4. Algebra over GF(q); Reed-Solomon and cyclic
linear codes

Coding Technology



Axioms of GF(q)

GF(q) is the Galois field (or finite field) with g elements.

Field axioms

Addition "4 Multiplication “x”

a,f€GF(q) »a+p€GF(q) a,p€ GF(q) — axf e GF(q)

a+p =0+« axfB=F*«

(a+B)+v=a+(B+7) (axB)xy=ax(Bx7)

30:Vae GF(q):a+0=a 31:Vae GF(q):axl=q«

VYo € GF(q)3B:a+ B =0; Va € GF(q)\{0}: 38:axp8=1;
B=a;l=—a B=a,l=a"1

ax(B+y)=axf+axy

Liberty to define “+" and “x" as long as they satisfy the above
axioms.



Examples of GF(q)

g can be either a prime or p™ (with p prime and m > 2).

We focus on the g prime case first. When ¢ is a prime, GF(q)
has the mod g arithmetics:

GF(q) ={0,1,...,q9 — 1},
and

a+B=a+ mod g,
axfBf=a- mod q.

Examples in GF(7):

6+5=4 mod7 (6+5=11=4 mod7)
6%«5=2 mod7 (6-5=30=2 mod?7)
—4 =3 mod 7 (4+3—7—O mod 7)
471=2 mod7 (4-2=8=1 mod7)



Power table

Basic property: Yo € GF(q)\{0}: a9 1 =1.

The order of « is the minimal m for which o™ =1. If m=q — 1,
we call o a primitive element.



Power table

Basic property: Yo € GF(q)\{0}: a9 1 =1.

The order of « is the minimal m for which o™ =1. If m=q — 1,
we call o a primitive element.

element powers order
o ata?ala*a®al| m
1 1 1
2 2 41 3
3 326541 6 — primitive element
4 4 21 3
5 546231 6 — primitive element
6 6 1 2

The powers of a primitive element give all nonzero elements in
GF(q).



Polynomials over GF(q)

a(x) = ag+ar1x+apx® 4+ amx™; ag, a1, 0z, ...,am € GF(q)
Roots x1,...,xm: a(x;)) =0,i=1,....m
number of roots < deg(a(x)) = m

If a(x) has deg(a(x)) = m roots x1, ..., Xm, then
a(x) = am H(X — Xj).
i=1

Polynomial division: given a(x) and d(x) with
deg(a(x)) = m > deg(d(x)) = k,
dq(x), r(x) : a(x) = g(x)d(x) + r(x); deg(r(x)) < k.

a(x),d(x) — Euclidean division algorithm — g(x), r(x)
m — k steps



Problem 1

What is the additive inverse of 2 in GF(5)?



Problem 1

What is the additive inverse of 2 in GF(5)?
Solution. 24+ 3 =1-5+4 0, so the additive inverse of 2 in GF(5) is

—2=2;t=3



Problem 2

What is the multiplicative inverse of 2 in GF(5)?



Problem 2

What is the multiplicative inverse of 2 in GF(5)?

Solution. 2-3 =1-5+1, that is,
2%¥3=1 mod 5,
so the multiplicative inverse of 2 in GF(5) is

27l=21-3



Problem 3

What is the additive inverse of 5 in GF(11)?



Problem 3

What is the additive inverse of 5 in GF(11)?
Solution. 5-6 =1-11+0, so the additive inverse of 5 in GF(11) is

-5=5,1=6.



Problem 4

What is the multiplicative inverse of 7 in GF(11)?



Problem 4

What is the multiplicative inverse of 7 in GF(11)?

Solution. 7-8 =5-1141, that is,
7+8=1 mod 11,
so the multiplicative inverse of 7 in GF(11) is

7l=71=3.



Problem 5

Solve the equation 6x +5 = 2 in GF(7).



Problem 5

Solve the equation 6x +5 = 2 in GF(7).

Solution.

6x+5=2
6x =2-5
6x = -3
6x =4
x=6"1x4
x=6x4
x =24

x = 3.



Reed-Solomon codes
Let a, 1, ..., an—1 be distinct nonzero elements of GF(g), where

n=gq-—1.

Then the corresponding C(n, k) Reed-Solomon code over GF(q) is
a linear code with generator matrix

1 1 1 1
(&7] a1 (0% Qp—1
G =
k=1 k-1 k-1 k—1
120 Qy 2%) ®p 1



Reed-Solomon codes

Let a, 1, ..., an—1 be distinct nonzero elements of GF(g), where

n=gq-—1.

