9. Cryptography

Coding Technology

(ロ)、(型)、(E)、(E)、 E のQで

Objective

Objective: secure communication over a public channel.

Construct cryptography algorithms which present high complexity for the attacker, but which can easily be deciphered using the key.

うして ふゆう ふほう ふほう うらつ

Simple cyphers I

Additive cypher. If the size of the alphabet is n (e.g. n = 26 for English texts),

$$E_k(x) = y = x + k \mod n$$
,

where k is the value of the key.

If k is unknown, k can be either guessed by trying (26 possibilities for the English alphabet).

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Simple cyphers I

Additive cypher. If the size of the alphabet is n (e.g. n = 26 for English texts),

$$E_k(x) = y = x + k \mod n$$
,

where k is the value of the key.

If k is unknown, k can be either guessed by trying (26 possibilities for the English alphabet).

Linear cypher:

$$E_k(x) = y = ax + b \mod n$$
,

ション ふゆ アメリア メリア しょうくの

where k = (a, b) is the value of the key. gcd(a, n) = 1 must hold!

Simple cyphers I

Additive cypher. If the size of the alphabet is n (e.g. n = 26 for English texts),

$$E_k(x) = y = x + k \mod n$$
,

where k is the value of the key.

If k is unknown, k can be either guessed by trying (26 possibilities for the English alphabet).

Linear cypher:

$$E_k(x) = y = ax + b \mod n$$
,

where k = (a, b) is the value of the key. gcd(a, n) = 1 must hold! Decryption is also linear:

$$D_k(y) = a^{-1}y - a^{-1}b \mod n.$$

If the key is unknown, statistical analysis can help in guessing.

Decipher the cyphertext HYHUBERGB, encrypted by an additive cypher $y = x + k \mod 26$.

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Decipher the cyphertext HYHUBERGB, encrypted by an additive cypher $y = x + k \mod 26$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Solution. Guess k by trying:

▶ k = 1: HYHUBERGB → GXGTADQFA;

Decipher the cyphertext HYHUBERGB, encrypted by an additive cypher $y = x + k \mod 26$.

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Solution. Guess k by trying:

- ▶ k = 1: HYHUBERGB → GXGTADQFA;
- ▶ k = 2: HYHUBERGB → FWFSZCPEZ;

Decipher the cyphertext HYHUBERGB, encrypted by an additive cypher $y = x + k \mod 26$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Solution. Guess k by trying:

- ▶ k = 1: HYHUBERGB → GXGTADQFA;
- ▶ k = 2: HYHUBERGB → FWFSZCPEZ;
- ▶ k = 3: HYHUBERGB → EVERYBODY. \checkmark

Decypher the following cyphertext if we know that linear encryption is used.

FMXVEDKAPHFERBNDKRXRSREFMORU DSDKDVSHVUFEDKAPRKDLYEVLRHHRH

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Decypher the following cyphertext if we know that linear encryption is used.

FMXVEDKAPHFERBNDKRXRSREFMORU DSDKDVSHVUFEDKAPRKDLYEVLRHHRH

Solution. We use statistical analysis.

English	text	letter	probabilities

•			
letter	prob.	letter	prob.
A	.082	Ν	.067
В	.015	0	.075
C	.028	Р	.019
D	.043	Q	.001
E	. 127	R	.060
F	.022	S	.063
G	.020	Т	.091
Н	.061	U	.028
<u> </u>	.070	V	.010
J	.002	W	.023
K	.008	Х	.001
L	.040	Y	.020
М	.024	Z	.001

cyphertext letter frequencies

letter	freq.	letter	freq.
A	2	Ν	1
В	1	0	1
С	0	Р	2
D	7	Q	0
E	5	R	8
F	4	S	3
G	0	Т	0
Н	5	U	2
1	0	V	4
J	0	W	0
K	5	Х	2
L	2	Y	1
М	2	Z	0

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - の Q @

In the cyphertext, the most frequent letters are: R(8), D(7), E(5), H(5), K(5).

These are good candidates for E and T (the two most frequent letters in English texts).

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

In the cyphertext, the most frequent letters are: R(8), D(7), E(5), H(5), K(5).

These are good candidates for E and T (the two most frequent letters in English texts).

Guess 1: R \rightarrow E, D \rightarrow T. Then $E_k(4) = 17$, and $E_k(19) = 3$, that is,

$$4a + b = 17 \mod 26$$
,
 $19a + b = 3 \mod 26$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

In the cyphertext, the most frequent letters are: R(8), D(7), E(5), H(5), K(5).

