5. Algebra over $GF(p^m)$ and Reed–Solomon codes over $GF(p^m)$

Coding Technology

Algebra over $GF(p^m)$

q can be either a prime or p^m (with p prime and $m \ge 2$). Now we focus on the case when $q = p^m$.

$$GF(q) = \{0, 1, \dots, q-1\}$$

Each element of $GF(p^m)$ has 3 representations:

element	<i>p</i> -ary	polynomial
0	(000)	0
1	(001)	1
:	:	i
α	$(\alpha_{m-1},\ldots\alpha_1,\alpha_0)$	$a(y) = \alpha_{m-1}y^{m-1} + \dots + \alpha_1y + \alpha_0$
:	:	;

Addition is p-ary addition mod p, equivalent to polynomial addition mod p.

For multiplication, fix an irreducible polynomial p(y) with degree m. Multiplication is polynomial multiplication mod p(y).

"Big field" and "small field"

Algebra over GF(4)

Irreducible polynomial: $p(y) = y^2 + y + 1$.

Elements of GF(4):

element	binary	polynomial
0	(00)	$0 \cdot y^1 + 0 \cdot y^0 = 0$
1	(01)	$0 \cdot y^1 + 1 \cdot y^0 = 1$
2	(10)	$1 \cdot y^1 + 0 \cdot y^0 = y$
3	(11)	$1 \cdot y^1 + 1 \cdot y^0 = y + 1$

Examples for addition:

$$y + (y + 1) = 2y + 1 = 0 \cdot y + 1 = 1,$$

 $1 + (y + 1) = y + 2 = y.$

Algebra over GF(4)

Irreducible polynomial: $p(y) = y^2 + y + 1$.

Elements of GF(4):

element	binary	polynomial
0	(00)	$0 \cdot y^1 + 0 \cdot y^0 = 0$
1	(01)	$0 \cdot y^1 + 1 \cdot y^0 = 1$
2	(10)	$1 \cdot y^1 + 0 \cdot y^0 = y$
3	(11)	$1 \cdot y^1 + 1 \cdot y^0 = y + 1$

Examples for multiplication:

$$y * y = y^2 = 1(y^2 + y + 1) + y + 1 = y + 1,$$

 $y * (y + 1) = y^2 + y = 1(y^2 + y + 1) + 1 = 1.$

Algebra over GF(4)

+	0	1	2	3
0	0	1	2	3
1	1	0	3	2
2	2	3	0	1
3	3	2	1	0

+	0	1	у	y+1
0	0	1	у	y+1
1	1	0	y+1	у
у	у	y+1	0	1
y+1	y+1	у	1	0

*	0	1	2	3
0	0	0	0	0
1	0	1	2	3
2	0	2	3	1
3	0	3	1	2

*	0	1	у	y+1
0	0	0	0	0
1	0	1	у	y+1
у	0	у	y+1	1
y+1	0	y+1	1	у

GF(4) primitive element and power table

Irreducible polynomial: $p(y) = y^2 + y + 1$.

Elements of GF(4):

element	binary	polynomial
0	(00)	$0 \cdot y^1 + 0 \cdot y^0 = 0$
1	(01)	$0 \cdot y^1 + 1 \cdot y^0 = 1$
2	(10)	$1 \cdot y^1 + 0 \cdot y^0 = y$
3	(11)	$1 \cdot y^1 + 1 \cdot y^0 = y + 1$

y is the primitive element. Power table:

<i>y</i> ⁰	1
y^1	у
y^2	y+1

(It is also customary to write $0 = y^{-\infty}$.) Examples:

$$y^2 = 1(y^2 + y + 1) + y + 1 = y + 1,$$

 $y^3 = y^2 \cdot y = (y + 1)y = y^2 + y = 1 \cdot (y^2 + y + 1) + 1 = 1.$

GF(8) representations

Irreducible polynomial: $p(y) = y^3 + y + 1$.

Elements of GF(8):

element	binary	polynomial
0	(000)	0
1	(001)	1
2	(010)	у
3	(011)	y+1
4	(100)	y ²
5	(101)	$y^{2} + 1$
6	(110)	$y^2 + y$
7	(111)	$y^2 + y + 1$

Power table of GF(8)

Irreducible polynomial: $p(y) = y^3 + y + 1$.

y is the primitive element. Power table:

1	1	y^0
2	У	y^1
3	y+1	y^3
4	y^2	y^2
5	$y^{2} + 1$	<i>y</i> ⁶
6	$y^2 + y$	y^4
7	$y^2 + y + 1$	<i>y</i> ⁵