Then the corresponding C(n, k) Reed-Solomon code over GF(q) is

a linear code with generator matrix

RS codes have the MDS property:
dmin =n—k+ 15

so the code can

» detect n — k errors, and

» correct L”;kJ errors.




Reed-Solomon codes

Special case: RS code generated by a primitive element «. If we
choose a; = o', then

1 1 1 1
1 « a? a1

G = ,
1 k-1 2(k-1) Q(n=1)(k-1)

i an=k  q2(n=k) a(”_k')(”_l)



Problem 6

Design an RS code over GF(7) that corrects every double error.



Problem 6

Design an RS code over GF(7) that corrects every double error.

Solution. First we want to compute the parameters (n, k). The
error correcting capability is

t:{n_kJ:2 — n—k=
2




Problem 6

Design an RS code over GF(7) that corrects every double error.

Solution. First we want to compute the parameters (n, k). The
error correcting capability is

:V—kJ: S on—k=




Problem 6

Any C(6,2) RS code over GF(7) is suitable; for example, for the RS
code generated by the primitive element 5, we have

c_[t11111
1154623

and

T

Il
e
N O &~ O
AR DN D
= O = O
N = BN
A O W



Problem 7

Using the previous code, determine the codewords assigned to the
message vectors u = (4,4), u = (3,5) and u = (5,1).



Problem 7

Using the previous code, determine the codewords assigned to the
message vectors u = (4,4), u = (3,5) and u = (5,1).

Solution.

(44)- i =(136052)

11111
54 6 2 3



Problem 7

Using the previous code, determine the codewords assigned to the
message vectors u = (4,4), u = (3,5) and u = (5,1).

Solution.
111111
(44)-[1 46 2 3]—(136052)
111111
(35)'[1 5 4 6 2 3]:(102564)



Problem 7

Using the previous code, determine the codewords assigned to the
message vectors u = (4,4), u = (3,5) and u = (5,1).

Solution.
@a-| T LU (136052)
HERS SR
(51) 1 - é ; é::(632401)



Problem 8

Give the generator matrix and parity check matrix of a RS code
capable of correcting every single error over GF(5), using the
primitive element 2.



Problem 8

Give the generator matrix and parity check matrix of a RS code
capable of correcting every single error over GF(5), using the
primitive element 2.

Solution. For the error correcting capability, we have

t—v_kJ—l & h—k=2

2



Problem 8

Give the generator matrix and parity check matrix of a RS code
capable of correcting every single error over GF(5), using the
primitive element 2.

Solution. For the error correcting capability, we have

t—{n;kJ—l — n—k=2.

Due to g =5, we have n=q — 1 =4, so (n, k) = (4,2), and

1111 12 43
TR F R



Problem 9

A C(10,4) RS code over GF(11) has generator matrix

1111111111
G — 16 379 1058 4 2
13954 1 3 95 4
1 75 2 3 10 4 6 9 8

(a) How many errors can the code correct?
(b) What is the primitive element used?
(c) Calculate the parity check matrix H.



Problem 9

Solution.

(a) Thisis a RS code, so the code can correct L”;kj = 3 errors.




Problem 9

Solution.

(a) Thisis a RS code, so the code can correct L”;kj = 3 errors.

(b) The primitive element used is 6:

111111 1111
G- 16 3 79 10 5 8 4 2
13954 1 3 95 4
1 75 2 3 10 4 6 9 8



Problem 9

Solution.

3 errors.

n;kJ —

(a) Thisis a RS code, so the code can correct |

(b) The primitive element used is 6:

|
— AN < ©
— <t 10O O
— 00 O ©
— O M <
-3~ 3
— O M
— N~ 1 AN
— M O 1O
— O M M~
— = =
 —
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Problem 10

The parity check matrix of a RS code over GF(7) is

I

Il
e
o NN W
N = BN
= O = O
AN P>
N O B~ Ol

(a) What is the type of the code (n and k parameters)?
(a) How many errors can the code correct?

(c) Determine the codeword assigned to the message vector which
contains only 2's.



Problem 10

Solution.

(a) The parity check matrix H for a C(n, k) RS code has size
(n— k) x n. In this case, H is 4 x 6, so (n, k) = (6,2).



Problem 10

Solution.

(a) The parity check matrix H for a C(n, k) RS code has size
(n— k) x n. In this case, H is 4 x 6, so (n, k) = (6,2).