These are good candidates for E and T (the two most frequent letters in English texts).

Guess 1: R \rightarrow E, D \rightarrow T. Then $E_k(4) = 17$, and $E_k(19) = 3$, that is,

$$4a + b = 17 \mod 26$$
,
 $19a + b = 3 \mod 26$.

Subtraction gives

$$15a = 12 \mod 26$$
,

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

but then a must be even, so $gcd(a, 26) > 1 \rightarrow$ incorrect guess.

Guess 2: $\mathsf{R} \to \mathsf{E}, \; \mathsf{E} \to \mathsf{T}.$ Then

$$4a + b = 17 \mod 26$$
,
 $19a + b = 4 \mod 26$.

Then

$$15a = 13 \mod 26,$$

 $a = 13 \mod 26,$

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

so gcd(a, 26) > 1 again \rightarrow incorrect guess.

Guess 3: $R \rightarrow E$, $K \rightarrow T$. Then

$$4a + b = 17 \mod 26$$
,
 $19a + b = 10 \mod 26$.

Then

 $15a = 19 \mod 26,$ $a = 3 \mod 26,$ $b = 5 \mod 26.$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

k = (3, 5) is a valid key.

Guess 3: $R \rightarrow E$, $K \rightarrow T$. Then

$$4a + b = 17 \mod 26$$
,
 $19a + b = 10 \mod 26$.

Then

 $15a = 19 \mod 26,$ $a = 3 \mod 26,$ $b = 5 \mod 26.$

k = (3, 5) is a valid key. We still need to check if we get meaningful decrypted text.

$$D_k(y) = 3^{-1}y - 3^{-1} \cdot 5 = 9y - 19 \mod 26.$$

ALGORITHMSAREQUITEGENERALDEF INITIONSOFARITHMETICPROCESSES

Simple cyphers II

Permutation cypher: the message is cut into blocks of equal length, and the letters within each block are reordered according to the key permutation.

Example.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Cypher: MORNING \rightarrow OMIRNGN

Simple cyphers II

Permutation cypher: the message is cut into blocks of equal length, and the letters within each block are reordered according to the key permutation.

Example.

Cypher: MORNING \rightarrow OMIRNGN

One time pad (OTP): both the sender and the receiver have the same random bit sequence k; the encryption is bitwise addition of the message and the key. Example:

х	=	01001101 01011101
+k	=	11010000 11101011
у	=	10011101 10110110

As long as the key is used only once, OTP offers perfect secrecy. (Also, it is essentially the only such method.)

Using OTP encryption with key k = (110011000001111), we receive the cyphertext y = (011100010100011). Compute the plaintext c.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Using OTP encryption with key k = (110011000001111), we receive the cyphertext y = (011100010100011). Compute the plaintext c.

Solution. $x = y + k \mod 2$, so

У	=	011100010100011
+k	=	110011000001111
Х	=	101111010101100

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Problem 4 – OTP without key exchange

A and B want to communicate using OTP without a common secret key. Assume A has key k_A and B has key k_B . A has a message x to send; he sends the message $y_1 = x + k_A$ to B, then B returns $y_2 = y_1 + k_B$, finally, A returns $y_3 = y_2 + k_A$. From the information

 $y_1 = (0111000100), \quad y_2 = (1000100100), \quad y_3 = (1000111011),$ derive the plain text x and keys k_A and k_B .

うして ふゆう ふほう ふほう うらつ

Problem 4 – OTP without key exchange

A and B want to communicate using OTP without a common secret key. Assume A has key k_A and B has key k_B . A has a message x to send; he sends the message $y_1 = x + k_A$ to B, then B returns $y_2 = y_1 + k_B$, finally, A returns $y_3 = y_2 + k_A$. From the information

 $y_1 = (0111000100), \quad y_2 = (1000100100), \quad y_3 = (1000111011),$ derive the plain text x and keys k_A and k_B .

Solution.

$$y_1 = x + k_A, \quad y_2 = x + k_A + k_B, \quad y_3 = x + k_B$$

 $y_1 + y_2 + y_3 = x + k_A + x + k_A + k_B + x + k_B = x.$

うして ふゆう ふほう ふほう うらつ

Problem 4 – OTP without key exchange

A and B want to communicate using OTP without a common secret key. Assume A has key k_A and B has key k_B . A has a message x to send; he sends the message $y_1 = x + k_A$ to B, then B returns $y_2 = y_1 + k_B$, finally, A returns $y_3 = y_2 + k_A$. From the information

 $y_1 = (0111000100), \quad y_2 = (1000100100), \quad y_3 = (1000111011),$ derive the plain text x and keys k_A and k_B .