Examples:

$$y^{3} = 1(y^{3} + y + 1) + y + 1 = y + 1,$$

$$y^{4} = y \cdot y^{3} = y(y^{3} + y + 1) + y^{2} + y = y^{2} + y.$$

Multiplication using the power table

Irreducible polynomial: $p(y) = y^3 + y + 1$.

y is the primitive element. Power table:

1	1	y^0
2	У	y^1
3	y + 1	y^3
4	y^2	y^2
5	$y^{2} + 1$	<i>y</i> ⁶
6	$y^2 + y$	y^4
7	$y^2 + y + 1$	<i>y</i> ⁵

Examples:

$$2*6 = y*y^4 = y^5 = 7(= y^2 + y + 1),$$

 $3*3 = y^3*y^3 = y^6 = 5,$
 $4*5 = y^2 \cdot y^6 = y^8 = y = 2.$

Example. We want to multiply $\alpha(y) = a_0 + a_1 y + a_2 y^2$ by y.

$$y(a_0 + a_1y + a_2y^2) = a_0y + a_1y^2 + a_2y^3 =$$

 $a_0y + a_1y^2 + a_2(y+1) = a_2 + (a_0 + a_2)y + a_1y^2.$

1	1	y^0
2	У	y^1
3	y+1	<i>y</i> ³
4	y ²	y^2
5	$y^2 + 1$	<i>y</i> ⁶
6	$y^2 + y$	y ⁴
7	$y^2 + y + 1$	<i>y</i> ⁵

Example. We want to multiply $\alpha(y) = a_0 + a_1 y + a_2 y^2$ by y.

$$y(a_0 + a_1y + a_2y^2) = a_0y + a_1y^2 + a_2y^3 =$$

 $a_0y + a_1y^2 + a_2(y+1) = a_2 + (a_0 + a_2)y + a_1y^2.$

1	1	y^0
2	У	y^1
3	y+1	y^3
4	y^2	y^2
5	$y^2 + 1$	<i>y</i> ⁶
6	$y^2 + y$	y^4
7	$y^2 + y + 1$	<i>y</i> ⁵

Example. We want to multiply $\alpha(y) = a_0 + a_1 y + a_2 y^2$ by y.

$$y(a_0 + a_1y + a_2y^2) = a_0y + a_1y^2 + a_2y^3 =$$

 $a_0y + a_1y^2 + a_2(y+1) = a_2 + (a_0 + a_2)y + a_1y^2.$

1	1	y^0
2	У	y^1
3	y+1	<i>y</i> ³
4	y ²	y ²
5	$y^2 + 1$	<i>y</i> ⁶
6	$y^2 + y$	y ⁴
7	$y^2 + y + 1$	<i>y</i> ⁵

At the next time instance:

Example. We want to multiply $y^2 + y$ by y.

1	1	y^0
2	У	y^1
3	y+1	<i>y</i> ³
4	y ²	y^2
5	$y^2 + 1$	y ⁶
6	$y^2 + y$	y^4
7	$y^2 + y + 1$	y^5

Example. We want to multiply $y^2 + y$ by y.

_		
1	1	y^0
2	У	y^1
3	y+1	<i>y</i> ³
4	y ²	y ²
5	$y^2 + 1$	<i>y</i> ⁶
6	$y^2 + y$	y^4
7	$y^2 + y + 1$	<i>y</i> ⁵

At the next time instance:

So
$$(y^2 + y) * y = y^2 + y + 1$$
.

Example. Multiplication by 4. $(4 = y^2)$ $y^2(a_0 + a_1y + a_2y^2) = a_0y^2 + a_1y^3 + a_2y^4 = a_0y^2 + a_1(y+1) + a_2(y^2+y) = a_1 + (a_1 + a_2)y + (a_0 + a_2)y^2$.

1	1	<i>y</i> ⁰
2	У	y^1
3	y+1	<i>y</i> ³
4	y ²	y^2
5	$y^{2} + 1$	<i>y</i> ⁶
6	$y^2 + y$	y ⁴
7	$y^2 + y + 1$	<i>y</i> ⁵

Example. Multiplication by 4. $(4 = y^2.)$ $y^2(a_0 + a_1y + a_2y^2) = a_0y^2 + a_1y^3 + a_2y^4 = a_0y^2 + a_1(y+1) + a_2(y^2+y) = a_1 + (a_1 + a_2)y + (a_0 + a_2)y^2.$

1	1	<i>y</i> ⁰
2	У	y^1
3	y+1	<i>y</i> ³
4	y ²	y ²
5	$y^{2} + 1$	<i>y</i> ⁶
6	$y^2 + y$	y ⁴
7	$y^2 + y + 1$	y^5

Example. Multiplication by 4. $(4 = y^2)$ $y^2(a_0 + a_1y + a_2y^2) = a_0y^2 + a_1y^3 + a_2y^4 = a_0y^2 + a_1(y+1) + a_2(y^2+y) = a_1 + (a_1 + a_2)y + (a_0 + a_2)y^2$.