(b) Itis a RS code, so the error correcting capability is | 5% | = 2.




Problem 10

Solution.

(a) The parity check matrix H for a C(n, k) RS code has size
(n— k) x n. In this case, H is 4 x 6, so (n, k) = (6,2).
(b) Itis a RS code, so the error correcting capability is | 5% | = 2.

2
(c) This code is generated by the primitive element 3, so

1 11111
G_[132645]’
and

c:uc;:(zz)-“ e ;]:(416035).



Problem 11

A C(6,3) RS code is generated by the largest primitive element
belonging to the field.

(a) Give the generator matrix G.
(b) Give the parity check matrix H.

(c) How many errors can be detected using this code? How many
errors can be corrected?



Problem 11

Solution.

(a) The value of g is not given directly, but from n = g —1, we can
deduce g = 7. The largest primitive element in GF(7) is 5, so

G =

S
A Ol

1
4
2

= o =

1
2
4

N W~



Problem 11

Solution.

(a) The value of g is not given directly, but from n = g —1, we can
deduce g = 7. The largest primitive element in GF(7) is 5, so

1
G=|1
1

1

o

1

1
6
1

—

1
2
4

1
3
2

N



Problem 11

Solution.

(a) The value of g is not given directly, but from n = g —1, we can
deduce g = 7. The largest primitive element in GF(7) is 5, so

111111
G=|15 46 23
1 4 2 1 4 2

(c) The code can

» detect n — k = 3 errors, and

> correct | 25K | =1 error.




Linear cyclic codes

A code is cyclic if for any codeword
c=(pcac...cn-1),
its cyclically shifted version
Sc=(cp—1C1-.-Cn2)

is also a codeword. S is the cyclic shift operator.



Linear cyclic codes

A code is cyclic if for any codeword
c=(pcac...cn-1),
its cyclically shifted version
Sc=(cp—1C1-.-Cn2)

is also a codeword. S is the cyclic shift operator.

The Reed-Solomon code generated by a single primitive element «
is a cyclic linear code.



Linear cyclic codes

Example. The C(4,2) RS code over GF(5) that can correct 1 error
has the following codewords:

(00) - (0000) | (23) - (0341)
(01) —(1243) | (24) — (1034)
(02) —(2431) | (30) — (3333)
(03) - (3124) | (31) —» (4021)
(04) — (4312) | (32) » (0214)
(10) —(1111) | (33) —»(1402)
(11) - (2304) | (34) —» (2140)
(12) - (3042) | (40) — (4444)
(13) -+ (4230) | (41) - (0132)
(14) —(0423) | (42) —» (1320)
(20) — (2222) | (43) — (2013)
(21) - (3410) | (44) — (3201)
(22) —» (4103)




Problem 12

A C(6,2) linear cyclic code over GF(7) can correct 2 errors.
(6,0,3,5,4,1) is one of the codewords.

(a) Is (5,4,1,6,0,3) a codeword?
(b) Is (1,0,4,2,3,6) a codeword?
(c) Is (1,0,4,3,5,2) a codeword?



Problem 12

A C(6,2) linear cyclic code over GF(7) can correct 2 errors.
(6,0,3,5,4,1) is one of the codewords.

(a) Is (5,4,1,6,0,3) a codeword?
(b) Is (1,0,4,2,3,6) a codeword?
(c) Is (1,0,4,3,5,2) a codeword?
Solution.

(a) Yes, because it is the cyclic shifted version of the given
codeword (shifted 3 times).



Problem 12

A C(6,2) linear cyclic code over GF(7) can correct 2 errors.
(6,0,3,5,4,1) is one of the codewords.

(a) Is (5,4,1,6,0,3) a codeword?
(b) Is (1,0,4,2,3,6) a codeword?
(c) Is (1,0,4,3,5,2) a codeword?
Solution.

(a) Yes, because it is the cyclic shifted version of the given
codeword (shifted 3 times).

(b) Yes, because it is equal to the given codeword multiplied by 6.



Problem 12

A C(6,2) linear cyclic code over GF(7) can correct 2 errors.
(6,0,3,5,4,1) is one of the codewords.

(a) Is (5,4,1,6,0,3) a codeword?
(b) Is (1,0,4,2,3,6) a codeword?
(c) Is (1,0,4,3,5,2) a codeword?
Solution.

(a) Yes, because it is the cyclic shifted version of the given
codeword (shifted 3 times).

