eigenvalue of the DTMC
embedded at arrival epochs is fitted. For the original MAP(5) it is λp =
0.484103 and for the fitted MAP(2) it is γ = 0.484102 which is a very good
match.

PH(2) fitting The cumulative distribution function (CDF) of the PH
marginal distributions for the original MAP(5) and for all the fitted MAP(2)s
are calculated using their matrix representations in (3.14) and in (3.15)
through (3.22) and their stationary phase distributions as

F (x) = 1− πeD0x1, (3.23)

where π is the stationary phase distribution after an arrival, D0 is the tran-
sient generator of the PH marginal of the MAP and 1 is the appropriate
size column vector of ones. The results are depicted in Figure 3.5. The
fitting CDFs show good match with the original one in Figure 3.5(a) and
Figure 3.5(b) shows that (nm) fits best the body and (eg), (ed), (lh) and (ld)
the tail of the distribution.

Lag-k fitting The correlation structure of all the original and the fitted
MAPs are calculated by the consecutive evaluation of the first equality in
(1.12) and is depicted in Figure 3.6. Those methods which find a correlation
parameter close to 1 result in a very slow correlation decay, these are the
decomposed fitting method based higher correlation fittings, i.e., (r9) and
(r99), and the Nelder-Mead method based global optimization (nm). The
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Figure 3.5. The comparison of cumulative distribution functions of the PH
marginals
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Figure 3.6. The comparison of the correlation fitting

decomposed fitting method based γ fitting (eg) fits the first lag correlation
well since it is closely related to ρ1 but all the other correlation coefficients
are fitted badly. The reason is that this MAP(5) does not have geometrically
decaying correlation structure. In case of (ed) the dominant eigenvalue is
matched, but if n2 < 2, which is the case now, the calculation of the cor-
relation coefficient contains a minus sign, see (3.2), thus the lag-k curve is
reflected to the x-axis.

Figure 3.6 together with Figure 3.10 points out that the MAP(2) set has
geometrically decaying correlation function, as given in (3.2), i.e., it is only
possible to capture a geometric correlation structure.

Queueing behavior The queue length distributions generated by MAP
arrivals are observed in an infinite buffer system with deterministic service
time (MAP/D/1 queueing system) for two utilization levels, ρ = 0.3 and
ρ = 0.7, in Figure 3.7. The utilization of the system is set through the
deterministic service time as

ρ =
D

µ1

, (3.24)

where D is the service time.

The queueing behavior of the MAP(5) and the fitted MAP(2)s with uti-
lization level ρ = 0.3 are depicted in Figure 3.7(a) and all the MAP(2)s fits
the original well.

In case of ρ = 0.7, depicted in Figure 3.7(b), all the fitting procedures
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Table 3.5. The mean queue lengths of the different scenarios

ρ

0.3 0.7

MAP(5) 0.365512305 1.524539289
(nm) 0.364296716 1.518172962
(eg) 0.362108709 1.488329671
(r9) 0.364158514 1.516371585

(r99) 0.364150473 1.51627773
(ed) 0.361219149 1.45877668
(lh) 0.367979806 1.558582197
(ld) 0.368298067 1.57042874

fits well the original queue length distribution too. Table 3.5 summarizes the
mean queue length for all the original and the fitting MAPs in case of both
utilization levels.

Another interesting question is if a particular model is used in network
design then how many times does it under/over estimate the capacity needs.
One useful hint in the determination of this property is the relative CDF error
provided in Figure 3.5(b). A more direct way is to determine the relative
horizontal difference between the queue length distributions in Figure 3.7.

Although we use continuous visualization of the queue length distribu-
tions here they are discrete functions of the queue length. Therefore it is
not that obvious how to determine the relative horizontal difference between
the queue length curves. Here we use the linear interpolation between two
consecutive points of the distribution, i.e., the differences here also can have
positive and negative errors, but they provide a good base to check the model.

The relative differences, for the same fitting methods appearing in Ta-
ble 3.5, are provided in Figure 3.8. In case of the utilization level ρ = 0.3,
in Figure 3.8(a), it seems that all fitting methods give reasonable well result
within 10%. At first sight in case of ρ = 0.7, in Figure 3.8(b), the situation
seems a bit worse, but the problem now comes from the numerical inaccu-
racy of the queue length distribution calculation which give non monotonic
decreasing values for the first two positions in the queue length of the original
MAP(5). Regardless of this the queue lengths shows good match in this case
too.
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Figure 3.7. The queueing behavior of the MAPs

45



0.001

0.1

2 4 6 8 10

re
la

ti
ve

d
iff

er
en

ce

queue length

(nm)
(eg)
(r9)

(r99)
(ed)
(lh)
(ld)

(a) ρ = 0.3

0.0001

0.01

1

2 8 14 20

re
la

ti
ve

d
iff

er
en

ce

queue length

(nm)
(eg)
(r9)

(r99)
(ed)
(lh)
(ld)

(b) ρ = 0.7

Figure 3.8. The relative horizontal differences of the queue length distribu-
tions
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3.5.2 Matching inside the MAP(2) moments region

The MAP(3) with matrix representation

D0 =





−0.1198 0.0008 0.0002
0 −0.7509 0.0022
0 0 −1.8641



 ,

D1 =





0, 0915 0.025 0.0023
0.0022 0.6589 0.0876

1.71× 10−5 0.2432 1.6209



 .

(3.25)

has moments inside the MAP(2) moments region: (µ1 = 0.999279, n2 =
3.00618, n3 = 10.0002, γ = 0.773409).

For further investigation the matrix representation of the fitted MAP(2)s
are

D
(eg)
0 =

(−0.1648 0.0368
0 −1.1109

)
D

(eg)
1 = ( 0.128 0

0.0046 1.1063 ) (3.26)

D
(lh)
0 =

(−0.7455 0.109
0 −1.8626

)
D

(lh)
1 = ( 0.6365 0

0.22 1.6426 ) (3.27)

D
(ld)
0 =

(−0.7486 0.11
0 −1.8634

)
D

(ld)
1 = ( 0.6386 0

0.221 1.6425 ) . (3.28)

Using the matrix representations in (3.25) and in (3.26), (3.27) and (3.28)
we can determine the important parameters of the MAPs. The CDF is
plotted in Figure 3.9(a) and the relative errors of the CDF in Figure 3.9(b).

Based on the relative error diagram we could say that the MAP reduction
performs better as expected.

Once more the lag correlation structure is investigated, as given in Fig-
ure 3.10 where two important things can be concluded. The moment based
decomposed fitting method matches the correlation structure in this case,
i.e., the input MAP(3) has geometric decaying correlation structure. The
two MAP reductions give exactly the same result which means that the tail
fitting in Section 3.4.2 is capable of performing similarly as the joint density
function based fitting method. And another important conclusion of Fig-
ures 3.9(a), 3.9(b) and 3.10 is that even if the lag correlation structure is
not captured that accurately the marginal distribution can be captured well.
This shows the independency of the marginal distribution and the correlation
structure in practice.

Finally, we observed the queueing behavior of the processes in the same
MAP/D/1 system as in the previous section with utilization levels ρ = 0.3
and ρ = 0.7 depicted in Figures 3.11(a) and 3.11(b), respectively. The mean
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Figure 3.10. The comparison of the correlation fitting

Table 3.6. The mean queue lengths of the different scenarios

ρ

0.3 0.7

MAP(3) 0.400511251 2.69909765
(eg) 0.373380958 1.851639028
(lh) 0.393725813 2.433117353
(ld) 0.393397716 2.421863393

queue lengths of the original, the matching and the joint density based fit-
tings are summarized in Table 3.6. The “relatively bad” results of the mo-
ment distance based fitting/matching confirms that the Euclidean (or any
equivalent) measure minimization based moment fitting/matching technique
cannot capture all the important properties of a process in any arbitrary
case.

In this experiment the decomposed fitting method could not fit the queue
length distribution neither in case of lower nor in case of higher utilization
levels. This confirms the previous conclusions that the practically exact fit-
ting of the lag correlation structure does not ensures better fit of the queue
length distribution in this scenario. One can also conclude from this exper-
iment that the information loss, due to MAP reduction, can cause several
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Figure 3.11. The queueing behavior of the MAPs

50



problems including the bad fit of the queueing behavior.
Here we show up again the horizontal relative errors of the fitting

MAP(2)s in Figure 3.12. The result of the decomposed fitting method is
far from the original one, as expected, but the other methods indeed fit well
the original MAP(3).
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Figure 3.12. The relative horizontal differences of the queue length distribu-
tions
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Chapter 4

Conclusions

The first part of the thesis presented the moment bounds of the second order
Markovian arrival processes and two fitting methods utilizing the Markovian
canonical form of second order arrival processes.

In [8] there is the minimal canonical form of AMAP(2)s given and it is also
proven that canonical AMAP(2) ≡ MAP(2) ≡ MEP(2). For the canonical
AMAP(2) form, we explicitly computed the necessary and sufficient ranges of
the single correlation parameter in Chapter 2. Essentially, these bounds for
AMAP(2)s were known before, but are now given in a substantially simpler
form in terms of the parameters of the canonical form (and not in terms of
the moments of the marginal distribution as in [18]). In fact, these simplified
expressions only allowed to prove the mentioned equivalence relations in [8].

We also proposed to add two technical details to the existing MAP fit-
ting methodology. The first one is to improve the efficiency of moments
distance optimization procedures with a decomposition to nice components
of the MAP bounding surface. The other proposal is to compute the distance
of joint distribution functions of MAPs by efficiently computable matrix ex-
pressions.

We developed fitting procedures based on these proposals and evaluated
their properties. Our experiences verified the expected advantages. The
decomposed numerical fitting method reduces the numerical instability of
the global optimization procedures applied for the whole boundary and the
density function based distance measure resulted in an numerically efficient
well behaving approximation.

During Chapter 3 we utilized the special results available currently only
for the MAP(2) class, given in Chapter 2. The proposed procedures are
directly applicable for higher order MAPs when the analytical description
(canonical form, moment bounds) of those classes become known.
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Part II

Load-balanced switches
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Chapter 5

Introduction to the field

This part of the thesis deals with load-balanced switches. As a new and
promising switch architecture, researchers take special attention to load-
balanced switches. They seem scalable due to their deterministic and simple
control and they can provide high throughput even for non uniform traffic.
Contrary to the initial performance evaluation of the switching architecture,
assumed to be equipped with infinite buffers, the authors of [5] pointed out
that in the more realistic hardware setting, with finite buffers, there can be
packet loss, for which an analytical model is created. In our work we go for-
ward and do the performance evaluation of the load-balanced switches with
variable size packets and also propose a packet loss minimization technique.

5.1 Background

The growing demand on internet traffic is caused by two main reasons; the
growth of the average request and the growth of the number of users. Both
reasons implies increased average link capacity and increased number of in-
terconnection. While the link capacity can be easily extended using optical
fibre, the higher number of links can be served by switches with higher num-
ber of ports. It is not that easy to serve this latter demand because of the
centralized control of the switches.

Recently in [12], [24] the authors introduced a promising and highly scal-
able solution, a two stage switching architecture called load-balanced (LB)
Birkhof-von Neumann switch. Its scalability lies in its distributed and deter-
ministic operation mechanism. The traditional switches with crossbar sched-
ulers always have some kind of centralized control. While the load-balanced
switches practically have no scheduler and the traffic is spread uniformly be-
tween the input of the second stage using round robin sequence to connect
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any internal output (of the first stage) to every internal input (of the second
stage).

The main idea behind the two stage switch is the following. In [12] the
authors considered a one stage switch with two dimensional input queues and
crossbar switch with deterministic interconnection pattern. It is shown that
such a switch can provide for 100% throughput in case of uniform, Bernoulli,
independent identically distributed (iid.) input traffic. Appending a new
stage in front of the one stage switch makes the non uniform arrival traffic
uniform by spreading it evenly over the internal inputs (of the second stage).

The authors of [12] and [24] show initial investigations on the switch
under some strong assumptions (infinite buffers, traffic admissibility, equal
size packets in the system). On the contrary [38] used realistic scenarios
(finite buffers) and gained simulation based throughput analysis of the LB
switch. [5] pointed out that in cell based (equal size packets are called cells)
LB switch a loss can occur because of buffer overflow. This latter paper
also presents mathematical analysis for cell loss probability evaluation. We
went forward and gave analytical results for loss probability of variable size
packets (built up of equal size segments called cells) in [4]. This is presented
in Chapter 6.

