
8. Data compression � nonparametric methods

Coding Technology



Adaptive Hu�man codes

Shannon�Fano coding and Hu�man coding both use the source
distribution. What if this information is not available?

Adaptive Hu�man coding: instead of using the source distribution,
we build the tree based on the number of characters seen so far in
the text. We will start from a tree with 1 occurrence for every
character.

Example. If the alphabet is {A,B,C,D}, we initialize the Hu�man
tree as

4

2 2

1 1 1 1

A B C D



Adaptive Hu�man codes

Shannon�Fano coding and Hu�man coding both use the source
distribution. What if this information is not available?

Adaptive Hu�man coding: instead of using the source distribution,
we build the tree based on the number of characters seen so far in
the text. We will start from a tree with 1 occurrence for every
character.

Example. If the alphabet is {A,B,C,D}, we initialize the Hu�man
tree as

4

2 2

1 1 1 1

A B C D



Adaptive Hu�man codes

Shannon�Fano coding and Hu�man coding both use the source
distribution. What if this information is not available?

Adaptive Hu�man coding: instead of using the source distribution,
we build the tree based on the number of characters seen so far in
the text. We will start from a tree with 1 occurrence for every
character.

Example. If the alphabet is {A,B,C,D}, we initialize the Hu�man
tree as

4

2 2

1 1 1 1

A B C D



Adaptive Hu�man codes

Then the numbers are increased as we read the text. For example,
if the �rst letter of the text is D, we add 1 the corresponding leaf
(and modify the internal nodes accordingly):

5

2 3

1 1 1 2

A B C D

And so on for further characters.



Adaptive Hu�man codes � the sibling pair property
We always assume that siblings (two nodes with the same parent)
are always ordered increasing from left to right.

There is one more important property that always needs to hold for
Hu�man trees: starting from the bottom left, going left to right
�rst, then up one level and repeat, the sequence of numbers
obtained has to be non-decreasing. This is called the sibling pair

property, and trees satisfying this property are valid Hu�man trees.

Example. For the tree

5

2 3

1 1 1 2

A B C D

the sequence is 1, 1, 1, 2, 2, 3, 5, which is non-decreasing, so this
is a valid Hu�man tree.



Adaptive Hu�man codes � the sibling pair property
We always assume that siblings (two nodes with the same parent)
are always ordered increasing from left to right.

There is one more important property that always needs to hold for
Hu�man trees: starting from the bottom left, going left to right
�rst, then up one level and repeat, the sequence of numbers
obtained has to be non-decreasing. This is called the sibling pair

property, and trees satisfying this property are valid Hu�man trees.

Example. For the tree

5

2 3

1 1 1 2

A B C D

the sequence is 1, 1, 1, 2, 2, 3, 5, which is non-decreasing, so this
is a valid Hu�man tree.



Compression

Compression algorithm:

1. Initialize the Hu�man tree

2. Read the next character from the text and code it according to
the current state of the Hu�man tree.

3. Add the next character to the tree.

4. Check the sibling pair property, and if it is violated, restore it by
modifying the tree.

5. Move ahead to the next character and repeat from step 2.

Allowed modi�cations to restore the sibling pair property:

I exchange 2 nodes of the same weight (with subtrees), or

I exchange 2 leaves.



Compression

Compression algorithm:

1. Initialize the Hu�man tree

2. Read the next character from the text and code it according to
the current state of the Hu�man tree.

3. Add the next character to the tree.

4. Check the sibling pair property, and if it is violated, restore it by
modifying the tree.

5. Move ahead to the next character and repeat from step 2.

Allowed modi�cations to restore the sibling pair property:

I exchange 2 nodes of the same weight (with subtrees), or

I exchange 2 leaves.



Decompression

Decompression algorithm:

1. Initialize the Hu�man tree

2. Decode 1 character according to the current state of the
Hu�man tree.

3. Add the decoded character to the tree.

4. Check the sibling pair property, and if it is violated, restore it by
modifying the tree.

5. Move ahead to the next character and repeat from step 2.

(Step 1 has to be carried out identically during compression and
decompression. Step 4 too.)



Decompression

Decompression algorithm:

1. Initialize the Hu�man tree

2. Decode 1 character according to the current state of the
Hu�man tree.

3. Add the decoded character to the tree.

4. Check the sibling pair property, and if it is violated, restore it by
modifying the tree.

5. Move ahead to the next character and repeat from step 2.

(Step 1 has to be carried out identically during compression and
decompression. Step 4 too.)



