
4. Algebra over GF(q); Reed-Solomon and cyclic
linear codes

Coding Technology



Axioms of GF(q)

GF(q) is the Galois field (or finite field) with q elements.

Field axioms

Addition “+” Multiplication “∗”
α, β ∈ GF (q)→ α + β ∈ GF (q) α, β ∈ GF (q)→ α ∗ β ∈ GF (q)
α + β = β + α α ∗ β = β ∗ α
(α + β) + γ = α + (β + γ) (α ∗ β) ∗ γ = α ∗ (β ∗ γ)
∃ 0 : ∀α ∈ GF (q) : α + 0 = α ∃ 1 : ∀α ∈ GF (q) : α ∗ 1 = α
∀α ∈ GF (q) ∃β : α + β = 0; ∀α ∈ GF (q)\{0} : ∃β : α ∗ β = 1;
β = α−1a = −α β = α−1m = α−1

α ∗ (β + γ) = α ∗ β + α ∗ γ

Liberty to define “+” and “∗” as long as they satisfy the above
axioms.



Examples of GF(q)

q can be either a prime or pm (with p prime and m ≥ 2).

We focus on the q prime case first. When q is a prime, GF(q)
has the mod q arithmetics:

GF (q) = {0, 1, . . . , q − 1},

and

α + β = α + β mod q,

α ∗ β = α · β mod q.

Examples in GF(7):

6 + 5 = 4 mod 7 (6 + 5 = 11 = 4 mod 7)
6 ∗ 5 = 2 mod 7 (6 · 5 = 30 = 2 mod 7)
−4 = 3 mod 7 (4 + 3 = 7 = 0 mod 7)
4−1 = 2 mod 7 (4 · 2 = 8 = 1 mod 7)



Power table

Basic property: ∀α ∈ GF (q)\{0} : αq−1 = 1.

The order of α is the minimal m for which αm = 1. If m = q − 1,
we call α a primitive element.

element powers order
α α1 α2 α3 α4 α5 α6 m
1 1 1
2 2 4 1 3
3 3 2 6 5 4 1 6 – primitive element
4 4 2 1 3
5 5 4 6 2 3 1 6 – primitive element
6 6 1 2

The powers of a primitive element give all nonzero elements in
GF(q).



Power table

Basic property: ∀α ∈ GF (q)\{0} : αq−1 = 1.

The order of α is the minimal m for which αm = 1. If m = q − 1,
we call α a primitive element.

element powers order
α α1 α2 α3 α4 α5 α6 m
1 1 1
2 2 4 1 3
3 3 2 6 5 4 1 6 – primitive element
4 4 2 1 3
5 5 4 6 2 3 1 6 – primitive element
6 6 1 2

The powers of a primitive element give all nonzero elements in
GF(q).



Polynomials over GF(q)

α(x) = α0 +α1x +α2x
2 + · · ·+αmx

m; α0, α1, α2, . . . , αm ∈ GF (q)

Roots x1, . . . , xm: α(xi ) = 0, i = 1, . . . ,m

number of roots ≤ deg(α(x)) = m

If α(x) has deg(α(x)) = m roots x1, . . . , xm, then

α(x) = αm

m∏
i=1

(x − xi ).

Polynomial division: given α(x) and d(x) with
deg(α(x)) = m > deg(d(x)) = k ,

∃q(x), r(x) : α(x) = q(x)d(x) + r(x); deg(r(x)) < k .

a(x), d(x) → Euclidean division algorithm → q(x), r(x)
m − k steps



Problem 1

What is the additive inverse of 2 in GF(5)?

Solution. 2 + 3 = 1 · 5 + 0, so the additive inverse of 2 in GF(5) is

−2 = 2−1a = 3.



Problem 1

What is the additive inverse of 2 in GF(5)?

Solution. 2 + 3 = 1 · 5 + 0, so the additive inverse of 2 in GF(5) is

−2 = 2−1a = 3.



Problem 2

What is the multiplicative inverse of 2 in GF(5)?

Solution. 2 · 3 = 1 · 5 + 1, that is,

2 ∗ 3 = 1 mod 5,

so the multiplicative inverse of 2 in GF(5) is

2−1 = 2−1m = 3.



Problem 2

What is the multiplicative inverse of 2 in GF(5)?

Solution. 2 · 3 = 1 · 5 + 1, that is,

2 ∗ 3 = 1 mod 5,

so the multiplicative inverse of 2 in GF(5) is

2−1 = 2−1m = 3.



Problem 3

What is the additive inverse of 5 in GF(11)?

Solution. 5 · 6 = 1 · 11 + 0, so the additive inverse of 5 in GF(11) is

−5 = 5−1a = 6.



Problem 3

What is the additive inverse of 5 in GF(11)?

Solution. 5 · 6 = 1 · 11 + 0, so the additive inverse of 5 in GF(11) is

−5 = 5−1a = 6.