The results of [4] are theoretical in the sense that the input processes of the
switch are modeled exhaustively and consequently the model has exponential
state space ((N + 1)N , if N denotes the size of the switch, i.e., the number
of the input and the output ports). In the next step, in [1], we reduced the
state space to be 2N as given in Chapter 7 in which a two state (ON/OFF)
Markov chain models each input.

The model with ON/OFF input process description has still exponential
complexity (2N) in terms of the switch size. In [2] we introduced a model with
linear complexity with the restriction of identical input process assumption.
This model is described in Chapter 8.

The advantage of the two stage switching architecture is its simple, and
consequently fast, control. But it also have the disadvantage of the out of
sequence problem which implies the demand on the resequencing. There
are several trials in the literature to solve the problem, e.g., [13] proposes
a solution similar to parallel packet switch (PPS), originally given in [23]
and earliest deadline first (EDF) both of them suffer from high computation
need. [25] proposes the full frames first (FFF) algorithm. All of them try to
minimize the computation complexity of the resequencing algorithm. In our
approach we worked out a protocol in [3] by which we can achieve minimal
loss probability inside the switch. The switch architecture applying this
protocol can improve the performance of any of the previous resequencing
algorithms. The packet loss minimizing policy is given in Chapter 9
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Figure 5.1. The overview of the N ×N load-balanced switch

5.2 Technical overview and modelling as-

sumptions

The investigated switch architecture is depicted in Figure 5.1. It has N
input and N output ports and it is denoted as an N × N switch or it is
simply referred to as switch of size N. Taking from the left to the right the
blocks of Figure 5.1 are the N input queues numbered from 0 to N − 1.
It is followed by the first crossbar switch, doing load-balancing between the
virtual output queues (VOQs). The set of VOQs in the central stage (CS)
are two dimensional buffers to avoid head of line (HOL) blocking of the
packets. The second crossbar (denoted as switching) connects each VOQ
to the appropriate unit, corresponding to the appropriate output, of the
resequencing and reassembling unit (RRU). Finally after reassembling the
RRU puts the transmitted packets to the appropriate one of the N output
ports. For the sake of simplicity we will refer to the path of a cell after
the second crossbar, through the RRU and the output buffer (if exists), as
output.

5.2.1 Technical details

The detailed specifications of the considered switch architecture during the
performance evaluation is the following.

The variable size packets of the arriving traffic are segmented into equal
size cells to improve switch utilization. After the arrival and the segmentation
they are put into the infinite input buffer with FIFO service discipline. The
time needed to process a cell is called time slot what is the basic time unit
of the switch and of our investigations as well.

The structure of the two dimensional buffers in the central stage is the
following. There are N set of VOQs – hereinafter denoted as VOQk, with
a single index. The kth set of VOQs consists of N buffers, each of them
dedicated to a particular output – hereinafter the one dedicated to output j
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from the kth set is denoted as VOQkj, with a pair of indices and referred to
as VOQ. The VOQs are finite.

The first crossbar switch connects input i to VOQk of the central stage
in the t1st time slot using the round robin (RR) interconnection pattern

k = i + t1 mod N (5.1)

where i, k ∈ [0, N − 1] . If the actually processed cell is directed to output j
then it is put into VOQkj if there is free position in it and it is dropped
otherwise, as the VOQs are assumed to be finite. It is also assumed that
there is cell loss only due to buffer overflow in the central stage. A packet is
considered to be lost if at least one of its cells is lost, i.e., packet can only be
lost according to CS buffer overflow.

In the t2nd time slot the second crossbar connects VOQkj to output j
according also to the RR policy as

j = k + t2 mod N, (5.2)

j, k ∈ [0, N − 1] . Since both crossbars applies RR interconnection policy with
the same modulus (N), as given in (5.1) and (5.2), the LB switch itself has
periodic behavior of N time slots long period – hereinafter referred to as time
period. The time period starts with the service of the VOQ and lasts until
the next service instance.

The CS buffers are assumed to be served first then there can be arrival
to them (late arrival), i.e., the second crossbar switches first (the VOQs are
served) and the first crossbar switches next (the input buffers are served).
This sequence of switching avoids a cell to cross the empty switch in a single
time slot.

After the second crossbar connects the appropriate VOQs to the appro-
priate output the cells of the same packet are reassembled and put to the
appropriate output link. We do not evaluate the performance of the RRU
just provide a packet loss minimizing algorithm by which the reassembling
efficiency can be improved.

5.2.2 On the different paths

The cell loss probability and accordingly the packet loss probability depend
upon the path through which it traverses the switch [4], [1], [2]. A path
means the triple, denoted as {i, j, k}, referring the ordinal number of the
input, the output and the VOQ respectively.

The difference of the paths comes from the time between the service of
the VOQ (of the path) and the arrival to it. Using (5.1) and (5.2) the time
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difference is expressed as

d = t2 − t1 = 2k − i− j mod N, (5.3)

which also gives the number of inputs that have the right to send cells to
VOQkj before input i in the same time period. d is then proportional to the
loss probability of a path, i.e., the higher the d value is the higher the loss
probability of that path is.

The intuitive explanation of this, using the d value, is as follows. In case
of “almost full buffer” the higher the number of inputs (d) that possibly sends
a packet to VOQkj before input i has the higher the probability to fill up the
VOQ before the arrival of the cell from input i. This results in the loss of
that cell, and accordingly that packet, with “higher probability”.

Here we use the term loss probability of a path to emphasize the differ-
ence between the cell loss probabilities depending on the triple {i, j, k} or
equivalently depending on d.

Based on (5.3) we recall the term type-d path, introduced in [1], for a
given path with characteristic value d ∈ [0, N − 1].

5.2.3 Common modeling assumptions

During our work we assumed Markovian behavior of the system, more pre-
cisely geometric distributed random variables. On the one hand we can fit
one parameter of the observed distributions, but on the other hand we can
use the sophisticated and numerically efficient algorithms to solve discrete
time Markov chains (DTMCs) during the modeling. In order to increase the
precision of the analysis, one can expand the number of fitted parameters to
an arbitrary level by using more complex Markovian structures like discrete
time phase-type (DPH) distributions or discrete time Markovian arrival pro-
cesses (DMAPs). Yet such a choice would increase the complexity of the
model, to a certain extent, and shift the focus from the model of the switch.

The detailed modeling assumptions are given in Section 6.1 for the com-
plete and for the ON/OFF model. The simplified modeling assumptions of
the identical input process are given in Section 8.1 for the scalable model
and for the loss minimizing model.

In the following chapters the model of the 3× 3 switch is given as it has
all the properties that a switch of size N ≥ 2 can have, but it is small enough
to handle the equations. In case of N = 3 there are three types of paths, i.e.,
one without cell lost (type-0) and one with lower loss probability (type-1)
than the other (type-2). As the packet loss comes from the finite central
stage buffers the detailed analysis of them is given. We model a VOQ in a
type-2 path, namely VOQ00 of the path {1, 0, 0}.
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Chapter 6

The detailed model of the
switch

6.1 Specific modeling assumptions

According to the Markovian assumptions, given in Section 5.2.3, the arrival
pattern consists of geometric distributed packets (X), in cells, and geomet-
ric distributed idle periods (Y ), in time slots, in between. The geometric
distributed packet length is given by its probability mass function (PMF) as

Pr (X = i) = p (1− p)i−1 i = 1, 2, . . .

and the PMF of the idle period length is

Pr (Y = i) = q (1− q)i i = 0, 1, . . .

We assume that a new packet can follow immediately the preceding one
without idle period inbetween – the support of the idle period distribution
contains zero.

The parameter of the packet length distribution for the input i - output j
pair, i.e., the packets directed from input i to output j, is pij. They can be
arranged into a matrix

Pin = (pij) , i, j ∈ [0, N − 1]. (6.1)

The vector containing the parameters of the idle period distributions of the
inputs is

qin = (qi) , i, j ∈ [0, N − 1]. (6.2)

A new packet from input i is directed to output j with probability tij . This
implies that arranging these values into the matrix

Tin = (tij) , i, j ∈ [0, N − 1] (6.3)
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Figure 6.1. The DTMC model of input i

its rowsums are one as each row is the possible set of events of choosing the
destination output port.

6.2 The cell level model

Our focus is on modeling VOQ00 as part of path {1, 0, 0} – a type-2 path.
(Substitute i = 1, j = 0 and k = 0 into (5.3) and it results in d = 2·0−1+0 =
−1 = 2 mod 3) This queue is fed by cells, directed to output 0, from all three
inputs as it is given in the first interconnection pattern in (5.1). As all the
inputs have impact on this queue first the model of the arrival process from
input i is given for i = 0, 1, 2.

Arrival process Using the geometric assumptions of Section 5.2.3 and 6.1
we model the ith input process by an N + 1 = 4 state DTMC given in
Figure 6.1 with states

ij responsible for cell arrivals from input i to output j and

i id responsible for the idle period of input i.

Using the input parameters, given in (6.1), (6.2) and (6.3), the five main types
of state transitions probabilities, together with their intuitive explanation,
are

1− qi input i remains in idle for the next time slot,

qitij there is a new packet arrived from input i to output j after an idle
period,
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1− pij there is a new cell, to transmit too, of the currently transmitted
packet from input i to output j,

pijqitil there is a new packet arrived from input i to output l right after the
transmission of a packet from input i to output j, without idle period
inbetween,

pij(1− qi) there is an idle period right after the transmission of a packet
from input i to output j,

i, j, l ∈ [0, 2]. They are summarized in the state transition probability matrix
of the DTMC, in Figure 6.1, modeling input i, i ∈ [0, 2].

Pi =






(1− pi0) + pi0qiti0 pi0qiti1 pi0qiti2 pi0 (1− qi)
pi1qiti0 (1− pi1) + pi1qiti1 pi1qiti2 pi1 (1− qi)
pi2qiti0 pi2qiti1 (1− pi2) + pi2qiti2 pi2 (1− qi)
qiti0 qiti1 qiti2 1− qi







(6.4)

Queueing model Now we have the DTMC model of each input process
separately and we are ready to build the model of the observed VOQ. It
is a two dimensional DTMC embedded before the service of the VOQ, it
is depicted in Figure 6.2. The level process of the two dimensional DTMC
represents the queue length and its phase is the joint behavior of the inputs
as all of them feed the observed queue. This DTMC has a quasi birth-
deathlike (QBD-like) structure in which there can be more than one forward
level transitions. The time unit of this DTMC is the time period (N time
slots) of the switch as it is served once a time period according to (5.2).

Since the DTMC given in Figure 6.1 and in (6.4) gives the behavior of
input i in a single time slot, P3

i describes it in a time period, i.e., during
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3 time slots. Their joint behavior, i.e., the phase process of the QBD-like
model, is the Kronecker product of the third powers

P = P3
0 ⊗P3

1 ⊗P3
2. (6.5)

The number of arrivals to the observed VOQ is determined as the sum of the
arrivals from each input, but we cannot forget that each input can transmit
a cell into the VOQ in its dedicated time slot. This is determined by the
interconnection pattern given in (5.1), i.e., input 0 sends cell to VOQ00 in
the 1st time slot of a time period, input 1 sends in the 3rd time slot of a
period and input 2 sends in the 2nd time slot of a time period. Here we
note that the ordinal number of the dedicated time slot, in the time period,
equals to d + 1 for each path if the time period starts at the service of the
VOQ. According to this we substitute the 1st, the 3rd and the 2nd factor of
the powers P3

0, P3
1 and P3

2 in (6.5) respectively by

Pi =







p0
i

0
0
0







+







0
p1

i

p2
i

p3
i







= Ai + Ki, i ∈ [0, 2], (6.6)

in which the first term contains the zeroth row of Pi which corresponds to
cell arrival from input i to output 0. The second term contains all other rows
of Pi and it corresponds to the case when there is no arrival from input i to
output 0. The substitution is then

P = P3
0⊗P3

1⊗P3
2 = (A0 + K0)P

2
0⊗P2

1 (A1 + K1)⊗P2 (A2 + K2)P2. (6.7)

Expanding this expression and collecting the terms according to 0, 1, 2 and
3 cell arrivals, to VOQ00 in a time period, we get

P = K0P
2
0 ⊗P2

1K1 ⊗P2K2P2
︸ ︷︷ ︸

no arrivals – B

+A0P
2
0 ⊗P2

1K1 ⊗P2K2P2
︸ ︷︷ ︸

1 arrival – L

+ K0P
2
0 ⊗P2

1A1 ⊗P2K2P2 + K0P
2
0 ⊗P2

1K1 ⊗P2A2P2
︸ ︷︷ ︸

1 arrival – L

+ K0P
2
0 ⊗P2

1A1 ⊗P2A2P2 + A0P
2
0 ⊗P2

1K1 ⊗P2A2P2
︸ ︷︷ ︸

2 arrivals – F1

+ A0P
2
0 ⊗P2

1A1 ⊗P2K2P2
︸ ︷︷ ︸

2 arrivals – F1

+A0P
2
0 ⊗P2

1A1 ⊗P2A2P2
︸ ︷︷ ︸

3 arrivals – F2

= B + L + F1 + F2,

(6.8)

where we have also indicated the level transition based decomposition, P =
B + L + F1 + F2, of such a QBD-like model. In the expansion we used the
fact that Kronecker product distributes over the summation.
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The determination of the level transition matrices of this QBD-like model,
for N = 3, is given in Algorithm 3.