(b) Yes, because it is equal to the given codeword multiplied by 6.

(c) No, because the code can correct 2 errors — dpmin > 5, but
the (b) and (c) vectors have Hamming-distance 3.



Code polynomials

We can assign code polynomials to codewords:
c=(ewac...com1) — c(x)=co+ax+
Then the code polynomial assigned to Sc is

c'(x) = [xc(x)] mod (x" —1).

cee 4 C,-,_1Xn7



Code polynomials

We can assign code polynomials to codewords:
c=(cwac...com1) — c(xX)=co+ax+---+ Cro1x" 1

Then the code polynomial assigned to Sc is

c'(x) = [xc(x)] mod (x" —1).

For any linear cyclic C(n, k) code, there exists a code polynomial
g(x) of degree n— k such that all code polynomials are of the form

g(x) is called the generator polynomial of C(n, k).



Code polynomials

We can assign code polynomials to codewords:

c=(cwac...com1) — c(xX)=co+ax+---+ Cro1x" 1

Then the code polynomial assigned to Sc is

c'(x) = [xc(x)] mod (x" —1).

For any linear cyclic C(n, k) code, there exists a code polynomial
g(x) of degree n— k such that all code polynomials are of the form

g(x) is called the generator polynomial of C(n, k).

g(x)|x" — 1 always holds, and any such g(x) is a suitable
generator polynomial for a cyclic linear code.



Code polynomials

We similarly assign polynomials to message vectors too:

u=(ug ... uxk—1) — ux)=u+---+ U1 x<L

and also to error vectors e, received vectors v etc.

One (not the only!) way to make the u(x) — c(x) assignment is

c(x) = u(x)g(x)-

Note that this is an assignment different from ¢ = uG. It is not
systematic either, but it can still be computed very efficiently using
LFFSR and LFBSR architectures (coming soon).

We will stick to using c(x) = u(x)g(x).



Linear cyclic codes

Example. C(4,2) RS code over GF(5) with the ¢(x) = u(x)g(x)
codeword assignment:

(00) - (0000) | (23) — (4312)
(01) —(3410) | (24) — (2222)
(02) —(1320) | (30) — (0423)
(03) - (4230) | (31) > (3333)
(04) —(2140) | (32) » (1243)
(10) - (0341) | (33) —»(4103)
(11) - (3201) | (34) —» (2013)
(12) - (1111) | (40) — (0214)
(13) - (4021) | (41) — (3124)
(14) — (2431) | (42) » (1034)
(20) - (0132) | (43) — (4444)
(21) —(3042) | (44) — (2304)
(22) —» (1402)




Linear cyclic codes

Example. C(4,2) RS code over GF(5) with systematic codeword

assignment:

(00) —(0000) | (23) — (2304)
(01) > (0132) | (24) — (2431)
(02) - (0214) | (30) —(3042)
(03) - (0341) | (31) —» (3124)
(04) —(0423) | (32) - (3201)
(10) —(1034) | (33) —»(3333)
(11) - (1111) | (34) — (3410)
(12) - (1243) | (40) — (4021)
(13) -+ (1320) | (41) — (4103)
(14) —(1402) | (42) — (4230)
(20) —(2013) | (43) —» (4312)
(21) — (2140) | (44) — (4444)
(22) — (2222)




Code polynomials
The parity check polynomial corresponding to g(x) is

x"—1

g(x)

h(x) =

The syndrome polynomial assigned to a received code polynomial
v(x) is

s(x) =v(x) mod g(x) <= s(x)=v(x):g(x)

A received polynomial v(x) is a codeword <= s(x) = 0.



Code polynomials
The parity check polynomial corresponding to g(x) is

x"—1

g(x)

h(x) =

The syndrome polynomial assigned to a received code polynomial
v(x) is

s(x) =v(x) mod g(x) <= s(x)=v(x):g(x)

A received polynomial v(x) is a codeword <= s(x) = 0.

The Reed-Solomon code generated by a single primitive element «
has generator polynomial and parity check polynomial

n—k n

g)=[[x-a),  hx)= J[ (x—a.

i=1 i=n—k+1



Code polynomials

Example. The C(4,2) RS code over GF(5) that can correct 1 error
has generator polynomial

g(x) = (x = 21)(x = 2%) = (x — 2)(x — 4).
Some examples of code polynomials:
(1243) = 14 2x +4x? +3x> = (4 + 3x)(x — 2)(x — 4),

(0341) — 3x +4x> + x* = x(x — 2)(x — 4),
(4444) = 4+ 4x + 4x% + 4x3 = (3 + 4x)(x — 2)(x — 4).