Problem 1

Determine the missing values. Does the graph represent a valid
Hu�man tree?

46

? 28

7 ? 13 ?

3 ? ? 6 6 ?

1 2 2 2 2 3



Problem 1

46

18 28

7 11 13 15

3 4 5 6 6 7

1 2 2 2 2 3

Starting from the bottom left, going left to right �rst, then up one
level and repeat, the sequence 1, 2, 2, 2, 2, 3, 3, 4, 5, 6, 6, 7, 11,
13, 15, 18, 28, 46 is non-decreasing, so this is a valid Hu�man-tree.



Problem 2
For the alphabet {A,B,C ,D}, depict the progress of the code-tree
for the adaptive Hu�man-code when encoding the sequence
DCDADD.

Solution.

4

2 2

0 1

1 1 1 1

A B C D

0 1 0 1 D → 11

5

2 3

0 1

1 1 1 2

A B C D

0 1 0 1 DC → 1110



Problem 2
For the alphabet {A,B,C ,D}, depict the progress of the code-tree
for the adaptive Hu�man-code when encoding the sequence
DCDADD.

Solution.

4

2 2

0 1

1 1 1 1

A B C D

0 1 0 1

D → 11

5

2 3

0 1

1 1 1 2

A B C D

0 1 0 1 DC → 1110



Problem 2
For the alphabet {A,B,C ,D}, depict the progress of the code-tree
for the adaptive Hu�man-code when encoding the sequence
DCDADD.

Solution.

4

2 2

0 1

1 1 1 1

A B C D

0 1 0 1 D → 11

5

2 3

0 1

1 1 1 2

A B C D

0 1 0 1 DC → 1110



Problem 2
For the alphabet {A,B,C ,D}, depict the progress of the code-tree
for the adaptive Hu�man-code when encoding the sequence
DCDADD.

Solution.

4

2 2

0 1

1 1 1 1

A B C D

0 1 0 1 D → 11

5

2 3

0 1

1 1 1 2

A B C D

0 1 0 1

DC → 1110



Problem 2
For the alphabet {A,B,C ,D}, depict the progress of the code-tree
for the adaptive Hu�man-code when encoding the sequence
DCDADD.

Solution.

4

2 2

0 1

1 1 1 1

A B C D

0 1 0 1 D → 11

5

2 3

0 1

1 1 1 2

A B C D

0 1 0 1 DC → 1110



Problem 2

6

2 4

0 1

1 1 2 2

A B C D

0 1 0 1 DCD → 111011

7

2 5

1 1 2 3

A B C D



Problem 2

6

2 4

0 1

1 1 2 2

A B C D

0 1 0 1 DCD → 111011

7

2 5

1 1 2 3

A B C D



Problem 2

6

2 4

0 1

1 1 2 2

A B C D

0 1 0 1 DCD → 111011

7

2 5

1 1 2 3

A B C D

Possible moves to restore the sibling pair property:
I exchange 2 nodes of the same weight (with subtrees), or
I exchange 2 leaves.



Problem 2

7

2 5

1 1 2 3

A B C D

7

2

C

5

2 3

D
1 1

A B



Problem 2

7

2 5

1 1 2 3

A B C D

7

2

C

5

2 3

D
1 1

A B



Problem 2

7

2 5

1 1 2 3

A B C D

7

2

C

5

2 3

D
1 1

A B



Problem 2

7

3

D

4

0 1

2 2

C

0 1

1 1

A B

0 1

DCDA → 111011100

8

3

D

5

0 1

2 3

C

0 1

1 2

B A

0 1 DCDAD → 1110111000



Problem 2

7

3

D

4

0 1

2 2

C

0 1

1 1

A B

0 1 DCDA → 111011100

8

3

D

5

0 1

2 3

C

0 1

1 2

B A

0 1 DCDAD → 1110111000



Problem 2

9

4

D

5

0 1

2 3

C

0 1

1 2

B A

0 1 DCDADD → 11101110000

10

5

D

5

0 1

2 3

C

0 1

1 2

B A

0 1



Problem 2

9

4

D

5

0 1

2 3

C

0 1

1 2

B A

0 1 DCDADD → 11101110000

10

5

D

5

0 1

2 3

C

0 1

1 2

B A

0 1



LZ77 algorithm
Main idea: looking ahead, we search for sections of text that were
seen recently.

search bu�er look-up bu�er

text︸ ︷︷ ︸ text︸ ︷︷ ︸
length hs length hl

search bu�er look-up bu�er

text text
↖ ↙

match text with the content
of the search bu�er

Output: (p, l , n), where:

I p: starting position of the matching section in the search
bu�er (backwards from the cursor position)

I l : length of the matching section

I n: code of the next symbol

Total size of output: dlog2 hse+ dlog2 hle+ dlog2 χe bits.