Algorithm 3 Determination of the level transition matrices

INPUT: P0,P1,P2 from (6.4) and j, k the ordinal numbers of the output
and the VOQ

OUTPUT: B,L,F1,F2 the level transition matrices as given in (6.8)
1: for i = 0 to 2 do
2: compute Ai,Ki as given in (6.6)
3: calculate d for the path {i, j, k} as given in (5.3)
4: replace the (d+1)st factor of P3

i in (6.5) with Ai +Ki as given in (6.7)
5: end for
6: expand the resulting expression for P and
7: identify the level transition matrices B,L,F1,F2 as given in (6.8)
8: return B,L,F1,F2

Using these level transition matrices the state transition probability ma-
trix of the DTMC modeling the VOQ on the cell level has the QBD-like
structure

P =















B L F1 F2 0 0 . . . 0
B L F1 F2 0 0 . . . 0
0 B L F1 F2 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . .
0 . . . 0 B L F1 F2 0
0 . . . 0 0 B L F1 F2

0 . . . 0 0 0 B L F′
1

0 . . . 0 0 0 0 B L′















, (6.9)

where F′
1 = F1 +F2 and L′ = L+F1 +F2. In this latter cases, distinguished

by the prime (′) sign, there can be cell loss in the system.
The steady state solution (π) of the QBD-like model is the solution of

the linear equation system

πP = π

π1 = 1,
(6.10)

where 1 is the appropriate size column vector of ones.

6.3 The packet level model

When we model the switch under the variable size packet assumption we
apply the tagged user approach. The system is considered to be in steady
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Figure 6.3. The packet level model of the VOQ

state, given in (6.10), before the arrival of the tagged packet. After its arrival
a packet is processed until it is either transmitted successfully or dropped.

Technical speaking, if the Markovian assumption in Sections 5.2.3 and
in 6.1 holds, the life cycle of the tagged packet is a transient DTMC with
two absorbing states. The absorbing state ST, as depicted in Figure 6.3,
corresponds to successful packet transmission and the absorbing state PL
corresponds to packet loss.

Such a transient DTMC is given by its initial distribution, by the state
transition probability matrix of the transient part and by one of the absorb-
ing vectors. In this section we give the transient DTMC and solve it for
probability of successful packet transmission and for the packet loss proba-
bility.

6.3.1 The transient part and the absorption vector

In practice the transient part of the DTMC is built very similar to the QBD-
like model of Section 6.2, but there are two main differences:

• “Near full buffer” the state transitions corresponding to cell loss causes
absorption to state PL, i.e., the life cycle of the packet ends with loss
as it can be seen in Figure 6.3.

• The whole QBD-like model is built such that the state transitions cor-
responding to packet ending are removed and later on will be collected
into the absorption vector (s) into state ST, see Figure 6.3.

Arrival process One can consider a packet to be successfully transmitted
if its last cell is accepted by the VOQ. In case of path {1, 0, 0} this happens
either if the DTMC modeling input 1 moves from state 10 to any of the
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Figure 6.4. The modified DTMC model of input 1

other states or if the DTMC remains in state 10 with probability p10q1t10,
i.e., there is a new packet arrive from the same input to the same output
right after the transmission of the tagged packet. The behavior of the input,
without the successful packet transmission, is modeled by a DTMC depicted
in Figure 6.4 and its state transition probability matrix is

PP
1 =







(1− p10) 0 0 0
p11q1t10 (1− p11) + p11q1t11 p11q1t12 p11 (1− q1)
p12q1t10 p12q1t11 (1− p12) + p12q1t12 p12 (1− q1)
q1t10 q1t11 q1t12 1− q1







.

(6.11)
Here we introduced the notation in the superscript ∗P for variables describing
the packet level model appearing in Figure 6.3.

The DTMC model of the other inputs remain the same as the tagged
packet comes from input 1, i.e., there is used (6.4) for i = 0, 2 in the follow-
ings.

Queueing model Once we have the DTMCs describing the input processes
we can determine the level transition matrices of the QBD-like part of the
DTMC, in Figure 6.3, in exactly the same way as in case of the cell level model
in Section 6.2. Calling Algorithm 3 with input parameters P0,P

P
1 ,P2, 0, 0

results in BP ,LP ,FP
1 ,FP

2 – the level transition matrices of the packet level
model.

Now we have almost all the knowledge to build the QBD-like part of
the model. The missed part is how a cell (and accordingly packet) loss
can happen. This is discussed in the next few paragraph together with the
building of the whole transient DTMC with the absorbing states.
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There is special attention needed when the absorbing vector to PL is
built. This is highly related to the building of the last column of blocks of
the state transition probability matrix of the transient part. Let denote b
the length of the VOQ. During the determination of the b− lth block row of
the last column the following considerations have to be taken care of.

• Do we determine the state transitions from a level “closer” to level b
than d? Where d is determined based on (5.3) and e.g. level b − d is
not closer than d, but level b− (d− 1) is closer etc. . .

• If yes go through the forward level transitions strictly larger than l
and, in case of m > l forward level transitions, split the forward level
transition matrix into two terms.

– F
P(A)
m consists of the state transitions when there are at least l

arrivals before the tagged user and there is arrival of the tagged
user also. In this case there is cell/packet loss and the DTMC
absorbs in state PL.

– F
P(K)
m consists of the state transitions when there are less than l

arrivals before the tagged user or there is no arrival of the tagged
user. In this case the transient DTMC goes “up” to level b.

These considerations in case of our N = 3 size model results in the
following state transition probability matrix of the transient part

PP =















BP LP FP
1 FP

2 0 0 . . . 0
BP LP FP

1 FP
2 0 0 . . . 0

0 BP LP FP
1 FP

2 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 . . . 0 BP LP FP

1 FP
2 0

0 . . . 0 0 BP LP FP
1 FP

2

0 . . . 0 0 0 BP LP FP
1

0 . . . 0 0 0 0 BP LP′















, (6.12)

where LP′
= LP + F

P(K)
1 .

Following the fundamental considerations during the building of the last
column of blocks we had to give the following answers in case of row b − 1,
i.e., l = 1 (as d = 2 this is the “first” level to consider):

• Yes this level is closer to b than b− d = b− 2.

• The only forward level transition matrix to be considered is FP
2
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– F
P(A)
2 = FP

2 because this gives the case if all three inputs send a
cell from which input 1 is the last one for sure since d = 2, i.e., if
there is arrival from all inputs the tagged packet will be lost with
probability 1.

– Then F
P(K)
2 = 0 which comes from the fact that FP

2 = F
P(A)
2 +

F
P(K)
2 .

In case of the last row of blocks, i.e., when l = 0 the following considera-
tions are made:

• Yes this level is closer to b than b− d = b− 2.

• Since the considerations made upon FP
2 are also hold here (note that

this is not the same in all cases) the only matrix to be considered is FP
1

– there is some non-zero matrix F
P(A)
1 because it can happen that

one of the non-observed inputs send cell into VOQ00 before the
tagged user and in this case the tagged packet is dropped and

– there is a non-zero matrix F
P(K)
1 because it can happen that either

there is no cell arrival before the tagged packet or there is no arrival
of the tagged packet.

Now we give the expressions for F
P(A)
1 and F

P(K)
1 and the way of their

determination also. We take the expression for FP
1 , similar to F1 in (6.8),

and sort its terms based on if there is arrival from input 1 or not and if there
is at least one arrival before the tagged packet or not. It is

FP
1 = K0P

2
0 ⊗PP

1

2
AP

1 ⊗P2A2P2 + A0P
2
0 ⊗PP

1

2
AP

1 ⊗P2K2P2
︸ ︷︷ ︸

there is cell/packet lost – F
P(A)
1

+ A0P
2
0 ⊗PP

1

2
KP

1 ⊗P2A2P2
︸ ︷︷ ︸

no cell/packet loss – F
P(K)
1

= F
P(A)
1 + F

P(K)
1 ,

(6.13)

where Pi is from (6.4) for i = 0, 2 and PP
1 is from (6.11) and

PP
1 = AP

1 + KP
1 =







pP
1

0

0
0
0







+








0

pP
1

1

pP
1

2

pP
1

3








(6.14)

similar to (6.6).
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After having the last block column of PP the absorption vector to state
PL is

l =










0
. . . . . . . . . . .

0
FP

2 1(

F
P(A)
1 + FP

2

)1









. (6.15)

This contains the rowsums of those parts of blocks to which packet loss
corresponds.

Before we give the packet loss probability of the system, as the probabil-
ity of absorbing in state PL, we have to give the initial distribution of the
transient DTMC given in Figure 6.3.

6.3.2 The initial distribution

In this case we consider an alternative time period ending with the time
slot when the input is connected to the VOQ of the observed path {1, 0, 0}.
The packets arriving in this alternative time period causes packet arrival
to the observed VOQ in the regular time period starting with the service
of VOQ00. The system considered to be in steady state – given in (6.10).
Apart from which state is the DTMC in there can be either backward or
local or forward level transitions according to the packet arrival. These level
transition matrices are determined in a slightly different way than it is given
in Algorithm 3.

Arrival process There is packet arrival in the alternative time period with
probability 1 but here we note that there is not necessarily cell arrival, indeed
there can be backward level transition according to packet arrival. To express
all this first we build the DTMC describing the input process of input 1, in
one single time slot, when there is packet arrival. This DTMC is given in
Figure 6.5 and has state transition probability matrix

PI
1 =







p10t10q1 0 0 0
p11q1t10 0 0 0
p12q1t10 0 0 0
q1t10 0 0 0







, (6.16)

where we also introduced the notation in superscript ∗I for expressions re-
lated to the determination of the initial distribution of the packet level model
in Figure 6.3.
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Figure 6.5. The DTMC model of input 1 if there is packet arrival

Using PI
1 the behavior of input 1 in the alternative time period when

there is packet arrival is described by

P3
1 −

(

P1 −PI
1

)3

. (6.17)

Its intuitive explanation is the “probability of the normal behavior” minus
the “probability of there is no arrival”, i.e., there is arrival for sure during
the alternative time period.

Now we split PI
1 into two terms

PI
1 = AI

1 + KI
1 =







pI
1

0

0
0
0







+








0

pI
1

1

pI
1

2

pI
1

3








. (6.18)

Using the same kind of splitting for P1, from (6.6) for i = 1, we rewrite (6.17)
as

P3
1 −

(

P1 −PI
1

)3

= P2
1A

I
1 +

(

P1P
I
1 + PI

1

(

P1 −PI
1

))(

A1 −AI
1

)

︸ ︷︷ ︸

AI
1

+

+ P2
1K

I
1 +

(

P1P
I
1 + PI

1

(

P1 −PI
1

))(

K1 −KI
1

)

︸ ︷︷ ︸

KI
1

= A
I
1 + K

I
1 , (6.19)

where we have indicated two terms. A
I
1 corresponds to cell arrival from

input 1 during the alternative time period while K
I
1 correspond to no cell

arrival.
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The level transition matrices The joint behavior of the inputs is de-
scribed by

P3
0 ⊗

(

P3
1 −

(

P1 −PI
1

)3
)

⊗P3
2. (6.20)

Here we emphasize that in case of a type-2 path the regular and the
alternative time periods are the same. Now we substitute the appropriate
factors of the powers P3

0 and P3
2 according to their ordinal number in the

alternative time period. And we substitute the whole middle operand by
A

I
1 +K

I
1 . Then rearranging the expression and collecting the right terms we

can identify the level transition matrices corresponding to the packet arrival
in the alternative time period.