Problem 4

What is the multiplicative inverse of 7 in GF(11)?

Solution. 7 · 8 = 5 · 11 + 1, that is,

7 ∗ 8 = 1 mod 11,

so the multiplicative inverse of 7 in GF(11) is

7−1 = 7−1m = 8.



Problem 4

What is the multiplicative inverse of 7 in GF(11)?

Solution. 7 · 8 = 5 · 11 + 1, that is,

7 ∗ 8 = 1 mod 11,

so the multiplicative inverse of 7 in GF(11) is

7−1 = 7−1m = 8.



Problem 5

Solve the equation 6x + 5 = 2 in GF(7).

Solution.

6x + 5 = 2

6x = 2− 5

6x = −3

6x = 4

x = 6−1 ∗ 4

x = 6 ∗ 4

x = 24

x = 3.



Problem 5

Solve the equation 6x + 5 = 2 in GF(7).

Solution.

6x + 5 = 2

6x = 2− 5

6x = −3

6x = 4

x = 6−1 ∗ 4

x = 6 ∗ 4

x = 24

x = 3.



Reed-Solomon codes
Let α0, α1, . . . , αn−1 be distinct nonzero elements of GF(q), where
n = q − 1.

Then the corresponding C (n, k) Reed-Solomon code over GF(q) is
a linear code with generator matrix

G =


1 1 1 . . . 1
α0 α1 α2 . . . αn−1
...

. . .
...

αk−1
0 αk−1

1 αk−1
2 . . . αk−1

n−1



RS codes have the MDS property:

dmin = n − k + 1,

so the code can

I detect n − k errors, and

I correct
⌊
n−k
2

⌋
errors.



Reed-Solomon codes
Let α0, α1, . . . , αn−1 be distinct nonzero elements of GF(q), where
n = q − 1.

Then the corresponding C (n, k) Reed-Solomon code over GF(q) is
a linear code with generator matrix

G =


1 1 1 . . . 1
α0 α1 α2 . . . αn−1
...

. . .
...

αk−1
0 αk−1

1 αk−1
2 . . . αk−1

n−1


RS codes have the MDS property:

dmin = n − k + 1,

so the code can

I detect n − k errors, and

I correct
⌊
n−k
2

⌋
errors.



Reed-Solomon codes

Special case: RS code generated by a primitive element α. If we
choose αi = αi , then

G =


1 1 1 . . . 1
1 α α2 . . . αn−1

...
. . .

...

1 αk−1 α2(k−1) . . . α(n−1)(k−1)

 ,
and its parity check matrix is

H =


1 α α2 . . . αn−1

1 α2 α4 . . . α2(n−1)

...
. . .

...

1 αn−k α2(n−k) . . . α(n−k)(n−1)

 .



Problem 6

Design an RS code over GF(7) that corrects every double error.

Solution. First we want to compute the parameters (n, k). The
error correcting capability is

t =

⌊
n − k

2

⌋
= 2 → n − k = 4.

Next, n = q − 1 = 6, so

(n, k) = (6, 2).



Problem 6

Design an RS code over GF(7) that corrects every double error.

Solution. First we want to compute the parameters (n, k). The
error correcting capability is

t =

⌊
n − k

2

⌋
= 2 → n − k = 4.

Next, n = q − 1 = 6, so

(n, k) = (6, 2).



Problem 6

Design an RS code over GF(7) that corrects every double error.

Solution. First we want to compute the parameters (n, k). The
error correcting capability is

t =

⌊
n − k

2

⌋
= 2 → n − k = 4.

Next, n = q − 1 = 6, so

(n, k) = (6, 2).



Problem 6

Any C(6,2) RS code over GF(7) is suitable; for example, for the RS
code generated by the primitive element 5, we have

G =

[
1 1 1 1 1 1
1 5 4 6 2 3

]
and

H =


1 5 4 6 2 3
1 4 2 1 4 2
1 6 1 6 1 6
1 2 4 1 2 4

 .



Problem 7

Using the previous code, determine the codewords assigned to the
message vectors u = (4, 4), u = (3, 5) and u = (5, 1).

Solution.

(4 4) ·
[

1 1 1 1 1 1
1 5 4 6 2 3

]
= (1 3 6 0 5 2)

(3 5) ·
[

1 1 1 1 1 1
1 5 4 6 2 3

]
= (1 0 2 5 6 4)

(5 1) ·
[

1 1 1 1 1 1
1 5 4 6 2 3

]
= (6 3 2 4 0 1)



Problem 7

Using the previous code, determine the codewords assigned to the
message vectors u = (4, 4), u = (3, 5) and u = (5, 1).

Solution.