Solution.

$$y_1 = x + k_A, \quad y_2 = x + k_A + k_B, \quad y_3 = x + k_B$$

 $y_1 + y_2 + y_3 = x + k_A + x + k_A + k_B + x + k_B = x.$

From this,

$$x = y_1 + y_2 + y_3 = (0111011011),$$

 $k_A = x + y_1 = (0000011111),$
 $k_B = x + y_3 = (1111100000).$

For stochastic encryption, the key k is chosen randomly. The plaintext \rightarrow cyphertext assignment depends on the key.

For stochastic encryption, the key k is chosen randomly. The plaintext \rightarrow cyphertext assignment depends on the key. Consider the following setup:

- the space of the plaintext is $\{a,b\}$ with probabilities Pr(a) = 1/3, Pr(b) = 2/3.
- the space of the cyphertext is $\{1,2,3,4,5\}$.
- ► the keys are {1,2,3,4,5}, chosen with probability {2/5, 1/5, 1/5, 1/10, 1/10} respectively.

For stochastic encryption, the key k is chosen randomly. The plaintext \rightarrow cyphertext assignment depends on the key. Consider the following setup:

- the space of the plaintext is $\{a,b\}$ with probabilities Pr(a) = 1/3, Pr(b) = 2/3.
- ▶ the space of the cyphertext is {1,2,3,4,5}.
- ► the keys are {1,2,3,4,5}, chosen with probability {2/5, 1/5, 1/5, 1/10, 1/10} respectively.

The plaintext \rightarrow cyphertext assignment is the following:

k = 1 :	a $ ightarrow 1$	$b \rightarrow 2$
k = 2:	a $ ightarrow 2$	$b{ ightarrow}4$
<i>k</i> = 3 :	a $ ightarrow 3$	$b{ ightarrow}1$
<i>k</i> = 4 :	a $ ightarrow 5$	$b{ ightarrow}3$
<i>k</i> = 5 :	$a \rightarrow 4$	$b{ ightarrow}5$

For stochastic encryption, the key k is chosen randomly. The plaintext \rightarrow cyphertext assignment depends on the key. Consider the following setup:

- ► the space of the plaintext is $\{a,b\}$ with probabilities Pr(a) = 1/3, Pr(b) = 2/3.
- ▶ the space of the cyphertext is {1,2,3,4,5}.
- ► the keys are {1,2,3,4,5}, chosen with probability {2/5, 1/5, 1/5, 1/10, 1/10} respectively.

The plaintext \rightarrow cyphertext assignment is the following:

k = 1 :	a $ ightarrow 1$	$b \rightarrow 2$
k = 2:	a $ ightarrow 2$	$b{ ightarrow}4$
<i>k</i> = 3 :	a $ ightarrow 3$	$b{\rightarrow}1$
<i>k</i> = 4 :	a $ ightarrow 5$	$b{ ightarrow}3$
<i>k</i> = 5 :	$a \rightarrow 4$	$b{ ightarrow}5$

(a) Compute the cyphertext distribution.

(b) Are the plaintext and cyphertext independent (is this a perfect encryption)?

Solution.

(a) The cyphertext distribution can be computed using total probability:

$$\begin{aligned} \Pr(Y=1) &= \Pr(Y=1|X=a) \Pr(X=a) + \Pr(Y=1|X=b) \Pr(X=b) = \\ &= 2/5 \cdot 1/3 + 1/5 \cdot 2/3 = 4/15 = 0.2667 \\ \Pr(Y=2) &= \Pr(Y=2|X=a) \Pr(X=a) + \Pr(Y=2|X=b) \Pr(X=b) = \\ &= 1/5 \cdot 1/3 + 2/5 \cdot 2/3 = 5/15 = 0.3333 \\ \Pr(Y=3) &= \Pr(Y=3|X=a) \Pr(X=a) + \Pr(Y=3|X=b) \Pr(X=b) = \\ &= 1/5 \cdot 1/3 + 1/10 \cdot 2/3 = 4/30 = 0.1333 \\ \Pr(Y=4) &= \Pr(Y=4|X=a) \Pr(X=a) + \Pr(Y=4|X=b) \Pr(X=b) = \\ &= 1/10 \cdot 1/3 + 1/5 \cdot 2/3 = 5/30 = 0.1667 \\ \Pr(Y=5) &= \Pr(Y=5|X=a) \Pr(X=a) + \Pr(Y=5|X=b) \Pr(X=b) = \\ &= 1/10 \cdot 1/3 + 1/10 \cdot 2/3 = 1/10 = 0.1 \end{aligned}$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Solution.