P3
0 ⊗P3

1 −
(

P1 −PI
1

)3

⊗P3
2

= (A0 + K0)P
2
0 ⊗

(

A
I
1 + K

I
1

)

⊗P2 (A2 + K2)P2

= K0P
2
0 ⊗K

I
1 ⊗P2K2P2

︸ ︷︷ ︸

no arrivals – B
I

+A0P
2
0 ⊗K

I
1 ⊗P2K2P2

︸ ︷︷ ︸

1 arrival – L
I

+ K0P
2
0 ⊗A

I
1 ⊗P2K2P2 + K0P

2
0 ⊗K

I
1 ⊗P2A2P2

︸ ︷︷ ︸

1 arrival – LI

+ K0P
2
0 ⊗A

I
1 ⊗P2A2P2 + A0P

2
0 ⊗K

I
1 ⊗P2A2P2

︸ ︷︷ ︸

2 arrivals – FI
1

+ A0P
2
0 ⊗A

I
1 ⊗P2K2P2

︸ ︷︷ ︸

2 arrivals – F
I
1

+A0P
2
0 ⊗A

I
1 ⊗P2A2P2

︸ ︷︷ ︸

3 arrivals – F
I
2

= BI + LI + FI
1 + FI

2 .

(6.21)

Using the level transition matrices BI ,LI ,FI
1 ,FI

2 starting from the steady
state, given in (6.10), we can express the state of the system (VOQ) right
after a packet arrival. The blocks of the unnormalized initial distribution are

π̂
I
0 = π0B

I + π1B
I

π̂
I
1 = π0L

I + π1L
I + π2B

I

π̂
I
2 = π0F

I
1 + π1F

I
1 + π2L

I + π3B
I

π̂
I
3 = π0F

I
2 + π1F

I
2 + π2F

I
1 + π3L

I + π4B
I

π̂
I
l = πl−2F

I
2 + πl−1F

I
1 + πlL

I + πl+1B
I 4 ≤ l ≤ b− 1

π̂
I
b = πb−2F

I
2 + πb−1

(

FI
1 + FI

2

)

+ πb

(

LI + FI
1 + FI

2

)

,
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where πl denotes the lth block of π, the steady state solution of the cell level
model, given in (6.10). This is normalized as

π
I =

π̂
I

π̂
I1 , (6.22)

where 1 is the appropriate size column vector of ones.

6.3.3 The packet loss calculation of the switch

Before giving the expression for the packet loss probability we give the other
absorption vector, to state ST in Figure 6.3, as

s = 1− (PP1 + l
)

, (6.23)

where PP is the state transition probability matrix of the transient part
(6.12), l is the absorption vector to state PL (6.15) and again 1 is the ap-
propriate size column vector of ones.

Now we have all the knowledge to solve the transient Markov chain of
Figure 6.3.

Using (6.12) (6.15) (6.22) and (6.23) the probability of successful packet
transmission, i.e., absorbing in state ST, is

ps = π
I (I−PP)−1

s (6.24)

and the packet loss probability, i.e., absorbing in state PL, is

pl = π
I (I−PP)−1

l. (6.25)

In both expression I is the appropriate size identity matrix.

6.4 Computational study

In this section a comparison of the detailed model with simulation result is
given. The experiments are done for the N = 3, size switch depending on
the buffer size (b) for all the non-trivial path types.

As it is mentioned in Sections 5.2.3 and 6.1, all packets arriving to the
inputs contain geometric distributed number of cells and there are geomet-
ric distributed idle periods inbetween. Once again the three set of traffic
parameters are given by the matrices

• Pin = ( pij ) the parameter of the geometric distributed packet length
(in cells) directed from input i to output j,
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Table 6.1. The parameters of the considered switch

variable value

N 3
pij 0.2
qi 0.9
tij

1
N
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buffer size

simulation {1, 0, 0}
analysis {1, 0, 0}

simulation {2, 0, 0}
analysis {2, 0, 0}

Figure 6.6. The packet loss probability (pl) in case of the analysis and simu-
lation versus the buffer size (b)

• qin = ( qi ) the parameter of the geometric distributed idle period length
(in time slots) of input i and

• Tin = ( tij ) the probability that the packet is directed from input i to
output j.

Using these parameters our modelling scenario is given in Table 6.1.

In this chapter the model of the type-2 path is given but the other non-
trivial type of path (type-1) is also considered here. These two paths have
two different kinds of loss probabilities. The result with parameters given in
Table 6.1 for the two types of path are depicted in Figure 6.6. The third type
of path – path-0 – is not depicted since it gives the trivial 0 loss probability
both for the analysis and for the simulations as it is expected.
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The results in Figure 6.6 shows good match in case of both mathematical
models. It is also captured that in case of larger buffer sizes the packet loss
tends to be smaller, which is obvious in case of the same system with more
buffer capacity. There are three kind of loss types with relation pl0 = 0 ≤
pl1 ≤ pl2 as expected in Section 5.2.2, from which the smallest one is not
included as it is indeed the constant zero function.

The experiments on the detailed LB switch model show that indeed this
model describes the switch behavior exhaustively, i.e., it can be used to very
further analytical results as it is done in Section 7.4.
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Chapter 7

The approximate model of the
switch with ON/OFF input
processes

In this chapter we give the approximate model of VOQ00 of the 3 × 3 LB
switch. Compared to the exact analysis in Chapter 6 the approximation is
that we model the input process by a two state ON/OFF DTMC. Accordingly
the arrival process of the VOQ also changes. The state space of the ON/OFF
model is reduced compared to the exact model, in Chapter 6, in which the
detailed characterization of the arrival process are considered. Once we have
the ON/OFF model of an input the model of the chosen VOQ is given in
the same way as in case of the exact characterization. Indeed the ON/OFF
based model of the LB switch differs from the exact characterization in the
DTMCs describing the input processes.

As we described in Section 5.2.2 it is relevant which type of path is con-
sidered. Here we consider the same path {1, 0, 0} as in case of the exact
model.

7.1 The ON/OFF model of the input

As the derivations for the ON/OFF model of the general case would be too
difficult we show how it is made for the input 1 - output 0 pair and we give
the result for the general case in Section 7.1.3

The ON/OFF model of input 1 is derived from its complete characteri-
zation given in (6.4), for i = 1, using the same input parameters (6.1), (6.2)
and (6.3). Its states are the same

1j responsible for cell arrivals from input 1 to output j and
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Figure 7.1. The exact DTMC model of input 1

1 id responsible for the idle period of input 1,

as depicted in Figure 7.1, where we also introduced a division of the states.
In terms of path {1, 0, 0} the division of the states of the DTMC modeling

input 1 is

on this is a one-element subset containing state 10 in which there are cell
arrivals from input 1 to output 0 and

off the other states in which there is no arrival from input 1 to output 0.

Using this division we derive the two state ON/OFF model of the input
process. Hereinafter lowercase bold on and off denotes these two subsets
and uppercase ON and OFF the two states of the newly derived DTMC
model of the inputs.

In the following sections the detailed description of the ON and OFF
states are given based on the aforementioned division.

7.1.1 OFF properties

The OFF state is used to approximate the set of off states. Its properties
are determined based on the absorbing time of a discrete phase type (DPH)
distribution with graph given in Figure 7.2. The transient states of such a
DPH are identical to the off states and its absorbing state is the on state.
Its initial distribution then given as the renormalization of the zeroth row of
P1 in (6.4), for i = 1, without its zeroth element

τ 1 =
(

q1t11
q1t11+q1t12+(1−q1)

q1t12
q1t11+q1t12+(1−q1)

1−q1

q1t11+q1t12+(1−q1)

)

. (7.1)

80



q1t10

p11q1t12

p12q1t11

p11q1t10

p11(1− q1)

p12q1t10

q1t11

q1t12

p12(1− q1)

(1− p12) + p12q1t12

(1 − p11) + p11q1t11

1− q1

q1t11
q1t11+q1t12+(1−q1)

1−q1

q1t11+q1t12+(1−q1)
q1t12

q1t11+q1t12+(1−q1)

i id i2

i1

Figure 7.2. The graph of the DPH substitution of the off states in terms of
the pair input 1 - output 0

T1, the transition probability matrix of the transient states, is the N × N
matrix given as P1 without its zeroth row and zeroth column

T1 =





(1− p11) + p11q1t11 p11q1t12 p11 (1− q1)
p12q1t11 (1− p12) + p12q1t12 p12 (1− q1)
q1t11 q1t12 1− q1



 . (7.2)

The mean absorbing time of this DPH is

µ1 = τ 1 (I−T1)
−1 1, (7.3)

where I is the identity matrix and 1 is the column vector of ones of appro-
priate size.

We set the sojourn probability of the state OFF to 1− 1
µ1

which sets the
mean sojourn time to µ1. Then the state transition probability from OFF to
ON is 1

µ1
.

7.1.2 ON properties

In case of ON the sojourn probability remain the same as in the complete
characterization, i.e., in case of output 0 the upper left element of P1. The
state transition probability from ON to OFF is the summation of the remain-
ing elements of the zeroth row of P1 which is 1 minus the sojourn probability.
All these considerations are summarized in the next section, for the general
input i, in (7.4) and in Figure 7.3.

7.1.3 Summation of the ON/OFF DTMC

Here we summarize all the properties of the ON/OFF DTMC by giving
its graph for the general path {i, j, k} in Figure 7.3 together with its state
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Figure 7.3. The graph of the ON/OFF DTMC describing the pair input i -
output j
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Figure 7.4. The cell level, ON/OFF, model of the VOQ

transition probability matrix

Qi =

(
(Pi)jj 1− (Pi)jj

1
µi

1− 1
µi

)

=

(
(1− pij) + pijqitij pij − pijqitij

1
µi

1− 1
µi

)

, (7.4)

where (∗)ij denotes the ijth element of a matrix.

7.2 The cell level model

Up to now we have introduced the ON/OFF model of the input processes.
This is the only difference from the exact model in Chapter 6. From now
on we recall the remaining part of building the model of the VOQ using the
ON/OFF model of each input. Here we keep on with building the model of
VOQ00 – the VOQ of path {1, 0, 0}.

Doing the same considerations as in Section 6.2 we call Algorithm 3 with
input parameters, from (7.4), Q0,Q1,Q2, 0, 0. The results are the level tran-
sition matrices of the cell level model – C,M,G1,G2, the backward, the local
and the two types of forward level transition matrices respectively. This is
depicted in Figure 7.4.

Using them the cell level model of the VOQ has the state transition
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probability matrix (on the block level)

Q =















C M G1 G2 0 0 . . . 0
C M G1 G2 0 0 . . . 0
0 C M G1 G2 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . .
0 . . . 0 C M G1 G2 0
0 . . . 0 0 C M G1 G2

0 . . . 0 0 0 C M G′
1

0 . . . 0 0 0 0 C M′















, (7.5)

where G′
1 = G1 + G2 and M′ = M + G1 + G2. In these two cases there can

be cell loss corresponded to the state transitions.

The steady state solution (̺) of the QBD-like model is the solution of
the linear equation system

̺Q = ̺

̺1 = 1,
(7.6)

where 1 is the appropriate size column vector of ones.

7.3 The packet level model

Since the basic idea behind the building of the ON/OFF approximate model
is exactly the same as behind the detailed model here we just summarize it
using the detailed description in Section 6.3.

There is the model of the life cycle of a tagged packet is given. It is
a transient DTMC with two absorbing states according to the two possible
ending of the life of the tagged packet. It is depicted in Figure 7.5 and is
given by the state transition probability matrix of the transient part by the
two absorption vectors and by the initial distribution.

7.3.1 The transient part and the absorption vector

The transient part. . . The model of the switch on the packet level is also
a QBD-like DTMC built in the same way as in Section 6.3. It results in the
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Figure 7.5. The packet level, ON/OFF, model of the VOQ

state transition probability matrix of the transient part

QP =















CP MP GP
1 GP

2 0 0 . . . 0
CP MP GP

1 GP
2 0 0 . . . 0

0 CP MP GP
1 GP

2 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 . . . 0 CP MP GP

1 GP
2 0

0 . . . 0 0 CP MP GP
1 GP

2

0 . . . 0 0 0 CP MP GP
1

0 . . . 0 0 0 0 CP MP ′















, (7.7)

where MP ′
= MP + G

P(K)
1 . Here all the blocks are determined in the same

way as in case of the detailed model.

