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Abstract—The Internet represents a complex asynchronous
network operating with variable length packets which is strongly
related to the application used. On the other hand, the require-
ments for the transmission and capacity characteristics of the
Internet are rapidly increasing. Due to simple distributed control
and high scalability Load-Balancing (LB) Birkhof-von Neumann
switch appears to be a promising switch architecture. The
previous research was focused on the assumption of unlimited
amount of buffering and the transmission of fixed-size packets
or cells. This paper analyzes packet and cell loss probabilities of
the Load-Balanced switch operating with 1) variable size packets
and 2) finite central stage buffers. In the course of the analysis
we recognized a previously unpublished feature of the LB switch
which is the asymmetry of different paths through the switch.
This behavior has major impact on the fairness and loss inside
the switch.

I. INTRODUCTION

The single-stage load-balanced switch (LB switch) was
recently presented in [1] and [2] and has remained one of the
most relevant topics due to its attractive scalability properties.
The first significant results in [1] and [2] was that under certain
assumptions the switch can achieve high throughput and can
be highly scalable, while keeping simple distributed control.
However, LB switch have some problems of its own. One
of the critical issues recently raised in the research appears
to be mis-sequenced arrival of equal size packets (from now
on we refer them simply as cells), while transmitting packets
through the switch. Keeping correct sequence of packets
through the system avoids unnecessary retransmissions of
packets in the network protocol layer. The main efforts to
resolve cell mis-sequencing were proposed in [2]. Each new
solution for out-of-order packet arrival problem had increased
the complexity of the LB switch. For example, the Mailbox
switch [4] and the Contention and Reservation switch [8]
have introduced a novel symmetric interconnection pattern
for crossbar switches, which provides information feedback
links with extra communication and computational overheads.
Additional works resolving mis-sequencing problem were
presented in [7], where matching algorithms and feedback

between stages were used for appropriate packets exchange
between the stages. Complexity and performance of this switch
depends on the matching algorithm used. Finally, the Byte-
Focal switch [5] does not require any feedback between the
stages and has a simple controllable cell re-sequencer at
the output stage. However, it uses large buffering space for
resolution, which may not be scalable for large number of
ports (N ). Efficiency of mis-sequencing algorithm is important
to take into account for LB switch with variable size packets,
since inefficient algorithm can create extra delays and packet
loss at the reassembly unit.

In most of the presented papers some strong assumptions are
used. In particular, it is considered that the central stage buffers
inside the switch are infinite, the packets coming through the
system are of the same size (cells) [3], and that the traffic
pattern obeys the admissibility conditions. The throughput
analysis of the two stage load-balanced switch with finite
buffers was presented in [9], in which the authors have shown
that even under admissible traffic patterns the throughput
cannot reach 100%. Unfortunately, in [9], only simulation
results were presented. In the analysis presented in [6] there
has been introduced the possibility of cell drop in the finite
central stage buffers. It also provides solution for calculation
of cell loss probability both for admissible and inadmissible
traffic patterns. However, the analysis in [6] was done only for
fixed size packets (cells), and there was not taken into account
variable size packets.

The main goal of this paper is the analysis of packet (of
variable size) loss in the internal LB switch. We also prove
the significance of variable size packets consideration. We
assume Markovian behavior to be able to use numerically
efficient algorithms to solve Markov chains. In our case this
means geometrically distributed packet and idle period lengths,
which allows us to capture the mean of these distributions.
Real internet traffic shows different packet size distributions
[11], [12] and one can fit more parameters using other,
more complex Markovian structures like discrete Phase Type
(DPH) distributions or discrete Markovian arrival processes
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Fig. 1. The load-balanced switch considered for the analysis

(DMAPs). The number of fitted parameters can be increased at
an arbitrary level, but it would greatly increase the complexity
of the model as well and that would also hide the main
contribution of our approach.