(a) The cyphertext distribution can be computed using total probability:

$$\begin{aligned} &\mathsf{Pr}(Y=1) = \mathsf{Pr}(Y=1|X=a) \,\mathsf{Pr}(X=a) + \mathsf{Pr}(Y=1|X=b) \,\mathsf{Pr}(X=b) = \\ &= 2/5 \cdot 1/3 + 1/5 \cdot 2/3 = 4/15 = 0.2667 \\ &\mathsf{Pr}(Y=2) = \mathsf{Pr}(Y=2|X=a) \,\mathsf{Pr}(X=a) + \mathsf{Pr}(Y=2|X=b) \,\mathsf{Pr}(X=b) = \\ &= 1/5 \cdot 1/3 + 2/5 \cdot 2/3 = 5/15 = 0.3333 \\ &\mathsf{Pr}(Y=3) = \mathsf{Pr}(Y=3|X=a) \,\mathsf{Pr}(X=a) + \mathsf{Pr}(Y=3|X=b) \,\mathsf{Pr}(X=b) = \\ &= 1/5 \cdot 1/3 + 1/10 \cdot 2/3 = 4/30 = 0.1333 \\ &\mathsf{Pr}(Y=4) = \mathsf{Pr}(Y=4|X=a) \,\mathsf{Pr}(X=a) + \mathsf{Pr}(Y=4|X=b) \,\mathsf{Pr}(X=b) = \\ &= 1/10 \cdot 1/3 + 1/5 \cdot 2/3 = 5/30 = 0.1667 \\ &\mathsf{Pr}(Y=5) = \mathsf{Pr}(Y=5|X=a) \,\mathsf{Pr}(X=a) + \mathsf{Pr}(Y=5|X=b) \,\mathsf{Pr}(X=b) = \\ &= 1/10 \cdot 1/3 + 1/10 \cdot 2/3 = 1/10 = 0.1 \end{aligned}$$

(b) No, e.g.

$$\Pr(Y = 1 | X = a) = 2/5 \neq \Pr(Y = 1 | X = b) = 1/5.$$

The Extended Euclidean Algorithm can be used to find gcd(a, b)and also to solve

 $gcd(a, b) = s \cdot a + t \cdot b.$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

The Extended Euclidean Algorithm can be used to find gcd(a, b)and also to solve

$$gcd(a, b) = s \cdot a + t \cdot b.$$

Assume a > b; initialize $r_0 = a, r_1 = b$ and also $s_0 = 1, t_0 = 0, s_1 = 0, t_1 = 1$. In each step, we write

$$r_{k-1} = r_k \cdot q_{k+1} + r_{k+1} \qquad r_k = s_k \cdot a + t_k \cdot b,$$

where $0 \leq r_{k+1} < r_k$, and s_{k+1} and t_{k+1} are computed from

$$s_{k+1} = s_{k-1} - q_k s_k, \qquad t_{k+1} = t_{k-1} - q_k t_k.$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

The Extended Euclidean Algorithm can be used to find gcd(a, b)and also to solve

$$gcd(a, b) = s \cdot a + t \cdot b.$$

Assume a > b; initialize $r_0 = a, r_1 = b$ and also $s_0 = 1, t_0 = 0, s_1 = 0, t_1 = 1$. In each step, we write

$$r_{k-1} = r_k \cdot q_{k+1} + r_{k+1}$$
 $r_k = s_k \cdot a + t_k \cdot b$

where $0 \leq r_{k+1} < r_k$, and s_{k+1} and t_{k+1} are computed from

$$s_{k+1} = s_{k-1} - q_k s_k, \qquad t_{k+1} = t_{k-1} - q_k t_k.$$

The algorithm stops when $r_{k+1} = 0$; then $r_k = \text{gcd}(a, b)$, and $\text{gcd}(a, b) = s_k \cdot a + t_k \cdot b$; at most $\log_{1.62}(\min(a, b))$ steps are needed.