. . . and the absorption vectors The absorption vector to state PL is

m =










0
. . . . . . . . . . . .

0
GP

2 1(

G
P(A)
1 + GP

2

)1









(7.8)

and to state ST is

t = 1− (QP1 + m
)

, (7.9)

where 1 is the appropriate size column vector of ones.
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7.3.2 The initial distribution

The last parameter by which the transient DTMC is given is its initial dis-
tribution, ̺

I , built in the same way as in Section 6.3.2. The unnormalized
initial distribution is determined using the steady state distribution and the
level transition matrices, CI ,MI ,GI

1 ,G
I
2 , according to packet arrival

ˆ̺I
0 = ̺0C

I + ̺1C
I

ˆ̺I
1 = ̺0M

I + ̺1M
I + ̺2C

I

ˆ̺I
2 = ̺0G

I
1 + ̺1G

I
1 + ̺2M

I + ̺3C
I

ˆ̺I
3 = ̺0G

I
2 + ̺1G

I
2 + ̺2G

I
1 + ̺3M

I + ̺4C
I

ˆ̺I
l = ̺l−2G

I
2 + ̺l−1G

I
1 + ̺lM

I + ̺l+1C
I 4 ≤ l ≤ b− 1

ˆ̺I
b = ̺b−2G

I
2 + ̺b−1

(

GI
1 + GI

2

)

+ ̺b

(

MI + GI
1 + GI

2

)

.

This is normalized as

̺
I =

ˆ̺I

ˆ̺I1 , (7.10)

where 1 is the appropriate size column vector of ones.

7.3.3 The packet loss calculation of the switch

The probability of successful packet transmission and the packet loss of the
switch is once again the probability of absorbing in state ST and PL respec-
tively, in the DTMC of Figure 7.5.

Using (7.7) (7.8) (7.9) and (7.10) the probability of successful packet
transmission is

qs = ̺
I (I−QP)−1

t (7.11)

and the packet loss probability is

ql = ̺
I (I−QP)−1

m. (7.12)

In both expression I is the appropriate size identity matrix.

7.4 Computational study

In this section there is a comparative study of the analysis using the ON/OFF
model and simulation results using the memoryless (geometric) assumptions
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Table 7.1. The main parameters of the computation

study 1 study 2 study 3

N 4 3,. . . ,8 3

pij
1
20

1
50

{

0.1 if (ij) = (10)

0.5 otherwise

qi
1
3

1
6

0.99
tij

1
N

b 8, . . . , 40 20 6,. . . ,15

and the notations introduced in Section 5.2.3 and 6.1. We executed two
studies with different sets of parameters given in Table 7.1 representing a
set of considered parameters in detail, instead of just the ON and the OFF
parameters (the model is derived from the detailed parameters).

Study 1 Figure 7.6 plots the packet loss probability of different types of
paths through VOQ00 versus the buffer size (b). The loss of a single queue is
decreasing with increase of the buffer size, which comes from the increase of
system capacity. Here the dependence of packet loss on the chosen paths is
also shown. The set of parameters of study 1 is given in the left hand side
of Table 7.1. The experimental results proof the validity of our assumptions.
In particular, as expected, the higher the d value is the higher the loss prob-
ability of the path is. It is also shown in Figure 7.6 that the higher the buffer
size (b) is the less the difference between the loss values for types.

Study 2 Due to lower analysis complexity in comparison with the results
of Chapter 6, the packet loss of a single queue can be evaluated for larger
switches – than those ones in Section 6.4. Figure 7.7 plots the packet loss
of the queue if the switch size is increasing – up to the solvable highest size
of this model. The detailed set of parameters used in study 2 is shown in
the right hand side of Table 7.1. We present packet loss only for those two
traffic path ({1, 0, 0} and {2, 0, 0}) which exist for all considered switch sizes.
As it is shown on the plot, with the increase of the switch size, the packet
loss decreases. As the average packet size and idle period size keeps to be
the same, the increase in number of ports increases the number of queues at
the central stage and consequently the buffering capacity for the same set of
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Figure 7.6. Analytical results on the packet loss probability versus the buffer
size (study 1)

parameters. Correspondingly, the higher is the LB switch buffering capacity
the lower packet loss is experienced.

Study 3 In this study we observe a bit more complicated scenario than
in the previous ones. Here we consider a switch with a heavy load direction
from input 1 to output 0 and there is a background traffic in all the other
directions. Accordingly there are four types of traffic mixtures in the paths
of the switch

• the heavy paths where both input 1 and output 0 are involved, i.e.,
paths {1, 0, k} k ∈ [0, 2],

• background traffic transmitting to the heavy output, i.e., paths
{i, 0, k}, i = 0, 2 k ∈ [0, 2],

• background traffic transmitting from the heavy input, i.e., paths
{1, j, k}, j = 1, 2 k ∈ [0, 2] and

• background traffic not interfering with the heavy traffic, i.e., paths
{i, j, k}, i = 0, 2 j = 1, 2 k ∈ [0, 2].

And according to the fundamental switch behavior, described in Sec-
tion 5.2.2, in case of each traffic mixture there are three types of loss proba-
bilities – according to the three different VOQ involved.
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Figure 7.7. The packet loss probability versus the switch size (study 2)

Table 7.2. The packet loss probabilities for the different traffic mixtures

path type 2 1

in out detailed ON/OFF detailed ON/OFF

1 0 0.4685 0.4686 0.4406 0.4406
0 0 0.1119 0.1119 0.07919 0.07917
1 1 0.003324 0.002775 0.00194 0.001587
0 1 0.001994 0.001751 0.001234 0.00107

Here we show up with the two non zero loss probability path of the heavy
traffic, in Figure 7.8, verified by the detailed model. It can be seen that the
ON/OFF model captures the detailed model well and that the packet loss
probability decreases with the increasing system capacity – as expected. The
same good match can be observed for all the other traffic mixtures.

For example the packet loss probabilities for the four types of traffic
mixtures are shown up in Table 7.2 for buffer size b = 8 in case of each
traffic mixture. Once again the ON/OFF model shows good match with the
detailed model for all the traffic mixtures, as also in the whole buffer size
interval given in Table 7.1.
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(study 3)
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Chapter 8

The approximate model of the
switch with identical input
processes

Whereas in Chapter 6 the full characterization of a VOQ is given with com-
plexity of O

(
NN
)
, in Chapter 7 the ON/OFF approximate also with dif-

ferentiable inputs but with complexity of O
(
2N
)

is given. In spite of the
introduction of the lower complexity model a more simple model is needed
as the limitations on the switch size is small even in the case of the less
complex model. The cost of such a model is the identical input process as-
sumption. The aim of this chapter is to present this analysis together with
a fast solution procedure.

We will demonstrate that, besides this assumption, the newly introduced
model captures the two most important performance measures. We analyzed
the packet loss – as the switch is equipped with finite buffers – and gave an
estimate of the mean packet waiting time. The first parameter affects the
Quality of Service (QoS) characteristics of data transfers (using TCP). The
second parameter has high influence on real time traffic, e.g., speech (using
UDP) over the network [37], [16].

As the approximating model seems promising we also introduce a folding
algorithm-based numerical method to solve the model of switches with large
buffers.

During this chapter we will provide with the whole modeling process as
it slightly differs from the previous ones in Chapters 6 and 7.
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8.1 Simplified modeling assumptions

The working mechanism of the switch is the same as in the previous cases,
given in Section 5.2.1.

According to the Markovian assumptions, introduced in Section 5.2.3, the
packet length distribution (X), in cells, of the arrival process is geometric
distributed with PMF

Pr (X = i) = p̂ (1− p̂)i−1 i = 1, 2, . . . (8.1)

The length of the idle periods between packets (Y ) are also geometric dis-
tributed, in time slots, with PMF

Pr (Y = i) = q̂ (1− q̂)i i = 0, 1, . . . (8.2)

The destination of an arriving packet is chosen uniformly among the output
links due to the parameter

t̂ =
1

N
. (8.3)

All the parameters are the same for all inputs according to the identical
input process assumption, which makes us possible to introduce a compact
approximate model of the LB switch.

In the next few sections we give the detailed model of VOQ00 as part of
path {1, 0, 0} of the 3 × 3 switch. This is a type-2 path of that particular
switch.

8.2 The model of the input processes

Once again the parameters of the identical input process are

p̂ the parameter of the geometric distributed packet length (8.1) in cells,

q̂ the parameter of the geometric distributed idle period length (8.2) in time
slots and

t̂ = 1
N

the probability of choosing a specific output for a given packet (8.3).

Here we follow the same consideration as in (6.4) in Section 6.2 to give
the full characterization of the inputs. Based on the geometric assumption,
with parameters (8.1) (8.2) and (8.3), we can build the DTMC model, fully
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Figure 8.1. The graph of the DTMC fully characterizing any input of the
3× 3 switch

characterizing any of the identical inputs, with state transition probability
matrix

SC =







(1− p̂) + p̂q̂t̂ p̂q̂t̂ p̂q̂t̂ p̂ (1− q̂)
p̂q̂t̂ (1− p̂) + p̂q̂t̂ p̂q̂t̂ p̂ (1− q̂)
p̂q̂t̂ p̂q̂t̂ (1− p̂) + p̂q̂t̂ p̂ (1− q̂)
q̂t̂ q̂t̂ q̂t̂ 1− q̂







. (8.4)

Its graph is given in Figure 8.1, where the state identifiers are the following

j corresponds to cell arrival from the input to output j, j = 0, 1, 2

id corresponds to the idle period of the input.

In the same way as with the ON/OFF model in Section 7.1 we divide the
states of the full characterization, in Figure 8.1, into two subsets according
to the observed output. For output 0 these are

on the state represents cell arrival from the observed input to output 0 and

off the states represent no cell arrival from the observed input to output 0.

In the following we introduce the approximating two state ON/OFF
model exactly in the same way as in Section 7.1. The difference is that
here we use the same parameter for all the input processes (8.4) and accord-
ingly the result is the general description of any of the inputs. Here again
we introduce state ON replacing the one element subset on and state OFF,
the DPH replacement of the states off.
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Figure 8.2. The graph of the DPH substitution of the off states in terms of
output 0 for the general input

8.2.1 The OFF properties

The OFF state replaces the set of off states by approximating their sojourn
time with the absorbing time of a DPH distribution described in the follow-
ings.

For output 0 the transient states of the DPH are the off states and the
absorbing state is the on state as depicted in Figure 8.2.

Based on SC , given in (8.4), we give the initial distribution (υ) and the
state transition probability matrix (Y) of the DPH. The initial distribution
is the state probability right after entering off from on. It is obtained as the
renormalization of the zeroth row of SC without its zeroth element

υ =
(

q̂t̂

2q̂t̂+(1−q̂)
q̂t̂

2q̂t̂+(1−q̂)
1−q̂

2q̂t̂+(1−q̂)

)

, (8.5)

which is also indicated in Figure 8.2. The 3× 3 sized state transition proba-
bility matrix of the off states is obtained from SC by cutting its zeroth row
and zeroth column

Y =





(1− p̂) + p̂q̂t̂ p̂q̂t̂ p̂ (1− q̂)
p̂q̂t̂ (1− p̂) + p̂q̂t̂ p̂ (1− q̂)
q̂t̂ q̂t̂ 1− q̂



 . (8.6)

The mean absorbing time of this DPH is then

ν = υ (I−Y)−1 1, (8.7)

where I is the identity matrix and 1 is the column vector of ones of appro-
priate size.

Here we note that according to the structure of (8.4) ν is the same for
any output and any input – indeed the input processes are identical.
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Figure 8.3. The ON/OFF model of the identical input processes with the
simplified notation

Consequently the sojourn probability of state OFF is 1 − 1
ν
. The state

transition probability from OFF to ON is 1
ν

which sets the mean sojourn
time in state OFF equal to ν.

8.2.2 The ON properties

State ON replaces the one element subset on with the same sojourn proba-
bility (1− p̂) + p̂q̂t̂. Accordingly the state transition probability from ON to
OFF is 1 minus the sojourn probability p̂− p̂q̂t̂.

The state transition probability matrix of the two state DTMC describing
the ON/OFF input process for the general path is

S∗ =

(
(1− p̂) + p̂q̂t̂ p̂− p̂q̂t̂

1
ν

1− 1
ν

)

=

(
1− p p

q 1− q

)

, (8.8)

where we also introduced a simplified notation with p and q. The graph of
the ON/OFF DTMC using the simplified notation is given in Figure 8.3
which is the same for all the inputs according to the identical input process
assumption.