The single-stage buffering LB switch is equipped with First-
In-First-Out (FIFO) buffers in the inputs and re-sequencing
and reassembly units (RRU) in the output (see the illustration
in Fig. 1). The implementation of RRU is not discussed in
this paper, but it can be used as one among the proposed in
research, like in [10]. In this analysis there is no feedback
link between the switch stages and each stage is operating
independently.

A. The main analysis assumptions

We assume finite FIFO buffers at the inputs which in fact
are large enough to store as much cells as the loss probability
remains under a predefined threshold. And in any case the
dropped packets are not considered in the central stage which
is the main focus of this paper. If a packet is dropped at the
input buffer all of its cells are dropped and the whole packet
is reset by the network layer and can be retransmitted by a
network protocol. On the other hand if a single cell is dropped
in the central stage, there is no possibility to drop all the
remaining cells of this “broken” packet without sophisticated
centralized controller (which is not the case of this paper).
Such “broken” packets will definitely make impossible of RRU
operation like is it introduced in [10]. Each variable size packet
arrives with variable rate, this rate is always less than service
rate of cells inside the switch – the switch is not overloaded.
After the arrival of a variable size packet there is a possible
idle period (measured in time slots). Cell transmissions inside
the switch have a fixed rate. The destination outputs of the
packets are chosen uniformly among all the available outputs
(this is given in T parameter in our analysis). The analysis
is done without any respect to cells mis-sequencing inside the
switch and packets reassembly. The main goal of the presented
analysis is to show the amount of packet/cell loss experienced
by a single central stage virtual output queue (VOQ).

Moreover, as shown in our analytical results, the packet
loss probability of a VOQ strongly depends on the specific
traversing path of the traffic inside the switch, which is an
interesting phenomenon described in Section II-A for the
interconnection pattern applied. We analyze the least preferred
path among the possibilities.

The rest of the paper is organized as follows. We give the
detailed analysis of a switch with N = 3 input and output

TABLE I
THE THREE POSSIBLE SETTINGS OF 3× 3 LB SWITCH

t mod N 0 1 2

switch state

ports in Section II, and right after we give the algorithmic
description of the same process for the switch with arbitrary
number (N ) of ports in Section III. In Section IV we verify
the result by comparing it with simulations. Finally Section V
concludes the paper.

II. ANALYSIS OF 3× 3 LOAD-BALANCED SWITCH

Throughout the paper we will use the notation n × m to
denote a switch with n input and m output ports or simply
refer them as a switch of size N if there are both N input and
output ports.

In this section we give the detailed model of the switch of
size 3 since it has all the important properties of the general
switch of size N. In our analysis we consider VOQ00, to
which arrivals are possible from all three inputs directed to
output 0.

The crossbar interconnections between input i, cental stage
VOQkj , and output j obey the rules

k = i + t mod N

j = k + t mod N
(1)

respectively. Due to this, the interconnection pattern of the
switch has a periodic behavior with length N. In case of
size 3 the possible interconnection settings are summarized
in Table I.

In a time slot, firstly, the VOQs are connected to the
outputs and then the inputs to the VOQs. This order of
interconnections inhibits a cell from traverse the switch in a
single time slot.

As the packets are segmented into fix-sized cells the arrival
process to a VOQ can be described by a discrete time Markov
chain (DTMC) on the cell level (see Section II-B). Extending
the DTMC with two absorbing states we are able to model the
system on the packet level (Section II-C). Having the packet
level model we give its solution in Section II-D.

In Section II-A we will show our observations on the
different behavior of the different paths through the switch.

A. Properties of the different paths

Using (1) the difference between the service of a given VOQ
and the arrival to it can be expressed as

∆t = 2k − i− j mod N. (2)

This implies the difference between different paths as, in case
of a given VOQ, it depends on the ordinal number of both the
input and the output. The possible ∆t values are 0, 1, . . . , N−
1 time slots.