The Extended Euclidean Algorithm can be used to find gcd(a, b)and also to solve

$$gcd(a, b) = s \cdot a + t \cdot b.$$

Assume a > b; initialize $r_0 = a, r_1 = b$ and also $s_0 = 1, t_0 = 0, s_1 = 0, t_1 = 1$. In each step, we write

$$r_{k-1} = r_k \cdot q_{k+1} + r_{k+1}$$
 $r_k = s_k \cdot a + t_k \cdot b$

where $0 \leq r_{k+1} < r_k$, and s_{k+1} and t_{k+1} are computed from

$$s_{k+1} = s_{k-1} - q_k s_k, \qquad t_{k+1} = t_{k-1} - q_k t_k.$$

The algorithm stops when $r_{k+1} = 0$; then $r_k = \gcd(a, b)$, and $\gcd(a, b) = s_k \cdot a + t_k \cdot b$; at most $\log_{1.62}(\min(a, b))$ steps are needed.

For gcd(n, e) = 1, the algorithm gives $1 = gcd(n, e) = s \cdot n + t \cdot e$, so $e^{-1} = t \mod n$.

Compute the greatest common divisor (gcd) of b = 8387 and c = 1243, and also compute s and t so that

 $gcd(8387, 1243) = s \cdot 8387 + t \cdot 1243.$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Compute the greatest common divisor (gcd) of b = 8387 and c = 1243, and also compute s and t so that

$$gcd(8387, 1243) = s \cdot 8387 + t \cdot 1243.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Solution.

$$8387 = 1243 \cdot 6 + 929 \qquad 929 = b - 6c$$
Compute the greatest common divisor (gcd) of b = 8387 and c = 1243, and also compute s and t so that

$$gcd(8387, 1243) = s \cdot 8387 + t \cdot 1243.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Solution.

Compute the greatest common divisor (gcd) of b = 8387 and c = 1243, and also compute s and t so that

$$gcd(8387, 1243) = s \cdot 8387 + t \cdot 1243.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Solution.

8387	$= 1243 \cdot 6 + 929$	929	= b - 6c
1243	$= 929 \cdot 1 + 314$	314	= -b + 7c
929	$= 314 \cdot 2 + 301$	301	= 3b - 20c

Compute the greatest common divisor (gcd) of b = 8387 and c = 1243, and also compute s and t so that

$$gcd(8387, 1243) = s \cdot 8387 + t \cdot 1243.$$

Solution.

8387	$= 1243 \cdot 6 + 929$	929	= <i>b</i> - 6 <i>c</i>
1243	$= 929 \cdot 1 + 314$	314	= -b + 7c
929	$= 314 \cdot 2 + 301$	301	= 3 <i>b</i> - 20 <i>c</i>
314	$= 301 \cdot 1 + 13$	13	= -4b + 27c

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Compute the greatest common divisor (gcd) of b = 8387 and c = 1243, and also compute s and t so that

$$gcd(8387, 1243) = s \cdot 8387 + t \cdot 1243.$$

Solution.

8387	$= 1243 \cdot 6 + 929$	929	= b - 6c
1243	$= 929 \cdot 1 + 314$	314	= -b + 7c
929	$= 314 \cdot 2 + 301$	301	= 3 <i>b</i> - 20 <i>c</i>
314	$= 301 \cdot 1 + 13$	13	= -4b + 27c
301	$= 13 \cdot 23 + 2$	2	= 95 <i>b</i> - 641 <i>c</i>

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Compute the greatest common divisor (gcd) of b = 8387 and c = 1243, and also compute s and t so that

$$gcd(8387, 1243) = s \cdot 8387 + t \cdot 1243.$$

Solution.

8387	$= 1243 \cdot 6 + 929$	929	= b - 6c
1243	$= 929 \cdot 1 + 314$	314	= -b + 7c
929	$= 314 \cdot 2 + 301$	301	= 3 <i>b</i> - 20 <i>c</i>
314	$= 301 \cdot 1 + 13$	13	= -4b + 27c
301	$= 13 \cdot 23 + 2$	2	= 95 <i>b</i> - 641 <i>c</i>
13	$= 2 \cdot 6 + 1$	1	= -574b + 3873c

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Compute the greatest common divisor (gcd) of b = 8387 and c = 1243, and also compute s and t so that

$$gcd(8387, 1243) = s \cdot 8387 + t \cdot 1243.$$

Solution.