8.3 Aggregate input model

There is an N + 1 state DTMC describing the combined behavior of the N
inputs. State i represents if there is i inputs in ON. Using the considerations
in Section 8.2 and especially (8.8) the ijth element of the state transition
probability matrix of such a DTMC describing N inputs after 1 time slots is

(
SN,1(p, q)

)

ij
=

min(i,N−j)
∑

k=max(0,j−i)

(
i

k

)

pk (1− p)i−k

(
N − i

j − i + k

)

qj−i+k (1− q)N−j−k

(8.9)
where we also indicated that these probabilities depend on the parameters
of (8.8) – p, q. The first binomial factor of (8.9) represents that out of i ON
sources k moves to OFF and the second factor represents that out of N − i
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OFF sources j − i + k moves to ON, i, j ∈ [0, N ] . (8.9) also introduces the
notation SN,M(p, q) hereinafter denoting the state of N inputs during M
time slots with each input modeled by an ON/OFF DTMC with parameters
p and q given in (8.8) and in Figure 8.3. For example the state of N inputs
after M time slots is

SN,M(p, q) = S
M
N,1(p, q). (8.10)

Using the above method the behavior of any number of inputs, in any number
of time slots can be given.

Based on SN,M(p, q) we give the arrival based decomposition of the arrival
process as

D =












s0

0
...
0
0
0












︸ ︷︷ ︸

0 arrivals

N =












0
s1

0
...
0
0












︸ ︷︷ ︸

1 arrival

H1 =












0
0
s2

0
...
0












︸ ︷︷ ︸

2 arrivals

. . . HN−1 =












0
0
0
...
0
sN












︸ ︷︷ ︸

N arrivals

, (8.11)

where si denotes the ith row vector of SN,M(p, q).
The arrival based decomposition of the N ×N switch in M time slots, is

formalized in Algorithm 4.

Algorithm 4 Arrival based decomposition of the input process

INPUT: N, M,S∗ from (8.8)
OUTPUT: D,N,H1, . . . ,HN−1 the arrival based decomposition
1: determine SN,M(p, q) similar to (8.10) using the elements of S∗
2: decompose SN,M(p, q) as in (8.11)
3: return D,N,H1, . . . ,HN−1

8.4 The cell level model

In this section we give again the model of path {1, 0, 0}. Its cell level model is
also a QBD-like structure whose level represents the queue length and phase
represents the state of the input process.

As the phase process of the QBD-like model is the combined state of the
inputs their arrival based decomposition gives the level transition matrices
used to build the QBD-like structure. D,N,H1,H2 are determined by Al-
gorithm 4 with input parameters N = 3, according to the number of inputs,
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M = 3 the number of time slots in a time period and S∗ (from (8.8)). Here
M = 3 since the time period of the DTMC is 3 time slots long, as it is given
in Section 5.2.1.

There is one level transition backward according to D since there is one
cell served during a time period and D represents 0 arrivals. Local state
transition is according to N and there are 1(2) forward level transition(s)
according to H1(H2).

The state transition probability matrix of the QBD-like model is

S =















D N H1 H2 0 0 . . . 0
D N H1 H2 0 0 . . . 0
0 D N H1 H2 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . .
0 . . . 0 D N H1 H2 0
0 . . . 0 0 D N H1 H2

0 . . . 0 0 0 D N H′
1

0 . . . 0 0 0 0 D N′















, (8.12)

where H′
1 = H1 + H2 and N′ = N + H1 + H2.

The steady state solution of this QBD-like model is the solution of the
linear system of equations

σS = σ

σ1 = 1.
(8.13)

8.5 The packet level model

With the geometric assumption for the packet length, given in Section 5.2.3,
the life cycle of a packet in the observed path is modeled by a transient DTMC
with the same structure as in Section 6.3 and 7.3. It has two absorbing states
corresponding to the two possible ending of a packet. The first absorbing
state corresponds to the first cell loss, or equivalently the packet loss (PL)
and the other one corresponds to the successful packet transmission (ST).
This transient DTMC with two absorbing states is given in Figure 8.4. In this
section we present this transient DTMC by its state transition probability
matrix and initial distribution based representation.

8.5.1 The transient part and the absorption vector

Basically during the life cycle of a packet VOQ00 is modeled by a quasi
birth like (QB-like) structure. Its level represents the queue length and its
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Figure 8.4. The transient DTMC modeling the VOQ during the life cycle of
a packet

phase process is the combined state of the 3 inputs. In this case there is one
important difference compared to the cell level model, given in the previous
section. Input 1 is in ON for sure, since this is the model of the life cycle of
a packet arrives from input 1, which also implies that there is no backward
level transition.

The other two inputs behave in the “normal” manner, i.e., their corre-
sponding level transition matrices are determined by Algorithm 4 with input
parameters N = 2, M = 3 and S∗ from (8.8). M = 3 since the time unit of
the 3× 3 switch is 3 time slots. The result of the algorithm is

D,N and H, (8.14)

of size 3×3 as they describe 2 inputs (the possible states of this phase process
are 0, 1 and 2 – the number of inputs that are in ON).

According to these considerations the state transition probability matrix
of the QB-like structure is built using the blocks

NP = (1− p)3 D, HP
1 = (1− p)3 N and HP

2 = (1− p)3 H. (8.15)

Superscript ∗P denotes quantities describing the transient DTMC in Fig-
ure 8.4. (8.15) describes the joint behavior of input 1 (given by (1− p)3 , the
probability that input 1 remains in ON) and the other two inputs (given by
matrices D,N,H).

Finally using (8.15) the state transition probability matrix of the transient
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part is

SP =













NP HP
1 HP

2 0 0 . . . 0
0 NP HP

1 HP
2 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . .
0 . . . 0 NP HP

1 HP
2 0

0 . . . 0 0 NP HP
1 HP

2

0 . . . 0 0 0 NP HP
1

0 . . . 0 0 0 0 NP













(8.16)

and the state transition probability vector to state PL is

n =









0
. . . . . . . . . .

0
HP

2 1(
HP

1 + HP
2

)1








, (8.17)

where n means that if input 1 is in ON (which is the fundamental assumption
here) then there is packet loss if at the beginning of the time period there is
either

• one free position in the VOQ and there are three arrivals
(
HP

2 1) or

• no free positions in the buffer and there are either

– two arrivals
(
HP

1 1) or

– three arrivals
(
HP

2 1) .

Using SP1 + n + u = 1 the state transition probability vector to state
ST is

u = 1− (SP1 + n
)
. (8.18)

8.5.2 The initial distribution

In this section the initial distribution of the transient DTMC in Figure 8.4 is
given as the state of the system right after the arrival of an incoming packet.

Here we give the joint probability of arriving a new packet at input 1 and
the “normal” behavior of the other two inputs. Using the notations intro-
duced in (8.8) the first probability is 1−(1− q)3 and latter one is determined
as the output of Algorithm 4 with input parameters N = 2, M = 3,S∗, the
same as in (8.14). If q̃ = 1− q then their joint behavior is described by the
matrices

D̂I =
(
1− q̃3

)
D, N̂I =

(
1− q̃3

)
N and ĤI =

(
1− q̃3

)
H. (8.19)
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The block sizes of σ in (8.13) are 4 since they describe all the 3 inputs.
According to this there is a row of zeros appended to every level transition
matrices in (8.19) as

DI =

(

D̂I

0

)

, NI =

(

N̂I

0

)

and HI =

(

ĤI

0

)

. (8.20)

The last row expresses that in case of a new packet arrival there cannot be
all the N = 3 inputs in ON. Here we recall that in our model there is no
corresponding cell arrival to state change from OFF to ON, i.e., in case of
new packet arrival there is no cell arrival from the observed input.

Then starting from the steady state of the cell level model (8.13) and
using the level transitions according to new packet arrival (8.20) the blocks
of the initial distribution of the transient DTMC, given in Figure 8.4, are

σ̂
I
0 = σ0D

I + σ1D
I

σ̂
I
1 = σ0N

I + σ1N
I + σ2D

I

σ̂
I
2 = σ0H

I + σ1H
I + σ2N

I + σ3D
I

σ̂
I
i = σi−1H

I + σiN
I + σi+1D

I 3 ≤ i ≤ b− 1

σ̂
I
b = σb−1H

I + σb

(
NI + HI) .

σ̂
I is normalized as

σ
I =

σ̂
I

σ̂
I1 (8.21)

resulting in the initial distribution of the packet level model in Figure 8.4.

8.5.3 The packet loss calculation of the switch

Using (8.16) (8.17) (8.18) and (8.21) the packet loss probability of the system
and the probability of successful packet transmission on the given path are
calculated as absorbing in state PL and ST, respectively, i.e.,

sl = σ
I (I− SP)−1

n, (8.22)

and
ss = σ

I (I− SP)−1
u = 1− sl. (8.23)

8.5.4 Estimation for the packet waiting time

We estimate the mean packet waiting time with the mean cell waiting time.
The mean cell waiting time equals to the mean system time of the cells
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entering the queue minus the cell service time. Since the service of the VOQ
is deterministic the system time of a cell in the VOQ is N = 3 time slots
times the queue length right after the cell arrival given that the cell is not
dropped (denoted as σ̃

′).
σ̃

′, on the block level, can be determined by the equation system, with
equation for the first irregular level

σ̃
′
1 = σ1

(
1

3
H2 +

1

2
H1 + N

)

+ σ0

(
2

3
H2 + H1 + N

)

for the regular level l ∈ [2, b− 2]

σ̃
′
l = σl−2

1

3
H2 + σl−1

(
1

3
H2 +

1

2
H1

)

+ σl

(
1

3
H2 +

1

2
H1 + N

)

and for the last two irregular levels

σ̃
′
b−1 = σb−3

1

3
H2 + σb−2

(
1

3
H2 +

1

2
H1

)

+ σb−1

(
1

2
H2 +

1

2
H1 + N

)

σ̃
′
b = σb−2

1

3
H2 + σb−1

(
1

2
H2 +

1

2
H1

)

+ σb (H2 + H1 + N) .

σ̃
′ is normalized as σ̃ = σ̃

′

σ̃
′1 resulting in the queue length distribution right

after a cell arrival given that the cell enters the queue.

8.6 On the solution of large QBD-like

DTMCs

Building the cell level DTMC as in (8.12) and solving it as in (8.13) results
in the solution of a linear equation system of size (b + 1) (N + 1) which can
be easily led to inaccurate numerical results.

As a fast and numerically efficient solution of this we apply the folding
algorithm, e.g., in [41], based solution of (8.13). The algorithm is prepared
to block tri-diagonal matrices, hence we repartition (8.12) as

S =













D N H1 H2 0
D N H1 H2

0 D N H1 H2 0
0

0 0 D N H1 H2

. . . . . . . . . . . . . . . . . . . . . . . . .

0
0 D N H′

1

0 0 D N′













=







N
′

H
′ 0

D N H 0
. . . . . . . . . . .

0 D N
′′







,

(8.24)
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where we have enlarged the block size to (N − 1)(N + 1). The inverse of the
enlarged block should be calculated during the folding algorithm which is the
cost of avoiding the inversion of the whole S matrix. Now we can increase
the buffer size b to high values as the computational complexity of the folding
algorithm is O (log2 b) .

In the followings we give the reduction of the matrix inversion of I− SP ,
in (8.22) and (8.23), to the inversion of its diagonal block, denoted as V =
I−NP . Considering the matrix equation

x
(
I− SP) = σ

I (8.25)

where the coefficient matrix
(
I− SP) has an upper triangular structure, on

the block level, we can apply the following iterative solution of the matrix
equation

x0V = σ
I
0 → x0 = σ

I
0V

−1

x0H1 + x1V = σ
I
1 → x1 =

(
σ

I
1 − x0H1

)
V−1

and all the other blocks for i = 2, . . . , b are

xi−2H2 + xi−1H1 + xiV = σ
I
i → xi =

(
σ

I
i − xi−1H1 − xi−2H2

)
V−1

Rearranging (8.25) results in x = σ
I (I− SP)−1

which implies that from
(8.22) the packet loss probability (sl) can be calculated as

sl = xn (8.26)

and the probability of successful packet transmission (ss), from (8.23), can
be calculated as

ss = xu. (8.27)

8.7 Computational study

This section is divided into two subsections. In the first one the verification of
the scalable model, with identical input process assumption, is made and in
the second one there are the three analytical models compared – the detailed,
the ON/OFF and the scalable model.