(4 4) ·
[

1 1 1 1 1 1
1 5 4 6 2 3

]
= (1 3 6 0 5 2)

(3 5) ·
[

1 1 1 1 1 1
1 5 4 6 2 3

]
= (1 0 2 5 6 4)

(5 1) ·
[

1 1 1 1 1 1
1 5 4 6 2 3

]
= (6 3 2 4 0 1)



Problem 7

Using the previous code, determine the codewords assigned to the
message vectors u = (4, 4), u = (3, 5) and u = (5, 1).

Solution.

(4 4) ·
[

1 1 1 1 1 1
1 5 4 6 2 3

]
= (1 3 6 0 5 2)

(3 5) ·
[

1 1 1 1 1 1
1 5 4 6 2 3

]
= (1 0 2 5 6 4)

(5 1) ·
[

1 1 1 1 1 1
1 5 4 6 2 3

]
= (6 3 2 4 0 1)



Problem 7

Using the previous code, determine the codewords assigned to the
message vectors u = (4, 4), u = (3, 5) and u = (5, 1).

Solution.

(4 4) ·
[

1 1 1 1 1 1
1 5 4 6 2 3

]
= (1 3 6 0 5 2)

(3 5) ·
[

1 1 1 1 1 1
1 5 4 6 2 3

]
= (1 0 2 5 6 4)

(5 1) ·
[

1 1 1 1 1 1
1 5 4 6 2 3

]
= (6 3 2 4 0 1)



Problem 8

Give the generator matrix and parity check matrix of a RS code
capable of correcting every single error over GF(5), using the
primitive element 2.

Solution. For the error correcting capability, we have

t =

⌊
n − k

2

⌋
= 1 → n − k = 2.

Due to q = 5, we have n = q − 1 = 4, so (n, k) = (4, 2), and

G =

[
1 1 1 1
1 2 4 3

]
H =

[
1 2 4 3
1 4 1 4

]
.



Problem 8

Give the generator matrix and parity check matrix of a RS code
capable of correcting every single error over GF(5), using the
primitive element 2.

Solution. For the error correcting capability, we have

t =

⌊
n − k

2

⌋
= 1 → n − k = 2.

Due to q = 5, we have n = q − 1 = 4, so (n, k) = (4, 2), and

G =

[
1 1 1 1
1 2 4 3

]
H =

[
1 2 4 3
1 4 1 4

]
.



Problem 8

Give the generator matrix and parity check matrix of a RS code
capable of correcting every single error over GF(5), using the
primitive element 2.

Solution. For the error correcting capability, we have

t =

⌊
n − k

2

⌋
= 1 → n − k = 2.

Due to q = 5, we have n = q − 1 = 4, so (n, k) = (4, 2), and

G =

[
1 1 1 1
1 2 4 3

]
H =

[
1 2 4 3
1 4 1 4

]
.



Problem 9

A C(10,4) RS code over GF(11) has generator matrix

G =


1 1 1 1 1 1 1 1 1 1
1 6 3 7 9 10 5 8 4 2
1 3 9 5 4 1 3 9 5 4
1 7 5 2 3 10 4 6 9 8


(a) How many errors can the code correct?

(b) What is the primitive element used?

(c) Calculate the parity check matrix H.



Problem 9

Solution.

(a) This is a RS code, so the code can correct
⌊
n−k
2

⌋
= 3 errors.

(b) The primitive element used is 6:

G =


1 1 1 1 1 1 1 1 1 1
1 6 3 7 9 10 5 8 4 2
1 3 9 5 4 1 3 9 5 4
1 7 5 2 3 10 4 6 9 8


(c)

H =



1 6 3 7 9 10 5 8 4 2
1 3 9 5 4 1 3 9 5 4
1 7 5 2 3 10 4 6 9 8
1 9 4 3 5 1 9 4 3 5
1 10 1 10 1 10 1 10 1 10
1 5 3 4 9 1 5 3 4 9





Problem 9

Solution.

(a) This is a RS code, so the code can correct
⌊
n−k
2

⌋
= 3 errors.

(b) The primitive element used is 6:

G =


1 1 1 1 1 1 1 1 1 1
1 6 3 7 9 10 5 8 4 2
1 3 9 5 4 1 3 9 5 4
1 7 5 2 3 10 4 6 9 8



(c)

H =



1 6 3 7 9 10 5 8 4 2
1 3 9 5 4 1 3 9 5 4
1 7 5 2 3 10 4 6 9 8
1 9 4 3 5 1 9 4 3 5
1 10 1 10 1 10 1 10 1 10
1 5 3 4 9 1 5 3 4 9





Problem 9

Solution.

(a) This is a RS code, so the code can correct
⌊
n−k
2

⌋
= 3 errors.