8387	$= 1243 \cdot 6 + 929$	929	= b - 6c
1243	$= 929 \cdot 1 + 314$	314	= -b + 7c
929	$= 314 \cdot 2 + 301$	301	= 3 <i>b</i> - 20 <i>c</i>
314	$= 301 \cdot 1 + 13$	13	= -4b + 27c
301	$= 13 \cdot 23 + 2$	2	= 95 <i>b</i> - 641 <i>c</i>
13	$= 2 \cdot 6 + 1$	1	= -574b + 3873c
2	$= 1 \cdot 2 + 0.$		

Finally,

 $gcd(8387, 1243) = -574 \cdot 8387 + 3873 \cdot 1243.$

Public key cryptography

Instead of a common key k which is known by both the sender and the receiver, public key cryptography works the following way:

- the receiver has a (d, e) pair of keys
- d is a private key known only by the receiver
- e is a public key known by everyone

The steps of the RSA algorithm are the following:

- Key generation:
 - select 2 large primes p and q; n = pq.
 - $\phi(n) = (p-1)(q-1)$.
 - Select a coding exponent e so that gcd(e, φ(n)) = 1 and 1 < e < φ(n).</p>

ション ふゆ アメリア メリア しょうくの

- Solve $de = 1 \mod \phi(n)$ to obtain the decoding key d.
- (n, e) is the public key;
- $p, q, \phi(n)$ and d are kept secret.

The steps of the RSA algorithm are the following:

- Key generation:
 - select 2 large primes p and q; n = pq.
 - $\phi(n) = (p-1)(q-1)$.
 - Select a coding exponent e so that gcd(e, φ(n)) = 1 and 1 < e < φ(n).</p>
 - Solve $de = 1 \mod \phi(n)$ to obtain the decoding key d.
 - (n, e) is the public key;
 - $p, q, \phi(n)$ and d are kept secret.
- Encryption (using the public key):
 - ► the plaintext is cut into sections which can be turned into numbers x such that 0 ≤ x < n.</p>

• the cyphertext is $c = x^e \mod n$.

The steps of the RSA algorithm are the following:

- ► Key generation:
 - select 2 large primes p and q; n = pq.
 - $\phi(n) = (p-1)(q-1)$.
 - Select a coding exponent e so that gcd(e, φ(n)) = 1 and 1 < e < φ(n).</p>
 - Solve $de = 1 \mod \phi(n)$ to obtain the decoding key d.
 - (n, e) is the public key;
 - $p, q, \phi(n)$ and d are kept secret.
- Encryption (using the public key):
 - ► the plaintext is cut into sections which can be turned into numbers x such that 0 ≤ x < n.</p>

- the cyphertext is $c = x^e \mod n$.
- Decryption:
 - $x = c^d \mod n$.

Why does the RSA algorithm work?

Why does the RSA algorithm work?

Key generation is easy:

- Primality testing (checking whether a given number is a prime or not) is computationally fast.
- There are many primes even among large numbers: the Prime Number Theorem says that among numbers of order N, on average 1 out of log(N) numbers is a prime.
- So we can just start prime checking large numbers randomly, and we will soon find two primes for p and q.

▶ gcd and de = 1 mod φ(n) can be solved fast using the Extended Euclidean Algorithm.

Decryption and encryption are indeed inverse operations due to Euler's Theorem:

$$de = 1 \mod \phi(n) \implies x^{de} = x \mod n.$$

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Decryption and encryption are indeed inverse operations due to Euler's Theorem:

$$de = 1 \mod \phi(n) \implies x^{de} = x \mod n.$$

Modular exponentiation (for x^e or c^d) can be computed fast along the exponents 1, 2, 4, 8, 16, ...

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Decryption and encryption are indeed inverse operations due to Euler's Theorem:

$$de = 1 \mod \phi(n) \implies x^{de} = x \mod n.$$

Modular exponentiation (for x^e or c^d) can be computed fast along the exponents 1, 2, 4, 8, 16, ...

On the other hand, integer factorization (to a product of primes) is computationally difficult for large numbers. So even though n is public, p and q are difficult to compute, and without p and q, we cannot compute $\phi(n)$ and d either. Overall, if p and q are sufficiently large, attacking RSA is computationally infeasible.

Example. $p = 3, q = 11 \rightarrow n = 33$.

Example. $p = 3, q = 11 \rightarrow n = 33$. Then $\phi(n) = (p - 1)(q - 1) = 20$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example.
$$p = 3, q = 11 \rightarrow n = 33$$
.
Then $\phi(n) = (p-1)(q-1) = 20$. We select $e = 3$. Solving
 $de = 1 \mod 20$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ● < ① へ ○</p>

gives

Example.
$$p = 3, q = 11 \rightarrow n = 33$$
.
Then $\phi(n) = (p-1)(q-1) = 20$. We select $e = 3$. Solving
 $de = 1 \mod 20$
gives $d = 7$.
Public key: $(n, e) = (20, 3)$. Private key: $d = 7$.

