
2. Basic concepts of codes and the generic
coding scheme

Coding Technology



Problem 1

A code has codewords

10100, 01111, 11110, 00000.

(a) Calculate the n and k parameters of the code.

(b) What is the minimal Hamming distance between codewords?

(c) How many errors can the code detect? How many errors can
the code correct?



Problem 1

Solution.

(a) The length of the codewords is n = 5, and the number of
codewords is 2k = 4 (one for each message vector of length
k), so k = 2. This is a C (5, 2) code.

(b) Using pairwise comparison, the minimal Hamming distance is

dmin = 2.

(c) A code with dmin = 2 can detect

dmin − 1 = 1

errors and correct ⌊
dmin − 1

2

⌋
= 0

errors.
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Problem 2

(a) Design a C(5,2) code with maximal dmin.

(b) Implement the code with Look-Up-Tables (LUT).

(c) Determine the error correction and error detecting capabilities
of the code.

Solution.

(a) There are 32 binary vectors of length n = 5, and we have to
choose 2k = 22 = 4 of them. We need to check their minimal
pairwise Hamming distance, and choose 4 vectors where the
minimal Hamming distance is as large as possible.
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Problem 2

(a) For the code in the previous problem, dmin = 2. Try to get
dmin = 3.

I The first codeword could be (00000).

I The weight of every other codeword must be 3 or more.
(00111) is a natural choice.

I The next codeword also needs to have weight 3 or more, but it
also has to differ from the previous codeword in at least 3
digits. (11100) is a suitable choice.

I (11111) is not suitable for the final codeword, because its
Hamming distance from the previous two codewords is just 2.
But if we change the third bit to 0, it works: (11011).

For this code, dmin = 3.

4 codewords of length 5 with dmin ≥ 4 is not possible. (Even 3
codewords of length 5 with dmin ≥ 4 is not possible. Why?)
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Problem 2

(b) If we assign the messages to the codewords according to the
following list, then the lookup-table (LUT) is the same
assignment in reverse:

00→ 00000
01→ 11100
10→ 00111
11→ 11011

→

c ′ u′

00000 00

11100 01

00111 10

11011 11

The LUT above includes only the codewords, other received
vectors are decoded to the codeword with minimal
Hamming-distance.

(In case of d = 2, the received vector may have minimal
Hamming-distance to multiple codewords. In such a situation,
we may choose any of the codewords with minimal
Hamming-distance for decoding.)



Problem 2

(b) The full c ′ → u′ assignment for all possible received vectors is
as follows:

c ′ u′

00000, 00001, 00010, 00100, 01000, 10000,
00

01001, 10001, 10010

11100,11101,11110,11000,10100,01100,
01

01101, 01110

00111,00110, 00101, 00011, 01111, 10111,
10

10110, 10101

11011, 1110, 11001, 11111, 10011, 01011,
11

01010

This table is significantly larger than the LUT, but it is not
necessary to compute {c : min d(c , c ′)}.

(c) Error detection: dmin − 1 = 2.
Error correction: bdmin−1

2 c = 1.
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Problem 3
We have the following coding scheme:

u c

00 000000
01 010101
10 101010
11 111111

u ⊕c

e

c : mincd(v , c)
v

c ′ u′

000000 00
010101 01
101010 10
111111 11

c ′ u′

For u = (11) and e = (001000), determine the vectors c, v , c ′, u′.

Solution.

c = (111111)

v = c + e = (111111) + (001000) = (110111),

c ′ = {c : min
c

d(v , c)} = (111111)

u′ = (11)
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Problem 4

Use the same coding scheme:

u c

00 000000
01 010101
10 101010
11 111111

u ⊕c

e

c : mincd(v , c)
v

c ′ u′

000000 00
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101010 10
111111 11

c ′ u′

for u = (01) and e = (001011) to determine the vectors c , v , c ′, u′.

Solution.

c = (010101)

v = c + e = (010101) + (001011) = (011110),

c ′ = {c : min
c

d(v , c)} = (111111)

u′ = (11)
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Problem 5

For each of the following sets of codewords, give the appropriate
(n, k, d) designation, where n is number of bits in each codeword,
k is the number of message bits transmitted by each codeword and
d = dmin is the minimum Hamming distance between codewords.
Also give the code rate.