There are two important consequences of this observation.



a) Differences in cell loss: Depending on the value of
∆t there can be N values of cell loss probabilities – pcl l ∈
[ 0, N [ , as well as N values of the packet loss probabilities –
ppl l ∈ [ 0, N [ . The following set of inequalities holds for
them

pc0 = 0 ≤ pc1 ≤ . . . ≤ pcN−1,

pp0 = 0 ≤ pp1 ≤ . . . ≤ ppN−1,
(3)

which is explained by the fact that the higher the ∆t value
the higher the loss probability value.

In a time period, ∆t inputs have the right to send a cell to
the observed VOQ before the observed input. Consequently,
the higher the ∆t value the larger the chance that there are
enough inputs sending cells before the observed input to fill
up the queue.

b) Differences in other performance measures: The input
– output pairs with higher ∆t value will always suffer from
higher delay as well as higher drop probability.

This way the interconnection patterns of the input and
output crossbars determine the fairness of input – output pairs.
Assuming the crossbars are set to provide a symmetric (fair)
chance for the input – output pairs then the cells of an input
– output pair suffers different loss at the different VOQs. This
way the loss between an input – output pair is dominated by
the VOQ where it has the maximal ∆t value. I.e., the worst
case dominates the loss. To the best of our knowledge this
property has not been reported yet.

Due to this phenomenon it is not irrelevant which configu-
ration is analyzed. We analyze the path with the maximal ∆t
value (worst case) in the following sections, and comment on
the behaviour of the other cases in Section IV.

B. The cell level model

In the following we describe the model of the 3×3 switch.
We have chosen to model VOQ00 – the first sub-queue of the
first set of VOQs – or, more specifically, the path input 1 →
VOQ00 → output 0. If one substitutes the ordinal number of
these ports and virtual queue into (2) it will result in 2·0−1−0
mod N = 2, which the highest loss values corresponds to.

VOQ00 is “fed” by three input processes with geometric
distributed packet lengths. Each input can have packets des-
tined to the different outputs.

First we model the operating mechanism on the cell level by
building the appropriate DTMCs for the ith input (see Fig. 2).
Each DTMC has four states denoted as follows

ij the states responsible for cell-arrivals from input i to
output j and

i id the state responsible for the idle period of input i.

The state transitions describe the beginning of either a new
packet or the idle period or the continuation of an incomplete
packet. The graph of the DTMC modeling the ith input is
given in Fig. 2 and the transition probability matrix of the
ith input is given in (4), i.e. for example the substitution of
i = 1 will result in the graph together with the state transition
probability matrix of the second, observed, input. The meaning
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Fig. 2. The DTMC modeling input i

of probabilities appearing in the DTMC according to the state
transition probabilities are
• pijqitij is the probability that a packet from the ith input

to the jth output arrives in the actual time slot,
• 1−pij is the probability that the packet from the ith input

to the jth output is still in progress,
• pij (1− qi) is the probability that the packet from input

i to output j is ended and the ith input changes to idle,
• input i remains in idle state with probability 1−qi in the

actual time slot and
• tijqi is the probability that the next packet will be sent

from input i to output j after the idle.
Hereinafter T = ( tij ) denotes the probabilities that a packet
arrives from input i to output j. P = ( pij ) are the parameters
of the geometric distributed packet length arrivals from input
i to output j. q = ( qi ) is the vector containing the parameters
of the geometric distributed idle period of input i.

Now we split the state transition probability matrix of the
ith input into two terms

Pi = Ai + Ki (5)

The first term includes state transitions responsible for cell
arrival to output 0 – its first row equals to the first row of Pi

and it is 0 otherwise. The second term includes the other cases,
which has zeros in the first row and equals to Pi otherwise.

The system behavior in three consecutive time slots is
described by a DTMC embedded right before the service of
the VOQ at every t mod N = 0th time instance. Each input
(during the three time slots long period) is modeled by the
third power of its state transition probability matrix. The joint
behavior of the three inputs in the period is described by the
Kronecker product of the third power of the state transition
probability matrices of each input. It is

P = P3
0 ⊗P3

1 ⊗P3
2, (6)

which is the phase process of a quasi birth-deathlike (QBD-
like) process describing the queue length of the observed VOQ.