1	1	<i>y</i> ⁰
2	У	y^1
3	y+1	<i>y</i> ³
4	y ²	y ²
5	$y^{2} + 1$	<i>y</i> ⁶
6	$y^2 + y$	y ⁴
7	$y^2 + y + 1$	<i>y</i> ⁵

At the next time instance:

Example. We want to compute 6 * 4. $(6 = y^2 + y, 4 = y^2.)$

1	1	<i>y</i> ⁰
2	у	y^1
3	y+1	<i>y</i> ³
4	y ²	y ²
5	$y^{2} + 1$	<i>y</i> ⁶
6	$y^2 + y$	y ⁴
7	$y^2 + y + 1$	<i>y</i> ⁵

At the next time instance:

So
$$(y^2 + y) * y^2 = y^2 + 1$$
.

- (a) Compute 3 * 4 in GF(8).
- (b) Depict the corresponding shift register architecture.

1	1	y^0
2	У	y^1
3	y+1	y^3
4	y ²	y^2
5	$y^2 + 1$	<i>y</i> ⁶
6	$y^2 + y$	y^4
7	$y^2 + y + 1$	y^5

- (a) Compute 3 * 4 in GF(8).
- (b) Depict the corresponding shift register architecture.

Solution.

(a) According to the power table: $3*4 \rightarrow y^3*y^2 = y^5 = y^2 + y + 1$

1	1	y^0
2	у	y^1
3	y+1	y^3
4	y ²	y^2
5	$y^2 + 1$	<i>y</i> ⁶
6	$y^2 + y$	y^4
7	$y^2 + y + 1$	y ⁵

- (a) Compute 3 * 4 in GF(8).
- (b) Depict the corresponding shift register architecture.

1	1	y^0
2	У	y^1
3	y+1	y^3
4	y ²	y^2
5	$y^2 + 1$	<i>y</i> ⁶
6	$y^2 + y$	y^4
7	$y^2 + y + 1$	<i>y</i> ⁵

Solution.

- (a) According to the power table: $3*4 \rightarrow y^3*y^2 = y^5 = y^2 + y + 1$
- (b)

- (a) Compute 3 * 4 in GF(8).
- (b) Depict the corresponding shift register architecture.

1	1	y^0
2	У	y^1
3	y+1	<i>y</i> ³
4	y ²	y^2
5	$y^2 + 1$	<i>y</i> ⁶
6	$y^2 + y$	y^4
7	$y^2 + y + 1$	y^5

Solution.

- (a) According to the power table: $3*4 \rightarrow y^3*y^2 = y^5 = y^2 + y + 1$
- (b) At the next time instance:

Reed–Solomon codes over $GF(p^m)$

Reed–Solomon codes over $GF(p^m)$ work basically the same as RS codes over GF(q) when q is a prime. n=q-1, and the primitive element is always y, so the C(n,k) Reed-Solomon code over $GF(p^m)$ has generator polynomial and parity check polynomial

$$g(x) = \prod_{i=1}^{n-k} (x - y^i), \qquad h(x) = \prod_{i=n-k+1}^{n} (x - y^i).$$

Reed–Solomon codes over $GF(p^m)$

Reed–Solomon codes over $GF(p^m)$ work basically the same as RS codes over GF(q) when q is a prime. n=q-1, and the primitive element is always y, so the C(n,k) Reed-Solomon code over $GF(p^m)$ has generator polynomial and parity check polynomial

$$g(x) = \prod_{i=1}^{n-k} (x - y^i), \qquad h(x) = \prod_{i=n-k+1}^{n} (x - y^i).$$

The code can

- ightharpoonup detect n-k errors, and
- ▶ correct $\left\lfloor \frac{n-k}{2} \right\rfloor$ errors.

Determine the parity check polynomial of the Reed-Solomon code capable of correcting every double error over GF(8).

1	1	y^0
2	У	y^1
3	y+1	<i>y</i> ³
4	y ²	y^2
5	$y^2 + 1$	<i>y</i> ⁶
6	$y^2 + y$	y^4
7	$y^2 + y + 1$	y^5

Determine the parity check polynomial of the Reed-Solomon code capable of correcting every double error over GF(8).