(b) The primitive element used is 6:

G =


1 1 1 1 1 1 1 1 1 1
1 6 3 7 9 10 5 8 4 2
1 3 9 5 4 1 3 9 5 4
1 7 5 2 3 10 4 6 9 8


(c)

H =



1 6 3 7 9 10 5 8 4 2
1 3 9 5 4 1 3 9 5 4
1 7 5 2 3 10 4 6 9 8
1 9 4 3 5 1 9 4 3 5
1 10 1 10 1 10 1 10 1 10
1 5 3 4 9 1 5 3 4 9





Problem 10

The parity check matrix of a RS code over GF(7) is

H =


1 3 2 6 4 5
1 2 4 1 2 4
1 6 1 6 1 6
1 4 2 1 4 2


(a) What is the type of the code (n and k parameters)?

(a) How many errors can the code correct?

(c) Determine the codeword assigned to the message vector which
contains only 2’s.



Problem 10

Solution.

(a) The parity check matrix H for a C(n, k) RS code has size
(n − k)× n. In this case, H is 4× 6, so (n, k) = (6, 2).

(b) It is a RS code, so the error correcting capability is
⌊
n−k
2

⌋
= 2.

(c) This code is generated by the primitive element 3, so

G =

[
1 1 1 1 1 1
1 3 2 6 4 5

]
,

and

c = uG = (2 2) ·
[

1 1 1 1 1 1
1 3 2 6 4 5

]
= (4 1 6 0 3 5).



Problem 10

Solution.

(a) The parity check matrix H for a C(n, k) RS code has size
(n − k)× n. In this case, H is 4× 6, so (n, k) = (6, 2).

(b) It is a RS code, so the error correcting capability is
⌊
n−k
2

⌋
= 2.

(c) This code is generated by the primitive element 3, so

G =

[
1 1 1 1 1 1
1 3 2 6 4 5

]
,

and

c = uG = (2 2) ·
[

1 1 1 1 1 1
1 3 2 6 4 5

]
= (4 1 6 0 3 5).



Problem 10

Solution.

(a) The parity check matrix H for a C(n, k) RS code has size
(n − k)× n. In this case, H is 4× 6, so (n, k) = (6, 2).

(b) It is a RS code, so the error correcting capability is
⌊
n−k
2

⌋
= 2.

(c) This code is generated by the primitive element 3, so

G =

[
1 1 1 1 1 1
1 3 2 6 4 5

]
,

and

c = uG = (2 2) ·
[

1 1 1 1 1 1
1 3 2 6 4 5

]
= (4 1 6 0 3 5).



Problem 11

A C(6,3) RS code is generated by the largest primitive element
belonging to the field.

(a) Give the generator matrix G .

(b) Give the parity check matrix H.

(c) How many errors can be detected using this code? How many
errors can be corrected?



Problem 11

Solution.

(a) The value of q is not given directly, but from n = q−1, we can
deduce q = 7. The largest primitive element in GF(7) is 5, so

G =

 1 1 1 1 1 1
1 5 4 6 2 3
1 4 2 1 4 2



(b)

H =

 1 5 4 6 2 3
1 4 2 1 4 2
1 6 1 6 1 6


(c) The code can

I detect n − k = 3 errors, and
I correct

⌊
n−k
2

⌋
= 1 error.



Problem 11

Solution.

(a) The value of q is not given directly, but from n = q−1, we can
deduce q = 7. The largest primitive element in GF(7) is 5, so

G =

 1 1 1 1 1 1
1 5 4 6 2 3
1 4 2 1 4 2


(b)

H =

 1 5 4 6 2 3
1 4 2 1 4 2
1 6 1 6 1 6



(c) The code can
I detect n − k = 3 errors, and
I correct

⌊
n−k
2

⌋
= 1 error.



Problem 11

Solution.

(a) The value of q is not given directly, but from n = q−1, we can
deduce q = 7. The largest primitive element in GF(7) is 5, so

G =

 1 1 1 1 1 1
1 5 4 6 2 3
1 4 2 1 4 2


(b)

H =

 1 5 4 6 2 3
1 4 2 1 4 2
1 6 1 6 1 6


(c) The code can

I detect n − k = 3 errors, and
I correct

⌊
n−k
2

⌋
= 1 error.



Linear cyclic codes

A code is cyclic if for any codeword

c = (c0 c1 c2 . . . cn−1),

its cyclically shifted version

Sc = (cn−1 c0 c1 . . . cn−2)

is also a codeword. S is the cyclic shift operator.

The Reed-Solomon code generated by a single primitive element α
is a cyclic linear code.



Linear cyclic codes

A code is cyclic if for any codeword

c = (c0 c1 c2 . . . cn−1),

its cyclically shifted version

Sc = (cn−1 c0 c1 . . . cn−2)

is also a codeword. S is the cyclic shift operator.

The Reed-Solomon code generated by a single primitive element α
is a cyclic linear code.



