
9. Cryptography

Coding Technology



Objective

Objective: secure communication over a public channel.
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key
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key
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Construct cryptography algorithms which present high complexity
for the attacker, but which can easily be deciphered using the key.



Simple cyphers I

Additive cypher. If the size of the alphabet is n (e.g. n = 26 for
English texts),

Ek(x) = y = x + k mod n,

where k is the value of the key.
If k is unknown, k can be either guessed by trying (26 possibilities
for the English alphabet).

Linear cypher:

Ek(x) = y = ax + b mod n,

where k = (a, b) is the value of the key. gcd(a, n) = 1 must hold!
Decryption is also linear:

Dk(y) = a−1y − a−1b mod n.

If the key is unknown, statistical analysis can help in guessing.



Simple cyphers I

Additive cypher. If the size of the alphabet is n (e.g. n = 26 for
English texts),

Ek(x) = y = x + k mod n,

where k is the value of the key.
If k is unknown, k can be either guessed by trying (26 possibilities
for the English alphabet).

Linear cypher:

Ek(x) = y = ax + b mod n,

where k = (a, b) is the value of the key. gcd(a, n) = 1 must hold!

Decryption is also linear:

Dk(y) = a−1y − a−1b mod n.

If the key is unknown, statistical analysis can help in guessing.



Simple cyphers I

Additive cypher. If the size of the alphabet is n (e.g. n = 26 for
English texts),

Ek(x) = y = x + k mod n,

where k is the value of the key.
If k is unknown, k can be either guessed by trying (26 possibilities
for the English alphabet).

Linear cypher:

Ek(x) = y = ax + b mod n,

where k = (a, b) is the value of the key. gcd(a, n) = 1 must hold!
Decryption is also linear:

Dk(y) = a−1y − a−1b mod n.

If the key is unknown, statistical analysis can help in guessing.



Problem 1

Decipher the cyphertext HYHUBERGB, encrypted by an additive
cypher y = x + k mod 26.

Solution. Guess k by trying:

I k = 1: HYHUBERGB → GXGTADQFA;

I k = 2: HYHUBERGB → FWFSZCPEZ;

I k = 3: HYHUBERGB → EVERYBODY. X
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Problem 2
Decypher the following cyphertext if we know that linear encryption
is used.

FMXVEDKAPHFERBNDKRXRSREFMORU
DSDKDVSHVUFEDKAPRKDLYEVLRHHRH

Solution. We use statistical analysis.

English text letter probabilities

letter prob. letter prob.

A .082 N .067

B .015 O .075

C .028 P .019

D .043 Q .001

E .127 R .060

F .022 S .063

G .020 T .091

H .061 U .028

I .070 V .010

J .002 W .023

K .008 X .001

L .040 Y .020

M .024 Z .001

cyphertext letter frequencies

letter freq. letter freq.

A 2 N 1

B 1 O 1

C 0 P 2

D 7 Q 0

E 5 R 8

F 4 S 3

G 0 T 0

H 5 U 2

I 0 V 4

J 0 W 0

K 5 X 2

L 2 Y 1

M 2 Z 0
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Problem 2

In the cyphertext, the most frequent letters are: R(8), D(7), E(5),
H(5), K(5).

These are good candidates for E and T (the two most frequent
letters in English texts).

Guess 1: R → E, D → T. Then Ek(4) = 17, and Ek(19) = 3, that
is,

4a+ b = 17 mod 26,

19a+ b = 3 mod 26.

Subtraction gives

15a = 12 mod 26,

but then a must be even, so gcd(a, 26) > 1 → incorrect guess.
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Problem 2

Guess 2: R → E, E → T. Then

4a+ b = 17 mod 26,

19a+ b = 4 mod 26.

Then

15a = 13 mod 26,

a = 13 mod 26,

so gcd(a, 26) > 1 again → incorrect guess.



Problem 2
Guess 3: R → E, K → T. Then

4a+ b = 17 mod 26,

19a+ b = 10 mod 26.

Then

15a = 19 mod 26,

a = 3 mod 26,

b = 5 mod 26.

k = (3, 5) is a valid key.

We still need to check if we get
meaningful decrypted text.

Dk(y) = 3−1y − 3−1 · 5 = 9y − 19 mod 26.

ALGORITHMSAREQUITEGENERALDEF
INITIONSOFARITHMETICPROCESSES
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Simple cyphers II
Permutation cypher: the message is cut into blocks of equal
length, and the letters within each block are reordered according to
the key permutation.

Example.

1234567
2147356

⇐⇒ (12)(34765)

Cypher: MORNING → OMIRNGN

One time pad (OTP): both the sender and the receiver have the
same random bit sequence k ; the encryption is bitwise addition of
the message and the key. Example:

x = 01001101 01011101 . . .
+k = 11010000 11101011 . . .

y = 10011101 10110110 ...

