
7. Entropy source coding and data compression

Coding Technology



Source coding and data compression

In any text, different characters typically have different frequencies.
Normal coding (without compression) means that all characters are
coded using the same amount of bits.

We will allow different characters to have varying length codewords
in order to obtain a lower average codeword length.

A coding is prefix-free if none of the codewords is a prefix of
another codeword. This property is necessary for decoding.

We assume that the distribution (long-term frequency) of
characters in the text is known: the probabilities of the characters
are

p1, . . . , pK ,

where K is the size of the alphabet.
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Source coding and data compression

If a coding assigns a codeword of length `k to character k , then
the average codelength is

L =
K∑

k=1

pk`k .

The entropy of the text source is

H(X ) =
K∑

k=1

pk log2(1/pk).

Theoretical lower bound: for any prefix-free coding,

L ≥ H(X ),

and the ratio H(X )/L is called the efficiency of the code.
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Shannon–Fano coding
For the Shannon–Fano coding, the codeword lengths are

`k = dlog2(1/pk)e.
We construct a binary tree where the depths of the leaves are
`1, . . . , `K , and the codewords will be based on the route from the
root to the leaves.

Example. p1 = 0.37, p2 = 0.27, p3 = 0.24, p4 = 0.12.

`1 = dlog2(1/0.37)e = 2, `2 = dlog2(1/0.27)e = 2,

`3 = dlog2(1/0.24)e = 3, `4 = dlog2(1/0.12)e = 4.
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Problem 1

Encode the following distribution using Shannon–Fano coding.

p1 = 0.49, p2 = 0.14, p3 = 0.14, p4 = 0.07, p5 = 0.07,

p6 = 0.04, p7 = 0.02, p8 = 0.02, p9 = 0.01

Solution. Codeword lengths: `i = dlog2 1/pie, so

`1 = dlog2 1/p1e = d1.029e = 2,

`2 = dlog2 1/p2e = d2.836e = 3,

`3 = dlog2 1/p3e = d2.836e = 3,

`4 = `5 = 4, `6 = 5, `7 = `8 = 6, `9 = 7.

(Instead of log2, the notation ld is also in use.)
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Problem 1

Symbol Codeword

X1 01

X2 001

X3 101

X4 1100

X5 1101

X6 11101

X7 111100

X8 111101

X9 1111101

Side note: prefix-free code ⇔ no codewords on inner nodes.



Problem 2

Conduct performance analysis for the previous code.

Solution. The entropy of the original distribution is

H(X ) =
9∑

i=1

pi log2

(
1

pi

)
= 2.314,

and the average codeword length for the coding is

L =0.49 · 2 + 0.28 · 3 + 0.28 · 3 + 0.14 · 4+

0.04 · 5 + 0.04 · 6 + 0.01 · 7 = 2.89,

so the efficiency of the coding is

H(X )

L
≈ 0.8.
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Huffman coding

Huffman coding builds the tree by adding the two smallest pk
probabilities in each step. After that, the coding works the same as
for Shannon–Fano.

Example. p1 = 0.37, p2 = 0.27, p3 = 0.24, p4 = 0.12.
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Problem 3

Encode the source of problem 1 by Huffman coding.

Solution. First the state graph is constructed.
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Problem 3

Then the code tree and coding LUT can be obtained:

X1 = (1)
1

0 1

0

X2 = (011)

X3 = (010)

1

0

1

0

X4 = (0011)

X5 = (0010)

X6 = (0001)

1

0

1

0 X7 = (00001)1

0 X8 = (000001)

X9 = (000000)

1

0

Symbol Codeword

X1 1

X2 011

X3 010

X4 0010

X5 0011

X6 0001

X7 00001

X8 000001

X9 000000



Problem 4
Compare the performance of the Shannon-Fano coding and the
Huffman coding for the previous source for sampling frequency
fs = 160 MHz.