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Encrypting x = 4 gives

Example.
$$p = 3, q = 11 \rightarrow n = 33$$
.
Then $\phi(n) = (p-1)(q-1) = 20$. We select $e = 3$. Solving
 $de = 1 \mod 20$
gives $d = 7$.

Public key: (n, e) = (20, 3). Private key: d = 7.

Encrypting x = 4 gives

$$c = x^e = 4^3 \mod{33} = 31.$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Example.
$$p = 3, q = 11 \rightarrow n = 33$$
.
Then $\phi(n) = (p-1)(q-1) = 20$. We select $e = 3$. Solving
 $de = 1 \mod 20$
gives $d = 7$.
Public key: $(n, e) = (20, 3)$. Private key: $d = 7$.
Encrypting $x = 4$ gives

$$c = x^e = 4^3 \mod{33} = 31.$$

Decryption gives

$$x = c^d = 31^7 = (-2)^7 = -128 = 4 \mod 33.$$

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

The parameters of RSA are generated by p = 7, q = 17.

(a) What is the smallest possible choice of the coding exponent e?

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- (b) What is the cyphertext belonging to the plaintext x = 11?
- (c) What is the decoding key d?

The parameters of RSA are generated by p = 7, q = 17.

(a) What is the smallest possible choice of the coding exponent e?

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- (b) What is the cyphertext belonging to the plaintext x = 11?
- (c) What is the decoding key d?

Solution.

(a)
$$\phi(n) = (p-1)(q-1) = 6 \cdot 16 = 96.$$

The parameters of RSA are generated by p = 7, q = 17.

(a) What is the smallest possible choice of the coding exponent e?

- (b) What is the cyphertext belonging to the plaintext x = 11?
- (c) What is the decoding key d?

Solution.

(a)
$$\phi(n) = (p-1)(q-1) = 6 \cdot 16 = 96.$$

We need e to have gcd(e, 96) = 1 and 1 < e < 96, so the smallest possible choice for e is

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

The parameters of RSA are generated by p = 7, q = 17.

(a) What is the smallest possible choice of the coding exponent e?

- (b) What is the cyphertext belonging to the plaintext x = 11?
- (c) What is the decoding key d?

Solution.

(a)
$$\phi(n) = (p-1)(q-1) = 6 \cdot 16 = 96.$$

We need e to have gcd(e, 96) = 1 and 1 < e < 96, so the smallest possible choice for e is e = 5.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

The parameters of RSA are generated by p = 7, q = 17.

(a) What is the smallest possible choice of the coding exponent e?

- (b) What is the cyphertext belonging to the plaintext x = 11?
- (c) What is the decoding key d?

Solution.

(a)
$$\phi(n) = (p-1)(q-1) = 6 \cdot 16 = 96.$$

We need e to have gcd(e, 96) = 1 and 1 < e < 96, so the smallest possible choice for e is e = 5.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

(b) $c = x^e \mod n = 11^5 \mod 119 = 160051 \mod 119 = 44$.

The parameters of RSA are generated by p = 7, q = 17.

(a) What is the smallest possible choice of the coding exponent e?

- (b) What is the cyphertext belonging to the plaintext x = 11?
- (c) What is the decoding key d?

Solution.

(a)
$$\phi(n) = (p-1)(q-1) = 6 \cdot 16 = 96.$$

We need e to have gcd(e, 96) = 1 and 1 < e < 96, so the smallest possible choice for e is e = 5.

(b) $c = x^e \mod n = 11^5 \mod 119 = 160051 \mod 119 = 44$.

(c) We need to solve $de = 1 \mod \phi(n)$ where e = 5 and $\phi(n) = 96$. We use the Extended Euclidean Algorithm for b = 96 and c = 5:

$$96 = 5 \cdot 19 + 1$$
 $1 = b - 19c$

The parameters of RSA are generated by p = 7, q = 17.

(a) What is the smallest possible choice of the coding exponent e?

- (b) What is the cyphertext belonging to the plaintext x = 11?
- (c) What is the decoding key d?

Solution.

(a)
$$\phi(n) = (p-1)(q-1) = 6 \cdot 16 = 96.$$

We need e to have gcd(e, 96) = 1 and 1 < e < 96, so the smallest possible choice for e is e = 5.

(b) $c = x^e \mod n = 11^5 \mod 119 = 160051 \mod 119 = 44$.

(c) We need to solve $de = 1 \mod \phi(n)$ where e = 5 and $\phi(n) = 96$. We use the Extended Euclidean Algorithm for b = 96 and c = 5:

$$96 = 5 \cdot 19 + 1$$
 $1 = b - 19c$

so $d = -19 = 77 \mod 96$.