8.7.1 Computational study on the scalable model

In contrast to Chapters 6 and 7 where we described extended methodology
of packet loss analysis in the LB switch, this chapter presents optimized so-
lution with linear complexity. This computational study on the approximate
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Table 8.1. Parameters used for the numerical studies

Figure 8.5 8.6 8.7 8.8 8.9 8.10
name sl vs. b sl vs. N T vs. b T vs. N sl vs. b T vs. b

without folding algorithm with folding

N 4 4, . . . , 32 4 3, . . . , 33 3
b 8, . . . , 40 36 8, . . . , 40 127 9, . . . , 999

p̂ 1
20

1
40

1
20

1
50

q̂ 1
3

1
2

1
3

t̂ 1
N

model has two parts. The first part shows the behavior of the packet loss and
waiting time of the LB switch as a function of buffer length and switch size.
The second part examines some extreme cases when central stage buffers are
large to show the power of the folding algorithm based solution method pre-
sented in Section 8.6. For the results of this section we used the parameters
given in Table 8.1. In order the comparative analysis we made the specified
measurements also with our LB switch simulation tool.

Study 1 In Section 6.4 we examined the dependence of packet loss at
the central stage buffers on the buffer size, while in Section 7.4 there is
also the dependence on the switch size investigated. It was also found, in
both previous cases, that the packet loss probability strongly depends on the
chosen path ({i, j, k}). Figure 8.5 and 8.6 present similar results, to that of
Sections 6.4 and 7.4, using the approximate model introduced in this chapter.

Figures 8.7 and 8.8 compares the packet waiting time estimator, given
in Section 8.5.4, to simulation results. The packet waiting time is evaluated
considering only the successfully transmitted packets. The packet waiting
time is generally increases together with the buffer size (larger interval be-
tween cell arrivals and services), like in Figure 8.7 and switch size (cells are
spread to more queues), like in Figure 8.8.

Study 2 Figure 8.9 and 8.10 shows the applicability of the analytical model
for large buffer sizes. According to the presented results, we admit that the
ratio between the switch size and buffer length of the VOQs is a crucial issue
for the expected packet loss and system performance. Unfortunately, the
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Figure 8.5. Packet loss versus the buffer size
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104



10

30

50

8 16 24 32 40

p
ac

ke
t

d
el

ay

buffer size

simulation
analysis

Figure 8.7. Packet waiting time versus the buffer size
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Figure 8.8. Packet waiting time versus the switch size
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Figure 8.9. Analytical results on the packet loss versus the buffer size using
the folding algorithm

Table 8.2. The parameters of the considered switch

variable value

N 3
pij 0.2
qi 0.9
tij

1
N

optimal set of parameters (e.g. switch size and buffer length) is not constant
and should be chosen to the specific needs.

8.7.2 Comparison of the analytical Load-balancing
switch models

Since in case of the detailed model the upper bound of the solvability is
N = 3, as its complexity is NN , here we do the comparison for the 3 × 3
switch equipped with buffer of length b = 6, . . . , 34. The parameters used
are exactly the same as in case of the detailed model, given in Table 6.1 and
repeated in Table 8.2.

The results of the detailed and the ON/OFF model shows good match
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Figure 8.10. Packet waiting time versus the buffer size using the folding
algorithm

while the approximate model with identical input process assumption differs
from the two others. This is depicted in Figure 8.11 for the two non-zero loss
(d 6= 0) paths, path {2, 0, 0} and {1, 0, 0}.

The good math of the detailed model and the ON/OFF model fulfills our
expectations as well as the difference of the approximate model. While in
case of the ON/OFF model the DPH substitution of the OFF states affects
the model of only one input, in case of the approximate model the phase
process of the DMAP model is replaced by the aggregate input process.
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Chapter 9

Packet Loss Minimization in
Load-Balanced Switch

In this chapter we give the analysis of a new, central stage packet loss mini-
mizing, protocol proposed in [3]. It is implemented by a controller monitoring
the queue lengths of the VOQs. If the queue length is above a predefined
threshold then the newly arrived packet is dropped at the input. Doing this
prevents the switch from sending a packet into the almost saturated cen-
tral stage and from increasing the probability of loosing an already accepted
packet. This protocol can decrease the packet loss probability at the central
stage by increasing it at the input stage. Our investigations shows that re-
gardless the trade-off between these two loss probabilities the minimal joint
loss probability sometime exists between 0 and the buffer length (b). In other
words this means that it can be worth to introduce such a threshold.

The analysis, given here, is based on the approximate model with identical
input process assumption. For the sake of readability first we summarize the
approximate model, by recalling the main features of Chapter 8, and than we
give the differences of the new model due to the introduction of the packet
acceptance protocol introduced in [3]. The detailed model of the 3×3 switch
is given in Section 9.2.

9.1 Model of the LB switch without packet

rejection

The LB switch, without packet rejection, can have packet loss due to cell
loss in the finite central stage buffers. This is observed via the life cycle of
a tagged packet which can either be transmitted successfully or be dropped
due to the fact that one of its cells is dropped.
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Figure 9.1. The transient DTMC modeling the VOQ during the life cycle of
a packet

In Figure 9.1 there is a two dimensional, transient, discrete time Markov
chain (DTMC) describing the life cycle of the tagged packet. Its level process
(horizontal dimension) is the length of the tagged VOQ and its phase pro-
cess (vertical dimension) is the state of the aggregated input process. The
transient part has a quasi birth-like (QB-like) structure with possibly more
than one forward level transitions. The two absorbing states of the transient
DTMC are the one representing the successful packet transmission (ST) and
the packet loss (PL).

The main steps of the analysis of the original model are summarized in
Algorithm 6 using Algorithm 5, but we refer to Chapter 8 for the details of
the model. We used the following notations of Sections 5.2.2, 5.2.3 and 8.1

N is the size of the switch, i.e., the number of the input and output ports,

b is the buffer size of the VOQs,

p̂ is the parameter of the geometric distributed packet length in cells,

q̂ is the parameter of the geometric distributed idle period length in time
slots,

t̂ = 1
N

is the probability of choosing a specific output for a given packet and

{i, j, k} is a path, i.e., the ordinal number of the input, output and the VOQ
respectively, i, j, k ∈ [0, N − 1].
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Algorithm 5 Level Transitions(N, M, p̂, q̂, t̂), the arrival based decom-
position of the input process given in Sections 8.2 and 8.3

INPUT: N, M, p̂, q̂, t̂
OUTPUT: D,N,H1, . . .HN−1, p, q //the arrival based decomposition and

the ON/OFF properties

1: SC =





(1−p̂)+p̂q̂t̂ p̂q̂t̂ p̂q̂t̂ p̂(1−q̂)

p̂q̂t̂ (1−p̂)+p̂q̂t̂ p̂q̂t̂ p̂(1−q̂)

p̂q̂t̂ p̂q̂t̂ (1−p̂)+p̂q̂t̂ p̂(1−q̂)

q̂t̂ q̂t̂ q̂t̂ 1−q̂



//the complete input model

given in (8.4)

2: υ =
(

q̂t̂

2q̂t̂+(1−q̂)
q̂t̂

2q̂t̂+(1−q̂)
1−q̂

2q̂t̂+(1−q̂)

)
,Y =

(
(1−p̂)+p̂q̂t̂ p̂q̂t̂ p̂(1−q̂)

p̂q̂t̂ (1−p̂)+p̂q̂t̂ p̂(1−q̂)

q̂t̂ q̂t̂ 1−q̂

)

//the

initial vector and the state transition probability matrix of the DPH
substitution of the off states given in (8.5) and (8.6) respectively

3: 1 =
(

1
...
1

)

//an appropriate size column vector of ones

4: ν = υ (I−Y)−1 1//the solution of the DPH (8.7)
5: 1− 1

ν
//the sojourn probability of the substituting OFF state

6: (1− p̂) + p̂q̂t̂ //the sojourn probability of the ON state

7: S∗ =
(

(1−p̂)+p̂q̂t̂ p̂−p̂q̂t̂
1
ν

1− 1
ν

)

=
(

1−p p
q 1−q

)
//the ON/OFF input model (8.8)

8:
(
SN,1(p, q)

)

ij
=

min(i,N−j)
∑

k=max(0,j−i)

(
i

k

)
pk (1− p)i−k

(
N−i

j−i+k

)
qj−i+k (1− q)N−j−k

//the aggregate input model during one time slot (8.9)

9: S
M
N,1(p, q)(N+1)×(N+1)

= SN,M(p, q)(N+1)×(N+1) =






s0
1×(N+1)

s
1
1×(N+1)

...
sN
1×(N+1)




 //aggre-

gate input model during M time slots and its row based decomposition
with their sizes (8.10)

10: D =






s0

0
...
0
0
0






︸ ︷︷ ︸

0 arrivals

, N =






0
s
1

0
...
0
0






︸ ︷︷ ︸

1 arrival

, H1 =






0
0
s
2

0
...
0






︸ ︷︷ ︸

2 arrivals

, . . . , HN−1 =






0
0
0
...
0

s
N






︸ ︷︷ ︸

N arrivals

//the

arrival based decomposition of the aggregate input model (8.11)
11: return (D,N,H1, . . .HN−1, p, q)
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Algorithm 6 Scalable Model(N = 3, b, p̂, q̂, t̂, {i, j, k} = {1, 0, 0}), the scal-
able model of the 3× 3 LB switch given in Sections 8.4 and 8.5

INPUT: N = 3, b, p̂, q̂, t̂, {i, j, k} = {1, 0, 0}
OUTPUT: ss, sl //the probabilities of successful packet transmission and

packet drop
1: (D,N,H1,H2, p, q) = Level Transitions(N, M = N, p̂, q̂, t̂)//the ar-

rival based decomposition of the aggregate process of all inputs during 3
time slots using Algorithm 5

2: S =





D N H1 H2 0 ...
D N H1 H2 0 ...
... ... ... ... ... ...
... 0 D N H1 H2

... 0 0 D N H
′
1

... 0 0 0 D N
′



//the cell level model of the 3× 3 switch (8.12)

3: σS = σ, σ1 = 1. //the steady state solution of the cell level model
(8.13)

4: (D,N,H, p, q) = Level Transitions(N−1, M = N, p̂, q̂, t̂)//the arrival
based decomposition of the aggregate process of two inputs during 3 time
slots (8.14) using Algorithm 5

5: NP = (1− p)3 D, HP
1 = (1− p)3 N, HP

2 = (1− p)3 H//the arrival
based decomposition of the aggregate process of the two non-observed
and the observed input during 3 time slots (8.15)

6: SP =





N
P

H
P
1 H

P
2 0 ...

... ... ... ... ...

... 0 N
P

H
P
1 H

P
2

... 0 0 N
P

H
P
1

... 0 0 0 N
P



 , n =






0
...
0

H
P
2 1

(HP
1 +H

P
2 )1 //the state transition

probability matrix of the QB-like part and the absorption vector to state
PL given in (8.16) and (8.17) respectively

7: u = 1− (SP1+ n
)

//the absorption vector to state ST (8.18)
8: q̃ = 1− q//using the notations of line 7 of Algorithm 5
9: D̂I = (1− q̃3)D, N̂I = (1− q̃3)N, ĤI = (1− q̃3)H//the level tran-

sitions according to packet arrival during 3 time slots (8.19) using the
results of line 4

10: DI =
(

D̂I

0

)
, NI =

(
N̂I

0

)
, HI =

(
ĤI

0

)
//the size-corrected level

transitions according to packet arrival (8.20)

11: σ
I
u = σ






DI NI HI 0 ...
DI NI HI 0 ...
... ... ... ... ...
... 0 DI NI HI

... 0 0 D
I

N
I

... 0 0 0 DI




//the unnormalized initial distribution

12: σ
I = σ̂

I

σ̂
I1//the normalized initial distribution of the packet level model

(8.21)

13: ss = σ
I (I− SP)−1

u, sl = σ
I (I− SP)−1

n //the solution of the
packet level model given in (8.23) and (8.22) respectively

14: return ss, sl
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9.2 Model of the LB switch with packet re-

jection

We present the model of the LB switch with packet rejection using the ideas
and the notations given in Algorithm 6, but for more details on the model
without packet rejection one should refer to the original model description
given in Chapter 8. The main differences are given in the followings for the
3× 3 switch as in Chapter 8.