Solution. We first compute the average codelength for both HUFF
and SF coding.

LHUFF = 0.49 · 1 + 0.14 · 3 + 0.14 · 3 + 0.07 · 4 + 0.07 · 4+

+ 0.04 · 4 + 0.02 · 5 + 0.02 · 6 + 0.01 · 6 = 2.33

LSF = 0.49 · 2 + 0.28 · 3 + 0.14 · 4 + 0.04 · 5 + 0.04 · 6+

+ 0.01 · 7 = 2.89

At fs = 160 MHz, the rates are

RHUFF = 372.8Mbps, RSF = 462Mbps.

Side note: 9 source symbols → without compression, 4 bits are
required, and the rate is R = 640Mbps.



Problem 4
Compare the performance of the Shannon-Fano coding and the
Huffman coding for the previous source for sampling frequency
fs = 160 MHz.

Solution. We first compute the average codelength for both HUFF
and SF coding.

LHUFF = 0.49 · 1 + 0.14 · 3 + 0.14 · 3 + 0.07 · 4 + 0.07 · 4+

+ 0.04 · 4 + 0.02 · 5 + 0.02 · 6 + 0.01 · 6 = 2.33

LSF = 0.49 · 2 + 0.28 · 3 + 0.14 · 4 + 0.04 · 5 + 0.04 · 6+

+ 0.01 · 7 = 2.89

At fs = 160 MHz, the rates are

RHUFF = 372.8Mbps, RSF = 462Mbps.

Side note: 9 source symbols → without compression, 4 bits are
required, and the rate is R = 640Mbps.



Problem 4
Compare the performance of the Shannon-Fano coding and the
Huffman coding for the previous source for sampling frequency
fs = 160 MHz.

Solution. We first compute the average codelength for both HUFF
and SF coding.

LHUFF = 0.49 · 1 + 0.14 · 3 + 0.14 · 3 + 0.07 · 4 + 0.07 · 4+

+ 0.04 · 4 + 0.02 · 5 + 0.02 · 6 + 0.01 · 6 = 2.33

LSF = 0.49 · 2 + 0.28 · 3 + 0.14 · 4 + 0.04 · 5 + 0.04 · 6+

+ 0.01 · 7 = 2.89

At fs = 160 MHz, the rates are

RHUFF = 372.8Mbps, RSF = 462Mbps.

Side note: 9 source symbols → without compression, 4 bits are
required, and the rate is R = 640Mbps.



Problem 5

We have a source with the following distribution and code table:

Source symbol Probability Codeword
X1 0.4 0
X2 0.2 10
X3 0.2 110
X4 0.2 1111

(a) Is this a prefix-free code?

(b) What is the average codelength?

(c) How far is the average codelength from the theoretical lower
bound of compressibility?

(d) Is this an optimal code?



Problem 5

Solution.

(a) Yes, the code is prefix-free.

(b) L =
∑4

i=1 pi`i = 0.4 · 1 + 0.2 · 2 + 0.2 · 3 + 0.2 · 4 = 2.2.

(c)

H(X ) =
4∑

i=1

pi log2

(
1

pi

)
= 0.4 · 1.31 + 3 · 0.2 · 2.322 = 1.922

L− H(X ) = 0.278

(d) No, for X4 the codeword 111 is sufficient instead of 1111.
(The resulting code has the same codelengths as
Huffman-coding, so it is optimal.)
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Problem 6

Consider the source from Problem 1:

p1 = 0.49, p2 = 0.14, p3 = 0.14, p4 = 0.07, p5 = 0.07,

p6 = 0.04, p7 = 0.02, p8 = 0.02, p9 = 0.01.

(a) Compress the source using Shannon-Fano-Elias coding.

(b) Compute the average codelength.

(c) Compare the performance of this code with Shannon-Fano
coding and Huffman coding for the same source for sampling
frequency fs = 160 MHz.



Problem 6

Solution.