In addition to (6)

P = B + L + F1 + F2 (7)

also holds for the phase process of the same QBD-like. Here B
is the backward, L is the local and Fks are the set of forward
level transition matrices (in our 3× 3 case k = 1, 2).



Pi =


(1− pi0) + pi0qiti0 pi0qiti1 pi0qiti2 pi0 (1− qi)

pi1qiti0 (1− pi1) + pi1qiti1 pi1qiti2 pi1 (1− qi)
pi2qiti0 pi2qiti1 (1− pi2) + pi2qiti2 pi2 (1− qi)
qiti0 qiti1 qiti2 1− qi

 (4)

In the next step we substitute (5) into (6), expand it, identify
the terms corresponding to 0, 1, 2 and 3 cell arrivals to VOQ00

and we match its subexpressions to the terms of (7). All these
are given in (8).

In detail, one factor of the third powers in (6) is substituted
by (5). Namely, in case of input 0 it is the first factor because
it can send a cell to the observed central stage queue in the
first time slot of the cycle (according to Table I). In case of
input 1(2) the third(second) factor is substituted. Once the
substitution is done and the expansion is executed the terms
are collected based on “the number of As appearing in it”
which equals to the number of cell arrivals to the observed
VOQ.

After all manipulations we obtain (8) in which we also
indicate the meaning of the terms. There is one cell served at
the beginning of a period which results in one level transition
backward in case of 0 cell arrivals, stay on the same level in
case of 1 cell arrivals and 1(2) level transition(s) forward in
case of 2(3) cell arrivals.

Finally we give the irregular levels of the QBD-like process.
In the first irregular level, when the central stage queue is
empty, the DTMC can have 0, 1, 2 and 3 level transitions
according to B,L,F1, and F2 respectively. In case of a full
buffer the level process remains in the bth level instead
of level transitions forward. According to this the forward
level transition matrix in the level before the last one is
F′1 = F1 + F2 and the local state transition in the last level
is L′ = L + F1 + F2.

Then the state transition probability matrix of the QBD-like
process on the block level is

P =


B L F1 F2 0 . . . 0
B L F1 F2 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . .
0 . . . 0 B L F1 F2

0 0 . . . 0 B L F′1
0 0 0 . . . 0 B L′

 . (9)

Its steady state solution is the solution of the linear equation
system

πP = π Ph = h, (10)

where h is the appropriate size column vector of ones.

C. The packet level model

We model the system on the packet level by a DTMC
describing the life-cycle of a packet. Such an absorbing DTMC
is described by its initial distribution and state transition
probability matrix. In this section we give these properties.

This is obtained by the introduction of two absorbing states
appended to the modified QBD-like model of the virtual queue.

As these absorbing states correspond to the two possible
endings of the packet transmission – either the packet is lost
or transmitted successfully – this new transient DTMC will
describe the life cycle of the packet.

The Markov model of the system in Fig. 3 consists of
these parts, one is the revised QBD-like model of the virtual
output queue and there are two absorbing states appended to
the QBD-like part. The absorbing state ST corresponds to the
successful packet transmission in the observed path of the LB
switch and CL to the first cell loss and also to the packet loss.
In the next sections we will discuss these parts of the model
into details.
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Fig. 3. The transient DTMC for the packet level

1) Modifications to the QBD-like process: Here we intro-
duce the notation superscript ∗R which denotes properties of
the transient DTMC introduced in this section.

In the following we describe the revised QBD-like model of
VOQ00 when a packet is present in the system. The revision
covers the determination of the state transition probabilities
to the two absorbing states. First we remove state transition
probabilities from P1 according to the successful packet
transmission. Later on, these probabilities will be added as
state transitions to the absorbing state ST in Section II-C4. In
practice it means that the QBD-like model will be determined
based on the revised DTMC description of input 1 given in
Fig. 4 and in (11).