Problem 3
We use LZ77 to compress the text �c a b r a c a d a b r a r r a r r a d. . . �
with parameters hs = 7, hl = 6. The cursor is initially at position 7.
Give the output of the compression algorithm for the initial state
and the next two steps.

Solution.

I initial state:

c a b r a c a d a b r a r r a r r a d. . . output: (0, 0, d)
I next step:

c a b r a c a d a b r a r r a r r a d. . .

7

4

output: (7, 4, r)

I next step:

c a b r a c a d a b r a r r a r r a d . . .

3

5

output: (3, 5, d)



Problem 3
We use LZ77 to compress the text �c a b r a c a d a b r a r r a r r a d. . . �
with parameters hs = 7, hl = 6. The cursor is initially at position 7.
Give the output of the compression algorithm for the initial state
and the next two steps.

Solution.

I initial state:

c a b r a c a d a b r a r r a r r a d. . . output: (0, 0, d)

I next step:

c a b r a c a d a b r a r r a r r a d. . .

7

4

output: (7, 4, r)

I next step:

c a b r a c a d a b r a r r a r r a d . . .

3

5

output: (3, 5, d)



Problem 3
We use LZ77 to compress the text �c a b r a c a d a b r a r r a r r a d. . . �
with parameters hs = 7, hl = 6. The cursor is initially at position 7.
Give the output of the compression algorithm for the initial state
and the next two steps.

Solution.

I initial state:

c a b r a c a d a b r a r r a r r a d. . . output: (0, 0, d)
I next step:

c a b r a c a d a b r a r r a r r a d. . .

7

4

output: (7, 4, r)

I next step:

c a b r a c a d a b r a r r a r r a d . . .

3

5

output: (3, 5, d)



Problem 3
We use LZ77 to compress the text �c a b r a c a d a b r a r r a r r a d. . . �
with parameters hs = 7, hl = 6. The cursor is initially at position 7.
Give the output of the compression algorithm for the initial state
and the next two steps.

Solution.

I initial state:

c a b r a c a d a b r a r r a r r a d. . . output: (0, 0, d)
I next step:

c a b r a c a d a b r a r r a r r a d. . .

7

4

output: (7, 4, r)

I next step:

c a b r a c a d a b r a r r a r r a d . . .

3

5

output: (3, 5, d)



Problem 4

We use LZ77 data compressor for a text written in an alphabet of
size 32. The search bu�er length is 32 and the look-up bu�er
length is 16. How many bits is the length of the output sequence at
each step of the compression?

Solution.
χ = 32, hs = 32, hl = 16,

so
dlog2 hse+ dlog2 hle+ dlog2 χe = 5+ 4+ 5 bits.



Problem 4

We use LZ77 data compressor for a text written in an alphabet of
size 32. The search bu�er length is 32 and the look-up bu�er
length is 16. How many bits is the length of the output sequence at
each step of the compression?

Solution.
χ = 32, hs = 32, hl = 16,

so
dlog2 hse+ dlog2 hle+ dlog2 χe = 5+ 4+ 5 bits.



Problem 5

Running data compression by LZ77, the shift register is in the state

r k am r e r a k a k am r e b a n h a r e r r e d. . .

10 11

Give the output of the next step.

Solution.

r k am r e r a k a k am r e b a n h a r e r r e d. . .

9

5

output: (9, 5, b)



Problem 5

Running data compression by LZ77, the shift register is in the state

r k am r e r a k a k am r e b a n h a r e r r e d. . .

10 11

Give the output of the next step.

Solution.

r k am r e r a k a k am r e b a n h a r e r r e d. . .

9

5

output: (9, 5, b)



LZ78 algorithm

Main idea: we are parsing the text into sections that are 1
character longer than a section seen before. The output (coding for
the new section) is (i , c), where

I i is the address of the old section (1 character shorter than the
current section),

I c is the new character (novelty factor).

The address of the current section is incremented by 1 for each new
section.



LZ78 algorithm

1 (0,a)

2 (0,b)

3 (1,b)

4 (2,b)

5 (4,a)

6 (5,b)

Example.
a b a b b b b b a b b a b

Coding.