(a)
i pi F (i) F̄ (i) binary `i codeword
1 0.49 0 0.245 0.0011111010 . . . 3 001
2 0.14 0.49 0.56 0.1000111101 . . . 4 1000
3 0.14 0.63 0.7 0.1011001100 . . . 4 1011
4 0.07 0.77 0.805 0.1100111000 . . . 5 11001
5 0.07 0.84 0.875 0.1110000000 . . . 5 11100
6 0.04 0.91 0.93 0.1110111000 . . . 6 111011
7 0.02 0.95 0.96 0.1111010111 . . . 7 1111010
8 0.02 0.97 0.98 0.1111101011 . . . 7 1111101
9 0.01 0.99 0.995 0.1111111010 . . . 8 11111110

F (i) =
i−1∑
j=0

pi , F̄ (i) = F (i) + pi/2, `i = dlog2 (1/pi )e+ 1



Problem 6

(b) Average codelength is

LSFE = 0.49 · 3 + 0.14 · 4 + 0.14 · 4 + 0.07 · 5 + 0.07 · 5+

+ 0.04 · 6 + 0.02 · 7 + 0.02 · 7 + 0.01 · 8 = 3.89.

(c)
LHUFF = 2.33 LSF = 2.89 LSFE = 3.89

↓ ↓ ↓
RHUFF = 372.8Mbps RSF = 462Mbps RSFE = 622Mbps

Recall: without coding, R = 640Mbps.

Conclusion: small improvement in the average codelength L
matters a lot in data speed!
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Comparative analysis

performance fs = 160 MHz alg. simplicity

Code Performance Avg. length Data speed Complexity

Huffman optimal L 2.33 372.8Mbps search + tree

SF H(X ) < L < H(X ) + 1 2.89 462.4Mbps tree

SFE H(X ) + 1 < L < H(X ) + 2 3.89 622.4Mbps binary conv.



Arithmetic coding

Shannon–Fano–Elias coding was inefficient because the b.c+ 1
function was applied to each character separately. Arithmetic
coding (AC) is based on the same idea as SFE, but instead of
coding characters separately, AC compresses the entire message at
once.

Example. The alphabet is {A,B,C,D}, with

P(A) = 0.4, P(B) = 0.3, P(C ) = 0.2, P(D) = 0.1.

For AC, the compressed message will correspond to first a
subinterval of [0, 1), then a single point from [0, 1).
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Arithmetic coding – example
message: ABAC
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Arithmetic coding – example

The interval corresponding to the message ABAC is
[0.1936, 0.2032].

We want to use the middle point of this interval (in binary form)
as the compressed message:

0.1984 = 0.00110010110 . . . 2©

The main question: how many bits of precision do we need so we
can distinguish this interval from the other small intervals?
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Arithmetic coding – example

The number of bits required is

d− log2(P(A)P(B)P(A)P(C ))e+ 1 = 8,

because then the rounding error is smaller than
P(A)P(B)P(A)P(C )/2, so even the rounded value will be inside
the same interval:

0.1936 = 0.00110001100 . . .

0.1984 ≈ 0.00110011

0.2032 = 0.00110100000 . . .



Arithmetic coding

AC is not character coding, so it can be better than Huffman
coding. In fact, for long messages, the compression rate will
asymptotically converge to the entropy lower bound: for a
character sequence C1 . . .Cn,

lim
n→∞

1

n

(⌈
− log2

(
n∏

i=1

P(Ci )

)⌉
+ 1

)
= lim

n→∞
−1

n
log2

(
n∏

i=1

P(Ci )

)

= lim
n→∞

−1

n

n∑
i=1

log2 P(Ci ) =
K∑

k=1

pk log2(1/pk) = H(X )

due to the Law of Large Numbers.

AC can be decompressed online: decoding can be started using the
beginning of the compressed message, with more and more of the
message decompressed as further sections of the compressed
message are received.
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