As long as the key is used only once, OTP o�ers perfect secrecy.
(Also, it is essentially the only such method.)
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Problem 3

Using OTP encryption with key k = (110011000001111), we
receive the cyphertext y = (011100010100011). Compute the
plaintext c .

Solution. x = y + k mod 2, so

y = 011100010100011
+k = 110011000001111

x = 101111010101100
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Problem 4 � OTP without key exchange
A and B want to communicate using OTP without a common
secret key. Assume A has key kA and B has key kB . A has a
message x to send; he sends the message y1 = x + kA to B, then B
returns y2 = y1 + kB , �nally, A returns y3 = y2 + kA. From the
information

y1 = (0111000100), y2 = (1000100100), y3 = (1000111011),

derive the plain text x and keys kA and kB .

Solution.

y1 = x + kA, y2 = x + kA + kB , y3 = x + kB

y1 + y2 + y3 = x + kA + x + kA + kB + x + kB = x .

From this,

x = y1 + y2 + y3 = (0111011011),

kA = x + y1 = (0000011111),

kB = x + y3 = (1111100000).
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Problem 5 � stochastic encryption
For stochastic encryption, the key k is chosen randomly. The
plaintext → cyphertext assignment depends on the key.

Consider
the following setup:

I the space of the plaintext is {a,b} with probabilities
Pr(a) = 1/3,Pr(b) = 2/3.

I the space of the cyphertext is {1,2,3,4,5}.
I the keys are {1,2,3,4,5}, chosen with probability
{2/5, 1/5, 1/5, 1/10, 1/10} respectively.

The plaintext → cyphertext assignment is the following:

k = 1 : a→1 b→2
k = 2 : a→2 b→4
k = 3 : a→3 b→1
k = 4 : a→5 b→3
k = 5 : a→4 b→5

(a) Compute the cyphertext distribution.
(b) Are the plaintext and cyphertext independent (is this a perfect

encryption)?
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Problem 5 � stochastic encryption

Solution.

(a) The cyphertext distribution can be computed using total
probability:

Pr(Y = 1) = Pr(Y = 1|X = a) Pr(X = a) + Pr(Y = 1|X = b) Pr(X = b) =

= 2/5 · 1/3+ 1/5 · 2/3 = 4/15 = 0.2667

Pr(Y = 2) = Pr(Y = 2|X = a) Pr(X = a) + Pr(Y = 2|X = b) Pr(X = b) =

= 1/5 · 1/3+ 2/5 · 2/3 = 5/15 = 0.3333

Pr(Y = 3) = Pr(Y = 3|X = a) Pr(X = a) + Pr(Y = 3|X = b) Pr(X = b) =

= 1/5 · 1/3+ 1/10 · 2/3 = 4/30 = 0.1333

Pr(Y = 4) = Pr(Y = 4|X = a) Pr(X = a) + Pr(Y = 4|X = b) Pr(X = b) =

= 1/10 · 1/3+ 1/5 · 2/3 = 5/30 = 0.1667

Pr(Y = 5) = Pr(Y = 5|X = a) Pr(X = a) + Pr(Y = 5|X = b) Pr(X = b) =

= 1/10 · 1/3+ 1/10 · 2/3 = 1/10 = 0.1

(b) No, e.g.

Pr(Y = 1|X = a) = 2/5 6= Pr(Y = 1|X = b) = 1/5.
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Extended Euclidean Algorithm

The Extended Euclidean Algorithm can be used to �nd gcd(a, b)
and also to solve

gcd(a, b) = s · a+ t · b.

Assume a > b; initialize r0 = a, r1 = b and also
s0 = 1, t0 = 0, s1 = 0, t1 = 1. In each step, we write

rk−1 = rk · qk+1 + rk+1 rk = sk · a+ tk · b,

where 0 ≤ rk+1 < rk , and sk+1 and tk+1 are computed from

sk+1 = sk−1 − qksk , tk+1 = tk−1 − qktk .

The algorithm stops when rk+1 = 0; then rk = gcd(a, b), and
gcd(a, b) = sk · a+ tk · b; at most log1.62(min(a, b)) steps are
needed.

For gcd(n, e) = 1, the algorithm gives 1 = gcd(n, e) = s · n + t · e,
so e−1 = t mod n.
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Problem 5

Compute the greatest common divisor (gcd) of b = 8387 and
c = 1243, and also compute s and t so that

gcd(8387, 1243) = s · 8387+ t · 1243.

Solution.

8387 = 1243 · 6+ 929 929 = b − 6c
1243 = 929 · 1+ 314 314 = −b + 7c
929 = 314 · 2+ 301 301 = 3b − 20c
314 = 301 · 1+ 13 13 = −4b + 27c
301 = 13 · 23+ 2 2 = 95b − 641c
13 = 2 · 6+ 1 1 = −574b + 3873c
2 = 1 · 2+ 0.