Linear cyclic codes

Example. The C(4,2) RS code over GF(5) that can correct 1 error
has the following codewords:

(0 0)→ (0 0 0 0) (2 3)→ (0 3 4 1)
(0 1)→ (1 2 4 3) (2 4)→ (1 0 3 4)
(0 2)→ (2 4 3 1) (3 0)→ (3 3 3 3)
(0 3)→ (3 1 2 4) (3 1)→ (4 0 2 1)
(0 4)→ (4 3 1 2) (3 2)→ (0 2 1 4)
(1 0)→ (1 1 1 1) (3 3)→ (1 4 0 2)
(1 1)→ (2 3 0 4) (3 4)→ (2 1 4 0)
(1 2)→ (3 0 4 2) (4 0)→ (4 4 4 4)
(1 3)→ (4 2 3 0) (4 1)→ (0 1 3 2)
(1 4)→ (0 4 2 3) (4 2)→ (1 3 2 0)
(2 0)→ (2 2 2 2) (4 3)→ (2 0 1 3)
(2 1)→ (3 4 1 0) (4 4)→ (3 2 0 1)
(2 2)→ (4 1 0 3)



Problem 12

A C(6,2) linear cyclic code over GF(7) can correct 2 errors.
(6,0,3,5,4,1) is one of the codewords.

(a) Is (5,4,1,6,0,3) a codeword?

(b) Is (1,0,4,2,3,6) a codeword?

(c) Is (1,0,4,3,5,2) a codeword?

Solution.

(a) Yes, because it is the cyclic shifted version of the given
codeword (shifted 3 times).

(b) Yes, because it is equal to the given codeword multiplied by 6.

(c) No, because the code can correct 2 errors → dmin ≥ 5, but
the (b) and (c) vectors have Hamming-distance 3.



Problem 12

A C(6,2) linear cyclic code over GF(7) can correct 2 errors.
(6,0,3,5,4,1) is one of the codewords.

(a) Is (5,4,1,6,0,3) a codeword?

(b) Is (1,0,4,2,3,6) a codeword?

(c) Is (1,0,4,3,5,2) a codeword?

Solution.

(a) Yes, because it is the cyclic shifted version of the given
codeword (shifted 3 times).

(b) Yes, because it is equal to the given codeword multiplied by 6.

(c) No, because the code can correct 2 errors → dmin ≥ 5, but
the (b) and (c) vectors have Hamming-distance 3.



Problem 12

A C(6,2) linear cyclic code over GF(7) can correct 2 errors.
(6,0,3,5,4,1) is one of the codewords.

(a) Is (5,4,1,6,0,3) a codeword?

(b) Is (1,0,4,2,3,6) a codeword?

(c) Is (1,0,4,3,5,2) a codeword?

Solution.

(a) Yes, because it is the cyclic shifted version of the given
codeword (shifted 3 times).

(b) Yes, because it is equal to the given codeword multiplied by 6.

(c) No, because the code can correct 2 errors → dmin ≥ 5, but
the (b) and (c) vectors have Hamming-distance 3.



Problem 12

A C(6,2) linear cyclic code over GF(7) can correct 2 errors.
(6,0,3,5,4,1) is one of the codewords.

(a) Is (5,4,1,6,0,3) a codeword?

(b) Is (1,0,4,2,3,6) a codeword?

(c) Is (1,0,4,3,5,2) a codeword?

Solution.

(a) Yes, because it is the cyclic shifted version of the given
codeword (shifted 3 times).

(b) Yes, because it is equal to the given codeword multiplied by 6.

(c) No, because the code can correct 2 errors → dmin ≥ 5, but
the (b) and (c) vectors have Hamming-distance 3.



Code polynomials

We can assign code polynomials to codewords:

c = (c0 c1 c2 . . . cn−1) → c(x) = c0 + c1x + · · ·+ cn−1x
n−1

Then the code polynomial assigned to Sc is

c ′(x) = [xc(x)] mod (xn − 1).

For any linear cyclic C(n, k) code, there exists a code polynomial
g(x) of degree n− k such that all code polynomials are of the form

c(x) = u(x)g(x).

g(x) is called the generator polynomial of C(n, k).

g(x)|xn − 1 always holds, and any such g(x) is a suitable
generator polynomial for a cyclic linear code.



Code polynomials

We can assign code polynomials to codewords:

c = (c0 c1 c2 . . . cn−1) → c(x) = c0 + c1x + · · ·+ cn−1x
n−1

Then the code polynomial assigned to Sc is

c ′(x) = [xc(x)] mod (xn − 1).

For any linear cyclic C(n, k) code, there exists a code polynomial
g(x) of degree n− k such that all code polynomials are of the form

c(x) = u(x)g(x).

g(x) is called the generator polynomial of C(n, k).

g(x)|xn − 1 always holds, and any such g(x) is a suitable
generator polynomial for a cyclic linear code.