The DTMCs of the other two inputs remain the same as in
Fig. 2 and in (4) since the observed path contains only input 1.

The determination of the state transition probabilities to
absorbing state CL will be given later in Section II-C2.

Similar to Section II-B we consider the switch operation
during three consecutive time slots. Now we split PR1 into the
two similar terms as in (5)

PR1 = AR1 + KR1 . (12)

Similar to the cell level QBD-like model we calculate the
state transition probability matrix of the phase process in
two different ways and do the matching between the two
expressions in (13).



P = P3
0 ⊗P3

1 ⊗P3
2 = (A0 + K0)P2

0 ⊗P2
1 (A1 + K1)⊗P2 (A2 + K2)P2 =

= A0P2
0 ⊗P2

1K1 ⊗P2K2P2 + K0P2
0 ⊗P2

1A1 ⊗P2K2P2 + K0P2
0 ⊗P2

1K1 ⊗P2A2P2︸ ︷︷ ︸
1 arrival

+

+ K0P2
0 ⊗P2

1A1 ⊗P2A2P2 + A0P2
0 ⊗P2

1K1 ⊗P2A2P2 + A0P2
0 ⊗P2

1A1 ⊗P2K2P2︸ ︷︷ ︸
2 arrivals

+

+ A0P2
0 ⊗P2

1A1 ⊗P2A2P2︸ ︷︷ ︸
3 arrivals

+K0P2
0 ⊗P2

1K1 ⊗P2K2P2︸ ︷︷ ︸
no arrivals

= L + F1 + F2 + B

(8)

PR1 =


(1− p10) 0 0 0
p11q1t10 (1− p11) + p11q1t11 p11q1t12 p11 (1− q1)
p12q1t10 p12q1t11 (1− p12) + p12q1t12 p12 (1− q1)

q1t10 q1t11 q1t12 1− q1

 . (11)

P = P3
0 ⊗PR1

3 ⊗P3
2 = (A0 + K0)P2

0 ⊗PR1
2
(
AR1 + KR1

)
⊗P2 (A2 + K2)P2 =

= A0P2
0 ⊗PR1

2
KR1 ⊗P2K2P2 + K0P2

0 ⊗PR1
2
AR1 ⊗P2K2P2 + K0P2

0 ⊗PR1
2
KR1 ⊗P2A2P2︸ ︷︷ ︸

1 arrival

+

+ K0P2
0 ⊗PR1

2
AR1 ⊗P2A2P2 + A0P2

0 ⊗PR1
2
KR1 ⊗P2A2P2 + A0P2

0 ⊗PR1
2
AR1 ⊗P2K2P2︸ ︷︷ ︸

2 arrivals

+

+ A0P2
0 ⊗PR1

2
AR1 ⊗P2A2P2︸ ︷︷ ︸

3 arrivals

+K0P2
0 ⊗PR1

2
KR1 ⊗P2K2P2︸ ︷︷ ︸

no arrivals

= LR + FR1 + FR2 + BR

(13)
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Fig. 4. The revised DTMC model of input 1

The first irregular level will be similar to that in (9). In the
last level instead of one level transition forward there can be
two cases. In the first case if there is no arrival from input 1
the system will stay on the same level, otherwise there will
be a cell loss. According to these two cases FR1 is split into
two terms

FR1 =
(
K0P2

0 ⊗PR1
2
AR1 ⊗P2A2P2+

+ A0P2
0 ⊗PR1

2
AR1 ⊗P2K2P2

)
+

+
(
A0P2

0 ⊗PR1
2
KR1 ⊗P2A2P2

)
= FR(A)

1 + FR(K)
1 .