Solution. Code parameters:

1	1	y^0
2	у	y^1
3	y+1	<i>y</i> ³
4	y ²	y ²
5	$y^{2} + 1$	<i>y</i> ⁶
6	$y^2 + y$	y ⁴
7	$y^2 + y + 1$	y^5

$$n = 8 - 1 = 7,$$
 $t = 2 = \left| \frac{n - k}{2} \right| \rightarrow k = 3.$

$$h(x) = \prod_{i=n-k+1}^{n} (x - y^{i}) = (x - y^{5})(x - y^{6})(x - y^{7}) = (x + y^{5})(x + y^{6})(x + y^{7}) = (x^{2} + yx + y^{4})(x + 1) = x^{3} + yx^{2} + y^{4}x + x^{2} + yx + y^{4} = x^{3} + y^{3}x^{2} + y^{2}x + y^{4}.$$

A code over GF(8) has generator polynomial

$$g(x) = x^3 + y^6 x^2 + yx + y^6.$$

- (a) What are the code parameters?
- (b) What is the codeword for the message vector *u* containing all 1's in binary form?
- (c) Is this a RS code?

A code over GF(8) has generator polynomial

$$g(x) = x^3 + y^6x^2 + yx + y^6$$
.

- (a) What are the code parameters?
- (b) What is the codeword for the message vector *u* containing all 1's in binary form?
- (c) Is this a RS code?

Solution. If we knew it is a RS code, then we would also know n = q - 1 = 7. So start with (c) instead of (a).

(c) RS codes have generator polynomials of the form $\prod_{i=1}^{n-k} (x-y^i)$, so we need to decide if g(x) is of this form.

(c) The given g(x) has degree 3 (we need to consider the exponent of x, the y terms are coefficients, 'numbers' from GF(8)).

1	1	y^0
2	У	y^1
3	y+1	<i>y</i> ³
4	y ²	y ²
5	$y^2 + 1$	<i>y</i> ⁶
6	$y^2 + y$	y ⁴
7	$y^2 + y + 1$	<i>y</i> ⁵

$$g(x) = (x - y)(x - y^{2})(x - y^{3}) = \frac{7 + y^{2}}{7 + y^{2} + y + y}$$

$$= (x^{2} - (y + y^{2})x + y^{3})(x - y^{3}) = \frac{y^{2} + y^{2}}{y^{4}}$$

$$= x^{3} + x^{2} (-y^{3} - y^{4}) + x (-y^{7} + y^{3}) + y^{6} = \frac{y^{3} + y^{6}}{(y+1) + (y^{2} + y)} + y^{6} = \frac{y^{3} + y^{6}}{(y+1) + (y^{2} + y)}$$

$$= x^{3} + y^{6}x^{2} + yx + y^{6},$$

which matches the given g(x), so yes, this is a RS code, and n = q - 1 = 7.

(c) The given g(x) has degree 3 (we need to consider the exponent of x, the y terms are coefficients, 'numbers' from GF(8)).

1	1	y^0
2	У	y^1
3	y+1	<i>y</i> ³
4	y ²	y ²
5	$y^2 + 1$	<i>y</i> ⁶
6	$y^2 + y$	y^4
7	$y^2 + y + 1$	y ⁵

$$g(x) = (x - y)(x - y^{2})(x - y^{3}) = \frac{7 + y^{2} + y^{4}}{7 + y^{2} + y + y^{4}}$$

$$= (x^{2} - (y + y^{2})x + y^{3})(x - y^{3}) = \frac{2}{7 + y^{2} + y + y^{4}}$$

$$= x^{3} + x^{2} (-y^{3} - y^{4}) + x (-y^{7} + y^{3}) + y^{6} = \frac{2}{7 + y^{4} + y^{4}}$$

$$= x^{3} + x^{4} (-y^{3} - y^{4}) + x (-y^{7} + y^{3}) + y^{6} = \frac{2}{7 + y^{4} + y^{4}}$$

$$= x^{3} + y^{6}x^{2} + yx + y^{6},$$

which matches the given g(x), so yes, this is a RS code, and n = q - 1 = 7.

(a) $\deg(g(x)) = 3 = n - k \rightarrow C(7, 4)$.

Solution.

(b) The message vector u is (111,111,111,111) as k=4. $(111)=y^5$, so u has polynomial form

 $u(x) = v^5 + v^5x + v^5x^2 + v^5x^3$.

$$\begin{array}{c|ccccc} 2 & y & y^1 \\ \hline 3 & y+1 & y^3 \\ 4 & y^2 & y^2 \\ \hline 5 & y^2+1 & y^6 \\ 6 & y^2+y & y^4 \\ \hline 7 & y^2+y+1 & y^5 \\ \end{array}$$

Then

$$c(x) = g(x)u(x) =$$

$$= (y^6 + yx + y^6x^2 + x^3)(y^5 + y^5x + y^5x^2 + y^5x^3) =$$

$$= \cdots = (y^2 + y) + y^3x + y^6x^2 + yx^3 + y^2x^4 + x^5 + y^5x^6$$

$$\to c = (6352417).$$