Code polynomials

We can assign code polynomials to codewords:

c = (c0 c1 c2 . . . cn−1) → c(x) = c0 + c1x + · · ·+ cn−1x
n−1

Then the code polynomial assigned to Sc is

c ′(x) = [xc(x)] mod (xn − 1).

For any linear cyclic C(n, k) code, there exists a code polynomial
g(x) of degree n− k such that all code polynomials are of the form

c(x) = u(x)g(x).

g(x) is called the generator polynomial of C(n, k).

g(x)|xn − 1 always holds, and any such g(x) is a suitable
generator polynomial for a cyclic linear code.



Code polynomials

We similarly assign polynomials to message vectors too:

u = (u0 . . . uk−1) → u(x) = u0 + · · ·+ uk−1x
k−1,

and also to error vectors e, received vectors v etc.

One (not the only!) way to make the u(x)→ c(x) assignment is

c(x) = u(x)g(x).

Note that this is an assignment different from c = uG . It is not
systematic either, but it can still be computed very efficiently using
LFFSR and LFBSR architectures (coming soon).

We will stick to using c(x) = u(x)g(x).



Linear cyclic codes

Example. C(4,2) RS code over GF(5) with the c(x) = u(x)g(x)
codeword assignment:

(0 0)→ (0 0 0 0) (2 3)→ (4 3 1 2)
(0 1)→ (3 4 1 0) (2 4)→ (2 2 2 2)
(0 2)→ (1 3 2 0) (3 0)→ (0 4 2 3)
(0 3)→ (4 2 3 0) (3 1)→ (3 3 3 3)
(0 4)→ (2 1 4 0) (3 2)→ (1 2 4 3)
(1 0)→ (0 3 4 1) (3 3)→ (4 1 0 3)
(1 1)→ (3 2 0 1) (3 4)→ (2 0 1 3)
(1 2)→ (1 1 1 1) (4 0)→ (0 2 1 4)
(1 3)→ (4 0 2 1) (4 1)→ (3 1 2 4)
(1 4)→ (2 4 3 1) (4 2)→ (1 0 3 4)
(2 0)→ (0 1 3 2) (4 3)→ (4 4 4 4)
(2 1)→ (3 0 4 2) (4 4)→ (2 3 0 4)
(2 2)→ (1 4 0 2)



Linear cyclic codes

Example. C(4,2) RS code over GF(5) with systematic codeword
assignment:

(0 0)→ (0 0 0 0) (2 3)→ (2 3 0 4)
(0 1)→ (0 1 3 2) (2 4)→ (2 4 3 1)
(0 2)→ (0 2 1 4) (3 0)→ (3 0 4 2)
(0 3)→ (0 3 4 1) (3 1)→ (3 1 2 4)
(0 4)→ (0 4 2 3) (3 2)→ (3 2 0 1)
(1 0)→ (1 0 3 4) (3 3)→ (3 3 3 3)
(1 1)→ (1 1 1 1) (3 4)→ (3 4 1 0)
(1 2)→ (1 2 4 3) (4 0)→ (4 0 2 1)
(1 3)→ (1 3 2 0) (4 1)→ (4 1 0 3)
(1 4)→ (1 4 0 2) (4 2)→ (4 2 3 0)
(2 0)→ (2 0 1 3) (4 3)→ (4 3 1 2)
(2 1)→ (2 1 4 0) (4 4)→ (4 4 4 4)
(2 2)→ (2 2 2 2)



Code polynomials

The parity check polynomial corresponding to g(x) is

h(x) =
xn − 1

g(x)
.

The syndrome polynomial assigned to a received code polynomial
v(x) is

s(x) = v(x) mod g(x) ⇐⇒ s(x) = v(x) : g(x)

A received polynomial v(x) is a codeword ⇐⇒ s(x) = 0.

The Reed-Solomon code generated by a single primitive element α
has generator polynomial and parity check polynomial

g(x) =
n−k∏
i=1

(x − αi ), h(x) =
n∏

i=n−k+1

(x − αi ).



Code polynomials

The parity check polynomial corresponding to g(x) is

h(x) =
xn − 1

g(x)
.

The syndrome polynomial assigned to a received code polynomial
v(x) is

s(x) = v(x) mod g(x) ⇐⇒ s(x) = v(x) : g(x)

A received polynomial v(x) is a codeword ⇐⇒ s(x) = 0.

The Reed-Solomon code generated by a single primitive element α
has generator polynomial and parity check polynomial

g(x) =
n−k∏
i=1

(x − αi ), h(x) =
n∏

i=n−k+1

(x − αi ).



Code polynomials

Example. The C(4,2) RS code over GF(5) that can correct 1 error
has generator polynomial

g(x) = (x − 21)(x − 22) = (x − 2)(x − 4).