(14)

The first term stands for arrival and the other for no arrival.
Using this LR′ = LR + FR(K)

1 and the state transition
probability matrix of the QBD-like part is

P̂R =



BR LR FR1 FR2 0 . . . 0
BR LR FR1 FR2 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 . . . 0 BR LR FR1 FR2
0 0 . . . 0 BR LR FR1
0 0 0 . . . 0 BR LR′

 . (15)

2) The packet loss: There can be cell loss (or equivalently
packet loss) in the system in two cases
• either if the queue length is b− 1 at the beginning of the

cycle and there are three arrivals to VOQ00

• or if the queue is full and there is arrival from input 1 to
VOQ00.

Appending the absorbing state CL to the QBD-like part and
collecting the state transition probabilities to CL according to
the two above cases we can build up the transpose of the state
transition probability vector to CL as

lT =

(
0 . . . 0

(
FR2 h

)T
((

FR(A)
1 + FR2

)
h
)T
)

,

(16)
where h is the appropriate size column vector of ones.
Appending state CL to the QBD-like results in state tran-

sition probability matrix P̃R =
(

P̂R l
eT

l

)
, where eT

l =



( 0 ... 0 1 ) is the transpose of the last unit vector with appro-
priate size since CL is an absorbing state.

The introduced analytical approach is applicable for the
analysis with different values of ∆t (see (2)) with some mod-
ifications. The first is the modification of the block matrices
in the last column of P̂R – the irregular level matrices – in
(15).

The second modification is the modification of the state
transition probability vector to CL (l) as follows

• ∆t = 0 no state transitions to CL and
• ∆t = 1 state transitions to CL only from the last level.

There are other differences between analysis of the different
types of paths mentioned in Section II-A (e.g. technically
how the equations are built), but these two are the essential
differences.

3) The cell loss: To calculate the cell loss of the system
one should create F(A)

1 analogously to FR(A)
1 by rearranging

the term for F1 from (8) as

F1 =
(
K0P2

0 ⊗P2
1A1 ⊗P2A2P2+

+ A0P2
0 ⊗P2

1A1 ⊗P2K2P2

)
+

+
(
A0P2

0 ⊗P2
1K1 ⊗P2A2P2

)
= F(A)

1 + F(K)
1 .

It gives two terms, the first stands for the case when there is
arrival from input 1 to VOQ00 and the second when there is
no arrival.

Having F(A)
1 and using F2 from (8) the cell loss is

pc = πb−1F2h + πb

(
F(A)

1 + F2

)
h, (17)

where b is the buffer size and πl is the l + 1st sub-vector –
with length N +1 – of π given in (10) and h is the appropriate
size column vector of ones.

4) The successful packet transmission: The DTMC absorbs
in state ST if the last cell of a packet is transmitted successfully
as well as all the other cells of it. The preceding parts of this
model (the DTMC) do not contain the state transitions respon-
sible for packet ending (see Fig. 4 and (11)). Accordingly the
vector containing the probabilities to change state to ST, i.e.
successful packet transmission, is calculated as

s = h− P̃Rh. (18)

By appending state ST to the DTMC we get

PR =

 P̂R l s
eT

l 0
e′l

T

 (19)

since the state transition probability matrix of the DTMC
contains two absorbing states (appearing in Fig. 3). Here
e′l

T = ( 0 ... 0 1 ) is the transpose of the appropriate size last
unit vector.

D. The probabilities of packet loss and successful packet
transmission

The packet loss probability is given as the probability of
absorbing in state CL

pl = πN
(
I− P̂R

)−1

l (20)

and the probability of successful packet transmission is the
probability of absorbing in state ST

ps = πN
(
I− P̂R

)−1

s, (21)

where I is the appropriate size identity matrix. πN is the initial
probability distribution of the system immediately after a new
packet arrival from input 1.

1) The initial distribution of the system: The system is
considered to be in the steady state when a new packet arrives.
Then the initial distribution πN of the system is given as
the probabilities being in each state right after a new packet
arrival. Quantities with superscript ∗N describes the system in
this state.