1. �a� is a new section, so the output is (0, a).
2. �b� is a new section, so the output is (0, b).
3. �a� is an old section with address 1; the new section is �ab�,
the new character is �b�, so the output is (1, b).

4. �b� is an old section with address 2; the new section is �bb�,
and the new character is �b�, so the output is (2, b).

5. �bb� is an old section with address 4; the new section is �bba�,
and the new character is �a�, so the output is (4, a).

6. �bba� is an old section with address 5; the new section is �bbab�
and the new character is �b�, so the output is (5, b).



LZ78 algorithm
1 (0,a)

2 (0,b)

3 (1,b)

4 (2,b)

5 (4,a)

6 (5,b)

Example.
a b a b b b b b a b b a b

Coding.

1. �a� is a new section, so the output is (0, a).

2. �b� is a new section, so the output is (0, b).
3. �a� is an old section with address 1; the new section is �ab�,
the new character is �b�, so the output is (1, b).

4. �b� is an old section with address 2; the new section is �bb�,
and the new character is �b�, so the output is (2, b).

5. �bb� is an old section with address 4; the new section is �bba�,
and the new character is �a�, so the output is (4, a).

6. �bba� is an old section with address 5; the new section is �bbab�
and the new character is �b�, so the output is (5, b).



LZ78 algorithm
1 (0,a)

2 (0,b)

3 (1,b)

4 (2,b)

5 (4,a)

6 (5,b)

Example.
a b a b b b b b a b b a b

Coding.

1. �a� is a new section, so the output is (0, a).
2. �b� is a new section, so the output is (0, b).

3. �a� is an old section with address 1; the new section is �ab�,
the new character is �b�, so the output is (1, b).

4. �b� is an old section with address 2; the new section is �bb�,
and the new character is �b�, so the output is (2, b).

5. �bb� is an old section with address 4; the new section is �bba�,
and the new character is �a�, so the output is (4, a).

6. �bba� is an old section with address 5; the new section is �bbab�
and the new character is �b�, so the output is (5, b).



LZ78 algorithm
1 (0,a)

2 (0,b)

3 (1,b)

4 (2,b)

5 (4,a)

6 (5,b)

Example.
a b a b b b b b a b b a b

Coding.

1. �a� is a new section, so the output is (0, a).
2. �b� is a new section, so the output is (0, b).
3. �a� is an old section with address 1; the new section is �ab�,
the new character is �b�, so the output is (1, b).

4. �b� is an old section with address 2; the new section is �bb�,
and the new character is �b�, so the output is (2, b).

5. �bb� is an old section with address 4; the new section is �bba�,
and the new character is �a�, so the output is (4, a).

6. �bba� is an old section with address 5; the new section is �bbab�
and the new character is �b�, so the output is (5, b).



LZ78 algorithm
1 (0,a)

2 (0,b)

3 (1,b)

4 (2,b)

5 (4,a)

6 (5,b)

Example.
a b a b b b b b a b b a b

Coding.

1. �a� is a new section, so the output is (0, a).
2. �b� is a new section, so the output is (0, b).
3. �a� is an old section with address 1; the new section is �ab�,
the new character is �b�, so the output is (1, b).

4. �b� is an old section with address 2; the new section is �bb�,
and the new character is �b�, so the output is (2, b).

5. �bb� is an old section with address 4; the new section is �bba�,
and the new character is �a�, so the output is (4, a).

6. �bba� is an old section with address 5; the new section is �bbab�
and the new character is �b�, so the output is (5, b).



LZ78 algorithm
1 (0,a)

2 (0,b)

3 (1,b)

4 (2,b)

5 (4,a)

6 (5,b)

Example.
a b a b b b b b a b b a b

Coding.

1. �a� is a new section, so the output is (0, a).
2. �b� is a new section, so the output is (0, b).
3. �a� is an old section with address 1; the new section is �ab�,
the new character is �b�, so the output is (1, b).

4. �b� is an old section with address 2; the new section is �bb�,
and the new character is �b�, so the output is (2, b).

5. �bb� is an old section with address 4; the new section is �bba�,
and the new character is �a�, so the output is (4, a).

6. �bba� is an old section with address 5; the new section is �bbab�
and the new character is �b�, so the output is (5, b).



LZ78 algorithm
1 (0,a)

2 (0,b)

3 (1,b)

4 (2,b)

5 (4,a)

6 (5,b)

Example.
a b a b b b b b a b b a b

Coding.