Some examples of code polynomials:

(1 2 4 3)→ 1 + 2x + 4x2 + 3x3 = (4 + 3x)(x − 2)(x − 4),

(0 3 4 1)→ 3x + 4x2 + x3 = x(x − 2)(x − 4),

(4 4 4 4)→ 4 + 4x + 4x2 + 4x3 = (3 + 4x)(x − 2)(x − 4).



Problem 13

Give the generator polynomial and parity check polynomial of the
cyclic C(6,2) RS code over GF(7) generated by the primitive
element 3.

Solution.

g(x) =
n−k∏
i=1

(x − αi ) = (x − 3)(x − 32)(x − 33)(x − 34) =

(x − 3)(x − 2)(x − 6)(x − 4) = (x2 + 2x + 6)(x2 + 4x + 3) =

x4 + 6x3 + 3x2 + 2x + 4.

h(x) =
n∏

i=n−k+1

(x − αi ) = (x − 35)(x − 36) =

(x − 5)(x − 1) = x2 + x + 5.



Problem 13

Give the generator polynomial and parity check polynomial of the
cyclic C(6,2) RS code over GF(7) generated by the primitive
element 3.

Solution.

g(x) =
n−k∏
i=1

(x − αi ) = (x − 3)(x − 32)(x − 33)(x − 34) =

(x − 3)(x − 2)(x − 6)(x − 4) = (x2 + 2x + 6)(x2 + 4x + 3) =

x4 + 6x3 + 3x2 + 2x + 4.

h(x) =
n∏

i=n−k+1

(x − αi ) = (x − 35)(x − 36) =

(x − 5)(x − 1) = x2 + x + 5.



Problem 14

Using the previous code, calculate the codewords for the message
vectors (1 1) and (0 2).

Solution.

c1(x) = u1(x)g(x) = (1 + x)(4 + 2x + 3x2 + 6x3 + x4) =

4 + 6x + 5x2 + 2x3 + 0 · x4 + x5 → c1 = (4 6 5 2 0 1)

c2(x) = u2(x)g(x) = (0 + 2x)(4 + 2x + 3x2 + 6x3 + x4) =

0 + 1 · x + 4x2 + 6x3 + 5x4 + 2x5 → c2 = (0 1 4 6 5 2)

(We also note that c2 = S2c1.)



Problem 14

Using the previous code, calculate the codewords for the message
vectors (1 1) and (0 2).

Solution.

c1(x) = u1(x)g(x) = (1 + x)(4 + 2x + 3x2 + 6x3 + x4) =

4 + 6x + 5x2 + 2x3 + 0 · x4 + x5 → c1 = (4 6 5 2 0 1)

c2(x) = u2(x)g(x) = (0 + 2x)(4 + 2x + 3x2 + 6x3 + x4) =

0 + 1 · x + 4x2 + 6x3 + 5x4 + 2x5 → c2 = (0 1 4 6 5 2)

(We also note that c2 = S2c1.)



Polynomial multiplication by LFFSR

The Linear FeedForward Shift Register architecture for
multiplication by 2 + 3x + x2:

T T⊗ ⊗ ⊗
2 3 1

+



Polynomial multiplication by LFFSR

Compute (2 + 3x + x2)(4 + x) over GF(5):

4
T

0
T

0

⊗ ⊗ ⊗
2 3 1

+ 3

1
T

4
T

0

⊗ ⊗ ⊗
2 3 1

+ 4

0
T

1
T

4

⊗ ⊗ ⊗
2 3 1

+ 2

0
T

0
T

1

⊗ ⊗ ⊗
2 3 1

+ 1

(3, 4, 2, 1) −→ 3 + 4x + 2x2 + x3



Polynomial multiplication by LFFSR

Compute (2 + 3x + x2)(4 + x) over GF(5):

4
T

0
T

0

⊗ ⊗ ⊗
2 3 1

+ 3

1
T

4
T

0

⊗ ⊗ ⊗
2 3 1

+ 4

0
T

1
T

4

⊗ ⊗ ⊗
2 3 1

+ 2

0
T

0
T

1

⊗ ⊗ ⊗
2 3 1

+ 1

(3, 4, 2, 1) −→ 3 + 4x + 2x2 + x3



Polynomial multiplication by LFFSR

Compute (2 + 3x + x2)(4 + x) over GF(5):

4
T

0
T

0

⊗ ⊗ ⊗
2 3 1

+ 3

1
T

4
T

0

⊗ ⊗ ⊗
2 3 1

+ 4

0
T

1
T

4

⊗ ⊗ ⊗
2 3 1

+ 2

0
T

0
T

1

⊗ ⊗ ⊗
2 3 1

+ 1

(3, 4, 2, 1) −→ 3 + 4x + 2x2 + x3



Polynomial multiplication by LFFSR

Compute (2 + 3x + x2)(4 + x) over GF(5):