In the 4 ≤ i ≤ b− 1st regular level the initial states are

π̂Ni = πi−2FN2 + πi−1FN1 + πiLN + πi+1BN (22)

and in the irregular levels are

π̂N0 = π0BN + π1BN (23)

π̂N1 = π0LN + π1LN + π2BN (24)

π̂N2 = π0FN1 + π1FN1 + π2LN + π3BN (25)

π̂N3 = π0FN2 + π1FN2 + π2FN1 + π3LN + π4BN (26)

π̂Nb = πb−2FN2 + πb−1

(
FN1 + FN2

)
+

+ πb

(
LN + FN1 + FN2

)
, (27)

where π is the steady state solution of the cell level model
given in (10). BN , LN and FNi are the level transition
matrices of a QBD-like model describing the system right after
a new packet arrival.

This QBD-like model is built up in a similar way to that
in Section II-C1. The difference is that the model of input
1 is containing only state transitions corresponding to a new
packet arrival as it is shown in Fig. 5 and given as

PN1 =


p10t10q1 0 0 0
p11q1t10 0 0 0
p12q1t10 0 0 0

q1t10 0 0 0

 . (28)

The models of input 0 and 2 are the same as shown in Fig. 2.
BN , LN and FNk k = 1, 2 are determined similar to the

preceding cases. However, the behavior of input 1 needs some
more considerations according to the new packet arrival.

Since the packet can arrive in all three time slots the
state transition probability matrix of input 1 in a period is
reconsidered based on Table II. Its notations are:
• + denotes the arrival of a packet in a time slot,
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Fig. 5. The DTMC of input 1, a new packet arrival

TABLE II
THE POSSIBLE TIME EVOLUTION OF INPUT 1 WITH PACKET ARRIVAL

t mod 3 = three consecutive time slots0 1 2
+ + +

P2
1P
N
1

− + +
+ − +
− − +
+ + − (

P1PN1 + PN1

(
P1 −PN1

))(
P1 −PN1

)
− + −
+ − −

• the arrival instance(s) in a period is on the left hand side,
• the corresponding state transition probability matrix is on

the right hand side.
Here again we split PN1 into two parts

PN1 = AN1 + KN1 , (29)

containing two terms. First stands for the cell arrival and the
second for no arrival.

Based on Table II, using (29) and (5) for i = 1, we give
the matrices describing input 1 in a period if there is arrival
– AN1 – and if there are no arrivals – KN1 .

Now the state transition probability matrix of the phase
process can be expressed in two different ways using (30)
and (5) (for i = 0, 2). The matching of the terms is resulting
in the level transition matrices of this QBD-like process. It is
given in (31).

Similarly to (8), (31) makes mapping with BN , LN , FN1
and FN2 matrices. Substituting them into the expressions (22)
through (27) and normalizing them by c =

∑b
i=0 π̂Ni h we

obtain
πNi =

1
c
π̂Ni , 0 ≤ i ≤ b, (32)

the individual parts of the initial distribution of the transient
DTMC in Fig. 3 modeling the system on the packet level.
Combining the parts together we get πN – the initial distri-
bution.

Finally substituting (15), (16), (18) and πN into (20) and
(21) we get the packet loss probability and the probability of
successful packet transmission.

The model presented in this Section describes a path with
the highest loss probability according to Section II-A. And
we just flash the results of the other two kind of paths in
Section IV on Fig. 6.

TABLE III
THE PARAMETERS OF THE CONSIDERED SWITCH

variable value
N 3

pij 0.2 (av. 5 cells)
qi 0.9 (av. 1.1 cells)

tij
1
N

III. ANALYSIS OF N ×N LOAD-BALANCED SWITCH

The analysis of the N × N switch can be done in an
analogous way to the 3× 3 case. Since we are short in space
we only give here the short overview of the basic steps of it.

Step1. Based on the chosen path create the model of the
switch in N time slots long time period for the cell
level analogously as it is described in the Section II-B
for 3× 3 case;

Step2. build up the transient DTMC describing the system
for the packet level, similarly to the procedure de-
scribed in Section II-C;

Step3. based on the considered path of the cells determine
the possible way of cell/packet loss, similarly to the
derivations in Section II-D and determine the initial
probability of the transient DTMC, as it is done in
Section II-D1; and

Step4. solve the transient DTMC.