The packet acceptance threshold (t) is defined as the queue length, in
cells, counted from the beginning of the observed VOQ in the central stage
buffers.

If the queue length of the observed VOQ is above t then the arrival
processes of the inputs are forced to be OFF, q̂ = 0. From modeling point of
view q̂ = 0 represents the drop of the packets at the inputs. Setting q̂ = 0,
when the queue length is greater than t, results in the model of the LB switch
with packet rejection.

9.2.1 The cell level model

The state transition probability matrix of the cell level model, originally
determined in line 2 of Algorithm 6, changes to

S(th)(t) =


















D N H1 H2 0 . . . . . . . . . . . . . . . . . . . . . . . . . .
D N H1 H2 0 . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 0 D N H1 H2 0 . . . . . . . . . . . .

. . . . . . 0 D(th) N(th) H
(th)
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, (9.1)

where superscript (th) refers to the changes caused by the threshold. The
block level of (9.1) describes the VOQ queue length and accordingly a hor-
izontal line between the tth and t + 1st rows denotes the threshold. The
blocks in rows [0, t] are built exactly in the same way as the “regular” blocks
in line 2 of Algorithm 6. The changed blocks in rows [t + 1, b] are built with
the assumption of q̂ = 0.

Accordingly the steady state solution of the cell level model also changes
to the solution of the linear system of equations

σ
(th)(t)S(th)(t) = σ

(th)(t), σ
(th)(t)1 = 1, (9.2)
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instead of line 3 of Algorithm 6. Here the notation 1 is introduced for the
appropriate size column vector of ones. Here we also note that contrary to [2]
which proposes a Folding algorithm [41] based solution method for the steady
state solution of (9.1) more effective numerical solutions can be applied for
such a Markov chain. S(th)(t) is skip-free to the left (upper Hessenberg ma-
trix) with regenerative structure (during backward level transition the phase
process regenerates). An effective numerical solution method of this kind of
QBD-like Markov chain can be found in [39], [22].

The probability of dropping a packet at the input is

si(t) =

b∑

i=b−(N+1)t+1

σ
(th)
i , (9.3)

i.e., the probability that the queue length of the system is above the threshold.

9.2.2 The packet level model

Due to the introduction of the buffering threshold the state transition prob-
ability matrix of the transient part as well as the absorption vectors change.
For the original model these are determined in line 6 of Algorithm 6. Here
again the blocks in rows [0, t] are built in the way presented in Algorithm 6
and the blocks in rows [t + 1, b] are determined by the substitution of q̂ = 0.
The state transition probability matrix of the QB-like part and the transpose
of the absorbing vector to state PL are

S(th)P(t) =
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,

n(th)T(t) =
(

0 . . . 0 0 . . . 0 H
(th)
2

P1 (

H
(th)
1

P
+ H

(th)
2

P)1) ,

(9.4)

respectively. The same idea appears in Figure 9.2 in the packet level model
of the LB switch with packet rejection.
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Figure 9.2. The transient DTMC modelling the VOQ with packet rejection
during the life cycle of a packet

The initial distribution of the packet level model

For the original model without packet rejection the initial distribution of the
packet level model is given in (8.21) and referred in line 12 of Algorithm 6.
It is the solution of a linear system of equations what we give here in the
(block) matrix form in (9.6). The upper blocks of such a matrix are built in
the same way as in line 10 of Algorithm 6, while the t + 1, . . . , bth rows are
set to zero according to q̂ = 0,

S(th)I(t) =









NI HI
1 HI

2 0 . . . . . . . . .
NI HI

1 HI
2 0 . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . 0 NI HI
1 HI

2 0 .
0 . . . . . . . . . . . . . . . . . . . . . 0









. (9.5)

The unnormalized initial distribution of the transient DTMC modeling the
system on the packet level is given as

σ
(th)
u

I
(t) = σ

(th)(t)S(th)I(t) (9.6)

and it is normalized as

σ
(th)I(t) =

σ
(th)
u

I
(t)

σ
(th)
u

I
(t)1 . (9.7)

9.2.3 The minimal loss probability of the system

Using the initial distribution (9.7), the state transition probability matrix of
the transient part and the loss vector (9.4) the loss probability due to the
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Table 9.1. Parameters used for the numerical studies

Figure 9.3 9.4 9.5 9.6 9.7

name sI-CS(t) versus t

N 4, . . . , 12 4, . . . , 18 4, . . . , 40 4 4
b 30 20 50 15 4 . . . 75
t 1, . . . , 30 1, . . . , 20 0, 50 1, . . . , 15 various
p̂ 1

50
1
20

1
40

1
20

, . . . , 1
50

1
15

q̂ 9
10

t̂ 1
N

finite central stage buffer capacity is given as the function of the threshold
as

s
(th)
l (t) = σ

(th)I(t)
(

I− S(th)P(t)
)−1

n(th)(t). (9.8)

Let sI-CS(t) be the probability of dropping a packet at the input or, if it
is not dropped at the input, it is dropped at the CS due to buffer overflow.
Using (9.3) and (9.8) the t-dependent joint input-central stage (I-CS) loss
probability is

sI-CS(t) = si(t) +
(
1− si(t)

)
s
(th)
l (t), (9.9)

Having the loss probability as the function of the threshold one can find
the minimal loss by the consecutive execution of (9.9) for t ∈ [0, b] and find
the minimum of the resulting sequence.

9.3 Computational study

In this section we study the joint I-CS packet loss probability of the switch as
a function of the CSSs’ buffering threshold (t) by the consecutive execution
of (9.9) for all t ∈ [0, b]. The analytical results are also verified by simulations
using our LB switch simulation tool.

In correspondence with Chapter 8, from which the present model is de-
duced, there are identical input processes assumed. The computational stud-
ies, given here, are drawn using the parameters of Table 9.1. Contrary to
Section 9.2, where the model of path {1, 0, 0} is given, here the joint I-CS
loss probability results are determined for several types of paths.

The first experiment focuses on the threshold and switch size dependency
of the optimal packet loss. In particular Figure 9.3 and 9.4 shows the de-
pendency of the joint I-CS packet loss probability on the threshold value for
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several switch sizes and Figure 9.5 shows the dependency on the switch size
for t = {0, 50}. The parameters used for packet loss evaluation are listed in
Table 9.1. If the threshold is around 0, the input packet loss has the main
impact on the joint packet loss. Basically the protocol is dropping most of
the packets arriving to the inputs since none of the central stage buffers is
allowed to be used for packets forwarding. Indeed, the loss value is almost in-
dependent of the switch size (see curve t = 0 in Figure 9.5). Obviously when
the threshold at the central stage is equal to the buffer size b the switch is
operating in the traditional way (without protocol support) and the joint
packet loss is composed only of the loss obtained due to the central stage
buffers congestion. Finally, moving the threshold in [0, b] we can determine
the threshold for which the joint packet loss probability is minimal.

Since the results were performed for different switch sizes it is also possible
to see in Figures 9.3 and 9.4 how the optimal threshold (topt) of the minimal
packet loss moves towards b as the switch size increases. The explanation
of such kind of behavior is the following. The threshold aims to reduce the
wasted capacity at CS. If the loss probability at the central stage is high the
introduction of t < b reduces the amount of waste cells at VOQs. The higher
the loss probability is the lower t results in the minimal joint I-CS loss. On
the other hand the growth of the switch size results in larger system capacity
and accordingly lower central stage packet loss probability [2, 4]. These two
effects moves topt towards b with the increase of the switch size. From a
given point on the central stage packet loss probability decreases very slowly
with t, and from this point the increasing packet loss at the input becomes
dominant.

In Figure 9.6 we examine the joint I-CS packet loss probability evaluated
by means of mathematical model and simulations in response to the various
threshold sets. In this experiment we focus on the behavior of the system
when various types of traffic matrices appear at the inputs. In particular,
we modify the average size of the packets which are running through the
switch. The set of parameters used for the experiment are given in Table 9.1.
According to the obtained results, and also to our expectations, with the
growth of the average packet size the joint packet loss of the system also
increases. Figure 9.6 reflects to the fact that not only the system capacity
plays significant role in the central stage loss probability but the average
packet size too. If the average packet size is larger compared to the switch
size the CS packet loss probability also increases. Similarly to the previous

117



0.1

0.2

0.3

0.4

0.5

5 10 15 20 25 30

jo
in

t
p
ac

ke
t

lo
ss

p
ro

b
ab

il
it
y

threshold

0.1

0.2

0.3

0.4

0.5

5 10 15 20 25 30

jo
in

t
p
ac

ke
t

lo
ss

p
ro

b
ab

il
it
y

threshold

sim N = 4
an N = 4

sim N = 6
an N = 6

sim N = 8
an N = 8

sim N = 12
an N = 12

Figure 9.3. The dependence of the joint input-central stage loss on the thresh-
old for several switch sizes
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experiment the higher the CS packet loss probability is the lower t results in
the minimal joint I-CS loss.

Our last study shows how the buffering threshold can be used to save
buffer capacity. In Figure 9.7 there are two curves one of them plotting the
packet loss values for the optimal threshold setting and the other of them the
packet loss without the packet rejection policy. The intersection of the 10%
line for the tradition switch, without packet rejection, is at b = 48 while the
same for the switch with packet rejection is at b = 30, i.e., by the use of the
packet rejection protocol there is more than 1

3
of the buffer capacity saved

while the packet loss probability kept on the same level.
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Chapter 10

Conclusions

In Chapter 6 we present a combined analysis in order to calculate loss proba-
bilities of a finite central stage buffer for variable size packets. In spite of the
fact that our analysis does not make calculation according the packet size
distribution of the real networks, it makes an attempt to present the analysis
of LB switch operating with variable size packets contrary to the previous
model in [5]. The results show that switch loss with variable size packets can
be considerably greater than that for packets of fixed size.

Another important designing issue observed from the analysis is the dif-
ference in the packet loss probabilities depending on the traffic paths. This
property causes complex evaluation of the loss probabilities for large switch
sizes since it has strong dependence on the queue number and crossbar in-
terconnection policy, i.e., how the LB switch actually operates. This is not
mentioned elsewhere according to our best knowledge.

In the followings, in Chapter 7, we present an approximate analytical
model for the same as in Chapter 6 but the modeling complexity is reduced
to be O

(
2N
)

while in case of the detailed model, in Chapter 6, it is O
(
NN
)
.

Although the complexity has remained exponential, the new approach has
extended the range of packet loss probability evaluation for switches with
N ≥ 4 and large VOQ sizes. Since the load-balanced switch is the ar-
chitecture of choice when N is large, our next step is the presentation of
approximated analysis with linear complexity in Chapter 8. This enables
us to remove restrictions on the port/buffer size of the switch in order to
calculate the important characteristics of the system (like different kinds of
loss, delays, average buffers occupancy).

Indeed in Chapter 8 we present a scalable model for the packet loss and
packet waiting time analysis in the load-balancing Birkhof-von Neumann
switch.

The computational complexity of the approximate model introduced is
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reduced to be linear with N, the number of ports of the switch. The other
contribution of the model is the folding algorithm based, numerically stable
and fast algorithm to solve the DTMCs for large buffer sizes (b). This allow
us to solve switches of size up to ∼ 30 equipped with buffer of size up to
∼ 1000.

Finally in Chapter 9 we present a service protocol which allows to calcu-
late and configure the LB switch in order to obtain the minimal joint packet
loss probability of the input and central stage buffers. Using the protocol one
can decrease the wasted capacity of load-balanced switch and accordingly the
reassembly delay as well as the power equipment of the reassembly unit.

During the computational studies we have shown the experiments on
finding the threshold for the optimal packet loss probability. We have also
given the explanations of three interesting phenomena, how the switch size
and the load of the switch affects the threshold value at which the minimal
joint I-CS loss probability is gained and how can the introduction of the
packet rejection threshold reduce the buffer capacity needed to keep the
packet loss probability on a predefined level.
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[6] Andrea Bobbio, András Horváth, and Miklós Telek. Matching three mo-
ments with minimal acyclic phase type distributions. Stochastic models,
pages 303–326, 2005.

[7] Levente Bodrog, Peter Buchholz, Jan Kriege, and Miklós Telek. Canon-
ical form based MAP(2) fitting. In International Conference on Quanti-
tative Evaluation of SysTems, Williamsburg, VA, USA, September 2010.
IEEE Computer Society.

123



[8] Levente Bodrog, Armin Heindl, Gábor Horváth, and Miklós Telek. A
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