4
T

0
T

0

⊗ ⊗ ⊗
2 3 1

+ 3

1
T

4
T

0

⊗ ⊗ ⊗
2 3 1

+ 4

0
T

1
T

4

⊗ ⊗ ⊗
2 3 1

+ 2

0
T

0
T

1

⊗ ⊗ ⊗
2 3 1

+ 1

(3, 4, 2, 1) −→ 3 + 4x + 2x2 + x3



Polynomial multiplication by LFFSR

Compute (2 + 3x + x2)(4 + x) over GF(5):

4
T

0
T

0

⊗ ⊗ ⊗
2 3 1

+ 3

1
T

4
T

0

⊗ ⊗ ⊗
2 3 1

+ 4

0
T

1
T

4

⊗ ⊗ ⊗
2 3 1

+ 2

0
T

0
T

1

⊗ ⊗ ⊗
2 3 1

+ 1

(3, 4, 2, 1) −→ 3 + 4x + 2x2 + x3



Polynomial division by LFBSR

The Linear Feedback Shift Register architecture for division by
3 + 2x + x2 over GF(5). Preparation: the coefficients are

a0 = 3, a1 = 2, a2 = 1;

we put
1− a0 = 3, −a1 = 3, −a2 = 4

in the registers: ⊕
TT⊗ ⊗ ⊗

4 3 3

+



Polynomial division by LFBSR

We want to compute (4 + 4x + x3) : (3 + 2x + x2) over GF(5).

An LFBSR works in 2 steps. First, it derives a linear equation,
starting from c0 and completing an entire loop.

4
⊕

TT⊗ ⊗ ⊗c0
00

4 3 3

+

4 + 3c0 = c0



Polynomial division by LFBSR

We want to compute (4 + 4x + x3) : (3 + 2x + x2) over GF(5).

Then that linear equation is solved and the solution is forwarded at
the exit.

4 + 3c0 = c0 → 4 = 3c0 → c0 = 3−1 ∗ 4 = 2 ∗ 4 = 3.

4
⊕

TT⊗ ⊗ ⊗c0
00

4 3 3

+

3



Polynomial division by LFBSR

We want to compute (4 + 4x + x3) : (3 + 2x + x2) over GF(5).

4
⊕

TT⊗ ⊗ ⊗c0
00

4 3 3

+

3

4
⊕

TT⊗ ⊗ ⊗c1
30

4 3 3

+

1

0
⊕

TT⊗ ⊗ ⊗c2
13

4 3 3

+

0 1
⊕

TT⊗ ⊗ ⊗c3
01

4 3 3

+

0



Polynomial division by LFBSR

We want to compute (4 + 4x + x3) : (3 + 2x + x2) over GF(5).

4
⊕

TT⊗ ⊗ ⊗c0
00

4 3 3

+

3 4
⊕

TT⊗ ⊗ ⊗c1
30

4 3 3

+

1

0
⊕

TT⊗ ⊗ ⊗c2
13

4 3 3

+

0 1
⊕

TT⊗ ⊗ ⊗c3
01

4 3 3

+

0



Polynomial division by LFBSR

We want to compute (4 + 4x + x3) : (3 + 2x + x2) over GF(5).

4
⊕

TT⊗ ⊗ ⊗c0
00

4 3 3

+

3 4
⊕

TT⊗ ⊗ ⊗c1
30

4 3 3

+

1

0
⊕

TT⊗ ⊗ ⊗c2
13

4 3 3

+

0

1
⊕

TT⊗ ⊗ ⊗c3
01

4 3 3

+

0



Polynomial division by LFBSR

We want to compute (4 + 4x + x3) : (3 + 2x + x2) over GF(5).

4
⊕

TT⊗ ⊗ ⊗c0
00

4 3 3

+

3 4
⊕

TT⊗ ⊗ ⊗c1
30

4 3 3

+

1

0
⊕

TT⊗ ⊗ ⊗c2
13

4 3 3

+

0 1
⊕

TT⊗ ⊗ ⊗c3
01

4 3 3

+

0



Polynomial division by LFBSR

We want to compute (4 + 4x + x3) : (3 + 2x + x2) over GF(5).

4
⊕

TT⊗ ⊗ ⊗c0
00

4 3 3

+

3 4
⊕

TT⊗ ⊗ ⊗c1
30

4 3 3

+

1

0
⊕

TT⊗ ⊗ ⊗c2
13

4 3 3

+

0 1
⊕

TT⊗ ⊗ ⊗c3
01

4 3 3

+

0

(3, 1, 0, 0) → 3 + x



Implementing the coding scheme

Depending on the parameters, the syndrome decoding table can be
large, but syndrome decoding can be replaced by a fast algorithm
called the Error Trapping Algorithm (ETA) that can compute the
detected error in real time.

LFFSR ⊕

e

• ETA ⊕ LFBSR
u c

v
e ′

−

+
c ′ u′

fast real-time operations