The above steps give the outline of the algorithm and based
on Section II all the steps are well defined for its detailed
program-automated implementation.

Unfortunately, even after proper description of the various
steps of the algorithm in the general case (for arbitrary N ) the
state space increases exponentially with the size of the switch.
This can lead to insolvable DTMCs even with the usage of the
various sophisticated tools and numerical methods.

IV. COMPUTATIONAL STUDY

In this section we give the comparison of our models to the
simulation results in case of switch size N = 3, depending on
the buffer size – b.

As it is mentioned earlier in Section II-B, all packets
arriving to the inputs contain geometric distributed number of
cells and there are geometric distributed idle periods between
them. If a packet goes to a specific output. These three set of
parameters are

• P = ( pij ) the parameter of the geometric distributed
packets length directed from input i to output j,

• q = ( qi ) the parameter of the geometric distributed idle
length (in cells) of input i and

• T = ( tij ) the probability that the packet is directed from
input i to output j.

Using these parameters our modelling scenario is given in
Table III.

In Section II we just present the model of path: input 1→
VOQ00 → output 0, but we also did it for the other two
inputs. These three paths have three different kinds of loss



AN1 = P2
1A
N
1 +

(
P1PN1 + PN1

(
P1 −PN1

))(
A1 −AN1

)
KN1 = P2

1K
N
1 +

(
P1PN1 + PN1

(
P1 −PN1

))(
K1 −KN1

) (30)

P = P3
0 ⊗

(
AN1 + KN1

)
⊗P3

2 = (A0 + K0)P2
0 ⊗

(
AN1 + KN1

)
⊗P2 (A2 + K2)P2 =

= A0P2
0 ⊗KN1 ⊗P2K2P2 + K0P2

0 ⊗AN1 ⊗P2K2P2 + K0P2
0 ⊗KN1 ⊗P2A2P2︸ ︷︷ ︸

1 arrival

+

+ K0P2
0 ⊗AN1 ⊗P2A2P2 + A0P2

0 ⊗KN1 ⊗P2A2P2 + A0P2
0 ⊗AN1 ⊗P2K2P2︸ ︷︷ ︸

2 arrivals

+

+ A0P2
0 ⊗AN1 ⊗P2A2P2︸ ︷︷ ︸

3 arrivals

+K0P2
0 ⊗KN1 ⊗P2K2P2︸ ︷︷ ︸

no arrivals

= LN + FN1 + FN2 + BN

(31)
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Fig. 6. The packet loss probability (pp) in case of the analysis and simulation
versus the buffer size (b)

probabilities given in Section II-A. The result with parameters
given in Table III for all three path types are depicted in Fig. 6.

The results in Fig. 6 show good match in terms of both
mathematical model and simulations. It is also captured that
in case of larger buffer sizes the packet loss tends to be
smaller, which is obvious in case of the same system with
more capacity. There are three kind of loss types with relation
pp0 = 0 ≤ pp1 ≤ pp2 as expected in Section II-A in (3).

V. CONCLUSIONS

In this paper we presented a combined analysis in order to
calculate loss probabilities of a finite central stage buffer both
for variable size packets and fixed size cells. In spite of the
fact that our analysis does not make calculation according the
packet size distribution of the real networks [12], it makes an
attempt to present the analysis of LB switch operating with
variable size packets contrary to the previous model in [6].
The results show that switch loss with variable size packets
can be considerably greater than that for packets of fixed size.

Another important designing issue observed from the analy-
sis is the difference in the packet loss probabilities depending
on the traffic traversing path. This property is making complex
evaluation of the loss probabilities for large switch sizes since
it has strong dependence on the queue number and crossbar

interconnection policy, i.e. how the LB switch actually oper-
ates. This is not mentioned elsewhere according to our best
knowledge.
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