Problem 13

Give the generator polynomial and parity check polynomial of the
cyclic C(6,2) RS code over GF(7) generated by the primitive
element 3.



Problem 13

Give the generator polynomial and parity check polynomial of the
cyclic C(6,2) RS code over GF(7) generated by the primitive
element 3.

Solution.

n—k

g(0) = [T(x — ') = (x = 3)(x — F)(x — )(x - 3) =

i=1
(x =3)(x = 2)(x — 6)(x —4) = (x> +2x + 6)(x* + 4x +3) =
x* 4 6x3 + 3x% + 2x + 4.

n

h)= TI (x—a))=(x—3)(x—3°) =

i=n—k+1
(x =5)(x —1) =x*> + x +5.



Problem 14

Using the previous code, calculate the codewords for the message
vectors (11) and (02).



Problem 14

Using the previous code, calculate the codewords for the message
vectors (11) and (02).

Solution.
a(x) = u1(x)g(x) = (1 +x)(4 +2x +3x> + 6x3 + x*) =
446x+5x°+2x3+0-x* +x° = ¢ =(465201)
ca(x) = wp(x)g(x) = (04 2x)(4 + 2x + 3x2 + 6x°> + x*) =
0+1-x+4x>+6x3+5x*+2x5 = o =(014652)

(We also note that c; = S2¢;.)



Polynomial multiplication by LFFSR

The Linear FeedForward Shift Register architecture for
multiplication by 2 + 3x + x?:

T T
4
I




Polynomial multiplication by LFFSR

Compute (2 + 3x + x?)(4 + x) over GF(5):

%%DD%




Polynomial multiplication by LFFSR

Compute (2 + 3x + x?)(4 + x) over GF(5):

% %D% I




Polynomial multiplication by LFFSR

Compute (2 + 3x + x?)(4 + x) over GF(5):

% %D% I

T T
! D%
| + 2




Polynomial multiplication by LFFSR

Compute (2 + 3x + x?)(4 + x) over GF(5):

R

f7

+ 2 |




Polynomial multiplication by LFFSR

Compute (2 + 3x + x?)(4 + x) over GF(5):

4EOTO =
40 s 3 35%
| + — 3

;
0E1T4 0 0 1
20 e w%D%
| + 2 +

3,421 — 3+ 4x +2x% + X3
(7 b) )



Polynomial division by LFBSR

The Linear Feedback Shift Register architecture for division by
3+ 2x + x? over GF(5). Preparation: the coefficients are

3023, 31:2, 32:1;

we put
1—20:3, —31:37 —32:4

in the registers:




Polynomial division by LFBSR

We want to compute (4 + 4x + x3) : (3 + 2x + x2) over GF(5).

An LFBSR works in 2 steps. First, it derives a linear equation,
starting from cg and completing an entire loop.

44+ 3¢ = ¢



Polynomial division by LFBSR

We want to compute (4 + 4x + x3) : (3 + 2x + x?) over GF(5).

Then that linear equation is solved and the solution is forwarded at
the exit.

4+3cg=cp + 4=3c = cg=3'x4=2x4=3.

4 —~PH 3




Polynomial division by LFBSR

We want to compute (4 + 4x + x3) 1 (3 + 2x + x?) over GF(5).

gi




Polynomial division by LFBSR

We want to compute ( 4+4x+x (3 + 2x + x?) over GF(5

TEk




Polynomial division by LFBSR

We want to compute ( 4+4x+x (3 + 2x + x?) over GF(5

Teer e

ey




Polynomial division by LFBSR

We want to compute ( 4+4x+x (3 + 2x + x?) over GF(5

=) }T‘i

£y




Polynomial division by LFBSR

We want to compute ( 4+4x+x (3 + 2x + x?) over GF(5

&

T I:t i

+

T Lﬁ'i

(3,1,0,0) —  3+4x



Implementing the coding scheme

Depending on the parameters, the syndrome decoding table can be
large, but syndrome decoding can be replaced by a fast algorithm
called the Error Trapping Algorithm (ETA) that can compute the
detected error in real time.

1 !

—{LFFSR}-=—g~{ETA} == LFBSR] -~
< X p

-

~ \ -
=~ -
S~ \ e
~ \ .
~ -
=~ \ -

fast real-time operations