Finally,

gcd(8387, 1243) = −574 · 8387+ 3873 · 1243.
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Public key cryptography

Instead of a common key k which is known by both the sender and
the receiver, public key cryptography works the following way:

I the receiver has a (d , e) pair of keys

I d is a private key known only by the receiver

I e is a public key known by everyone
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RSA algorithm

The steps of the RSA algorithm are the following:

I Key generation:
I select 2 large primes p and q; n = pq.
I φ(n) = (p − 1)(q − 1).
I Select a coding exponent e so that gcd(e, φ(n)) = 1 and

1 < e < φ(n).
I Solve de = 1 mod φ(n) to obtain the decoding key d .
I (n, e) is the public key;
I p, q, φ(n) and d are kept secret.

I Encryption (using the public key):
I the plaintext is cut into sections which can be turned into

numbers x such that 0 ≤ x < n.
I the cyphertext is c = xe mod n.

I Decryption:
I x = cd mod n.
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RSA algorithm

Why does the RSA algorithm work?

Key generation is easy:

I Primality testing (checking whether a given number is a prime
or not) is computationally fast.

I There are many primes even among large numbers: the Prime
Number Theorem says that among numbers of order N, on
average 1 out of log(N) numbers is a prime.

I So we can just start prime checking large numbers randomly,
and we will soon �nd two primes for p and q.

I gcd and de = 1 mod φ(n) can be solved fast using the
Extended Euclidean Algorithm.
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RSA algorithm

Decryption and encryption are indeed inverse operations due to
Euler's Theorem:

de = 1 mod φ(n) =⇒ xde = x mod n.

Modular exponentiation (for xe or cd) can be computed fast along
the exponents 1, 2, 4, 8, 16, . . .

On the other hand, integer factorization (to a product of primes) is
computationally di�cult for large numbers. So even though n is
public, p and q are di�cult to compute, and without p and q, we
cannot compute φ(n) and d either. Overall, if p and q are
su�ciently large, attacking RSA is computationally infeasible.
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RSA algorithm

Example. p = 3, q = 11→ n = 33.

Then φ(n) = (p − 1)(q − 1) = 20. We select e = 3. Solving

de = 1 mod 20

gives d = 7.

Public key: (n, e) = (20, 3). Private key: d = 7.

Encrypting x = 4 gives

c = xe = 43 mod 33 = 31.

Decryption gives

x = cd = 317 = (−2)7 = −128 = 4 mod 33.
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Problem 6
The parameters of RSA are generated by p = 7, q = 17.

(a) What is the smallest possible choice of the coding exponent e?

(b) What is the cyphertext belonging to the plaintext x = 11?

(c) What is the decoding key d?

Solution.

(a) φ(n) = (p − 1)(q − 1) = 6 · 16 = 96.

We need e to have gcd(e, 96) = 1 and 1 < e < 96, so the
smallest possible choice for e is e = 5.

(b) c = xe mod n = 115mod 119 = 160051mod 119 = 44.

(c) We need to solve de = 1mod φ(n) where e = 5 and
φ(n) = 96. We use the Extended Euclidean Algorithm for
b = 96 and c = 5:

96 = 5 · 19+ 1 1 = b − 19c

so d = −19 = 77mod 96.
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Problem 6

We use RSA with p = 73, q = 151.

(a) Compute n and φ(n).

(b) Is e = 11 a possible choice?

(c) Compute d .

Solution.

(a) n = 73 · 151 = 11023 and φ(n) = 72 · 150 = 10800.

(b) e = 11 is a possible choice because gcd(10800, 11) = 1.

(c) Compute d .

10800 = 11 · 981+ 9 9 = 1 · 10800− 981 · 11
11 = 9 · 1+ 2 2 = (−1) · 10800+ 982 · 11
9 = 2 · 4+ 1 1 = 5 · 10800− 4909 · 11
2 = 1 · 2+ 0.

So d = −4909 = 5891mod 10800.
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Problem 7

Using the RSA code of the Problem 6, compute the cyphertext for
the plaintext x = 17.

Solution. We need to compute 1711mod 11023.

172 = 289 mod 11023

174 = 2892 = 83521 = 6360 mod 11023

178 = 63602 = 40449600 = 6213 mod 11023.

11 = 8+ 2+ 1, so x11 = x8 · x2 · x , and we have

y = 1711 = 6213 · 289 · 17 = 30524469 = 1782 mod 11023.

(In actual applications, e = 216 + 1 = 65537 is often chosen; it is a
prime, so gcd(φ(n), e) > 1 is unlikely, and xe = x2

16 · x only has 2
terms.)
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