We use RSA with p = 73, q = 151.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

(a) Compute n and $\phi(n)$.

(b) Is
$$e = 11$$
 a possible choice?

(c) Compute d.

We use RSA with p = 73, q = 151. (a) Compute n and $\phi(n)$. (b) Is e = 11 a possible choice? (c) Compute d. Solution. (a) $n = 73 \cdot 151 = 11023$ and $\phi(n) = 72 \cdot 150 = 10800$. (b) e = 11 is a possible choice because gcd(10800, 11) = 1. (c) Compute d.

 $10800 = 11 \cdot 981 + 9$ $9 = 1 \cdot 10800 - 981 \cdot 11$

うして ふゆう ふほう ふほう うらつ

We use RSA with p = 73, q = 151. (a) Compute n and $\phi(n)$. (b) Is e = 11 a possible choice? (c) Compute d. Solution. (a) $n = 73 \cdot 151 = 11023$ and $\phi(n) = 72 \cdot 150 = 10800$. (b) e = 11 is a possible choice because gcd(10800, 11) = 1. (c) Compute d.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

We use RSA with p = 73, q = 151. (a) Compute n and $\phi(n)$. (b) Is e = 11 a possible choice? (c) Compute d. Solution. (a) $n = 73 \cdot 151 = 11023$ and $\phi(n) = 72 \cdot 150 = 10800$. (b) e = 11 is a possible choice because gcd(10800, 11) = 1. (c) Compute d.

We use RSA with p = 73, q = 151. (a) Compute *n* and $\phi(n)$. (b) Is e = 11 a possible choice? (c) Compute *d*. Solution. (a) $n = 73 \cdot 151 = 11023$ and $\phi(n) = 72 \cdot 150 = 10800$. (b) e = 11 is a possible choice because gcd(10800, 11) = 1.

(c) Compute d.

We use RSA with p = 73, q = 151. (a) Compute *n* and $\phi(n)$. (b) Is e = 11 a possible choice? (c) Compute *d*. Solution. (a) $n = 73 \cdot 151 = 11023$ and $\phi(n) = 72 \cdot 150 = 10800$. (b) e = 11 is a possible choice because gcd(10800, 11) = 1.

(c) Compute d.

So $d = -4909 = 5891 \mod 10800$.

Using the RSA code of the Problem 6, compute the cyphertext for the plaintext x = 17.

Using the RSA code of the Problem 6, compute the cyphertext for the plaintext x = 17.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Solution. We need to compute 17¹¹ mod 11023.
Problem 7

Using the RSA code of the Problem 6, compute the cyphertext for the plaintext x = 17.

Solution. We need to compute 17¹¹ mod 11023.

$$17^2 = 289 \mod 11023$$

 $17^4 = 289^2 = 83521 = 6360 \mod 11023$
 $17^8 = 6360^2 = 40449600 = 6213 \mod 11023.$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Problem 7

Using the RSA code of the Problem 6, compute the cyphertext for the plaintext x = 17.

Solution. We need to compute 17¹¹ mod 11023.

$$17^{2} = 289 \mod 11023$$

$$17^{4} = 289^{2} = 83521 = 6360 \mod 11023$$

$$17^{8} = 6360^{2} = 40449600 = 6213 \mod 11023.$$

$$11 = 8 + 2 + 1, \text{ so } x^{11} = x^{8} \cdot x^{2} \cdot x, \text{ and we have}$$

 $y = 17^{11} = 6213 \cdot 289 \cdot 17 = 30524469 = 1782 \mod 11023.$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Problem 7

11

Using the RSA code of the Problem 6, compute the cyphertext for the plaintext x = 17.

Solution. We need to compute 17¹¹ mod 11023.

$$17^{2} = 289 \mod 11023$$

$$17^{4} = 289^{2} = 83521 = 6360 \mod 11023$$

$$17^{8} = 6360^{2} = 40449600 = 6213 \mod 11023.$$

$$= 8 + 2 + 1, \text{ so } x^{11} = x^{8} \cdot x^{2} \cdot x, \text{ and we have}$$

$$y = 17^{11} = 6213 \cdot 289 \cdot 17 = 30524469 = 1782 \mod 11023.$$

(In actual applications, $e = 2^{16} + 1 = 65537$ is often chosen; it is a prime, so $gcd(\phi(n), e) > 1$ is unlikely, and $x^e = x^{2^{16}} \cdot x$ only has 2 terms.)