1. �a� is a new section, so the output is (0, a).
2. �b� is a new section, so the output is (0, b).
3. �a� is an old section with address 1; the new section is �ab�,
the new character is �b�, so the output is (1, b).

4. �b� is an old section with address 2; the new section is �bb�,
and the new character is �b�, so the output is (2, b).

5. �bb� is an old section with address 4; the new section is �bba�,
and the new character is �a�, so the output is (4, a).

6. �bba� is an old section with address 5; the new section is �bbab�
and the new character is �b�, so the output is (5, b).



Problem 6

Compress the sequence 01000101001010001101011 using the LZ78
algorithm. Use binary addresses.

Solution.

section 0 1 00 01 010 0101 000 11 01011

address 1 2 3 4 5 6 7 8 9

bin. addr. 0001 0010 0011 0100 0101 0110 0111 1000 1001

The compressed sequence is
(0000,0) (0000,1) (0001,0) (0001,1) (0100,0) (1001,1) (0011,0)
(0010,1) (0110,1)



Problem 6

Compress the sequence 01000101001010001101011 using the LZ78
algorithm. Use binary addresses.

Solution.

section 0 1 00 01 010 0101 000 11 01011

address 1 2 3 4 5 6 7 8 9

bin. addr. 0001 0010 0011 0100 0101 0110 0111 1000 1001

The compressed sequence is
(0000,0) (0000,1) (0001,0) (0001,1) (0100,0) (1001,1) (0011,0)
(0010,1) (0110,1)



Problem 7

Decompress the sequence 0001000000100110100110101101 using
the LZ78 algorithm.

Solution. Step 0. How many bits is the address length?

It cannot be 2, because with 2 bit addresses, at most 4 sections can
be coded, and the total length of the coded text could be at most
12. It cannot be 4 or longer, because the �rst address is all 0's. So
the address length must be 3 bits.

Step 1. Decomposing to addresses and novelty factors:

(000, 1) (000, 0) (001, 0) (011, 0) (100, 1) (101, 0) (110, 1)

Step 2. Reconstructing the original text:

1 0 10 100 1001 10010 100101



Problem 7

Decompress the sequence 0001000000100110100110101101 using
the LZ78 algorithm.

Solution. Step 0. How many bits is the address length?

It cannot be 2, because with 2 bit addresses, at most 4 sections can
be coded, and the total length of the coded text could be at most
12. It cannot be 4 or longer, because the �rst address is all 0's. So
the address length must be 3 bits.

Step 1. Decomposing to addresses and novelty factors:

(000, 1) (000, 0) (001, 0) (011, 0) (100, 1) (101, 0) (110, 1)

Step 2. Reconstructing the original text:

1 0 10 100 1001 10010 100101



Problem 7

Decompress the sequence 0001000000100110100110101101 using
the LZ78 algorithm.

Solution. Step 0. How many bits is the address length?

It cannot be 2, because with 2 bit addresses, at most 4 sections can
be coded, and the total length of the coded text could be at most
12.

It cannot be 4 or longer, because the �rst address is all 0's. So
the address length must be 3 bits.

Step 1. Decomposing to addresses and novelty factors:

(000, 1) (000, 0) (001, 0) (011, 0) (100, 1) (101, 0) (110, 1)

Step 2. Reconstructing the original text:

1 0 10 100 1001 10010 100101



Problem 7

Decompress the sequence 0001000000100110100110101101 using
the LZ78 algorithm.

Solution. Step 0. How many bits is the address length?

It cannot be 2, because with 2 bit addresses, at most 4 sections can
be coded, and the total length of the coded text could be at most
12. It cannot be 4 or longer, because the �rst address is all 0's. So
the address length must be 3 bits.

Step 1. Decomposing to addresses and novelty factors:

(000, 1) (000, 0) (001, 0) (011, 0) (100, 1) (101, 0) (110, 1)

Step 2. Reconstructing the original text:

1 0 10 100 1001 10010 100101



Problem 7

Decompress the sequence 0001000000100110100110101101 using
the LZ78 algorithm.

Solution. Step 0. How many bits is the address length?

It cannot be 2, because with 2 bit addresses, at most 4 sections can
be coded, and the total length of the coded text could be at most
12. It cannot be 4 or longer, because the �rst address is all 0's. So
the address length must be 3 bits.

Step 1. Decomposing to addresses and novelty factors:

(000, 1) (000, 0) (001, 0) (011, 0) (100, 1) (101, 0) (110, 1)

Step 2. Reconstructing the original text:

1 0 10 100 1001 10010 100101