(a) {111, 100, 010, 001}
(b) {00000, 01111, 10100, 11011}
(c) {00000}



Problem 5

Solution.

(a) {111, 100, 010, 001}
I n = 3 (the length of the codewords);
I k = 2 (the number of codewords is 4 = 2k);
I d = dmin = 2 (from pairwise comparison).
I the code rate is k/n = 2/3.

(b) {00000, 01111, 10100, 11011}

n = 5, k = 2, d = 2, the code rate is 2/5.

(c) {00000}

A bit of a trick question. n = 5, k = 0, d is undefined. The
code rate is 0.

With only one codeword, no useful information can be
transmitted since the receiver knows in advance what the
codeword is going to be.
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Problem 6

The Registrar has asked for an encoding of classes according to
year (“Freshman”, “Sophomore”, “Junior”, “Senior”) that allows
single error correction. Give an appropriate 5-bit binary encoding
for each of the four years.

Solution. We need a C (5, 2, 3) block code. We have seen one like
that in Problem 2, that code is suitable for this problem too:
{(00000), (00111), (11100), (11011)}.
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Problem 7

Pairwise Communications has developed a block code with three
data bits (D1,D2,D3) and three parity bits (P1,P2,P3):

P1 = D1 + D2, P2 = D2 + D3, P3 = D3 + D1.

(a) Calculate (n, k) for this code.

(b) What are the codewords?

(c) What is the minimum Hamming distance of the code?



Problem 7

Solution.

(a) n = 6, k = 3.

(b) The 8 possible codewords:

(000000), (001011), (010110), (011101),

(100101), (101110), (110011), (111000).

(c) By pairwise inspection, the minimum Hamming distance is
dmin = 3. OR (jumping ahead): this code is a linear code, and
for linear codes,

dmin = min
c 6=(00...0)

w(c) = 3.
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Problem 8

The receiver computes three syndrome bits E1,E2 and E3 from the
(possibly corrupted) received data and parity bits:

E1 = D1 + D2 + P1, E2 = D2 + D3 + P2, E3 = D3 + D1 + P3.

The receiver performs maximum likelihood decoding using the
syndrome bits. Determine the result of the maximum-likelihood
decoder from among the following:

I no errors, or

I single error in a specific bit (state which one), or

I multiple errors,

for each of the following combination of syndrome bits:

E1E2E3 = 000, E1E2E3 = 010,

E1E2E3 = 101, E1E2E3 = 111.



Problem 8

Solution. Main points to consider:

I no errors result in 0 for all of E1,E2 and E3.

I if there is only one error, and it is from among D1,D2 or D3,
then two of E1,E2 and E3 will be 1’s.

I if there is only one error, and it is from among P1,P2 or P3,
then one of E1,E2 and E3 will be 1’s.

I The ML decoder will pick the result with the fewest errors.

For E1E2E3 = 000, the result is no errors.

For E1E2E3 = 010, the result is 1 error in P2.

For E1E2E3 = 101, the result is 1 error in D1.

For E1E2E3 = 111, the result is multiple errors.
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Theoretical bounds

Singleton bound: for any C(n, k) code,

dmin ≤ n − k + 1.

If there is equality in the Singleton bound, we say that the code is
Maximum Distance Separable (MDS).

Hamming bound: if a C(n, k) binary code can correct t errors, then

t∑
i=0

(
n

i

)
≤ 2n−k .

If there is equality in the Hamming bound, we say that the code is
perfect.
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Problem 9

Is the following code an MDS (Maximum Distance Separable)
code?

c1 = (00000), c2 = (11111)

Solution. n = 5 2k = 2, so k = 1, and dmin = 5. A code is MDS if

dmin = n − k + 1

holds. In this case,

dmin = 5 = n − k + 1 = 5− 1 + 1

holds, so this is an MDS.
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Problem 10

Is the following code an MDS code?

(000000), (001011), (010110), (011101)

(100101), (101110), (110011), (111000)

Solution. n = 6, k = 3, dmin = 3.

n − k + 1 = 6− 3 + 1 6= dmin = 3

No, it is not MDS.
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Problem 11

A perfect code with n = 15 corrects t = 1 error. What is the value
of k?

Solution. For a perfect code, there is equality in the Hamming
bound:

t∑
i=0

(
n

i

)
= 2n−k

n + 1 = 2n−k

16 = 215−k ,

so k = 11.
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