9. Cryptography

Coding Technology



Objective

Objective: secure communication over a public channel.

attacker key

message Cypher ]Publuc channel }—» Decypher message

Construct cryptography algorithms which present high complexity
for the attacker, but which can easily be deciphered using the key.




Simple cyphers |

Additive cypher. If the size of the alphabet is n (e.g. n = 26 for
English texts),
Ex(x) =y =x+k mod n,

where k is the value of the key.
If k is unknown, k can be either guessed by trying (26 possibilities
for the English alphabet).



Simple cyphers |

Additive cypher. If the size of the alphabet is n (e.g. n = 26 for
English texts),

Ex(x) =y =x+k mod n,

where k is the value of the key.

If k is unknown, k can be either guessed by trying (26 possibilities
for the English alphabet).

Linear cypher:

Ex(x) =y =ax+b mod n,

where k = (a, b) is the value of the key. gcd(a, n) =1 must hold!



Simple cyphers |

Additive cypher. If the size of the alphabet is n (e.g. n = 26 for
English texts),

Ex(x) =y =x+k mod n,

where k is the value of the key.

If k is unknown, k can be either guessed by trying (26 possibilities
for the English alphabet).

Linear cypher:
Ex(x) =y =ax+b mod n,

where k = (a, b) is the value of the key. gcd(a, n) =1 must hold!
Decryption is also linear:

Di(y)=aty —a'h mod n.

If the key is unknown, statistical analysis can help in guessing.
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Decipher the cyphertext HYHUBERGB, encrypted by an additive
cypher y = x + k mod 26.
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Problem 1

Decipher the cyphertext HYHUBERGB, encrypted by an additive
cypher y = x + k mod 26.
Solution. Guess k by trying:

» k=1: HYHUBERGB — GXGTADQFA;

» k =2: HYHUBERGB — FWFSZCPEZ,

» k =3: HYHUBERGB — EVERYBODY. v/



Problem 2

Decypher the following cyphertext if we know that linear encryption
is used.

FMXVEDKAPHFERBNDKRXRSREFMORU
DSDKDVSHVUFEDKAPRKDLYEVLRHHRH



Problem 2

Decypher the following cyphertext if we know that linear encryption
is used.

FMXVEDKAPHFERBNDKRXRSREFMORU
DSDKDVSHVUFEDKAPRKDLYEVLRHHRH

Solution. We use statistical analysis.

English text letter probabilities cyphertext letter frequencies
letter | prob. | letter | prob. letter | freq. | letter | freq.
A .082 N .067 A 2 N 1
B .015 (6] .075 B 1 (6] 1
C .028 P .019 C 0 P 2
D .043 Q .001 D 7 Q 0
E 127 R .060 E 5 R 8
F .022 S .063 F 4 S 3
G .020 T .091 G 0 T 0
H .061 U .028 H 5 V] 2
| .070 \% .010 | 0 \% 4
J .002 W .023 J 0 w 0
K .008 X .001 K 5 X 2
L .040 Y .020 L 2 Y 1
M .024 z .001 M 2 Z 0
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In the cyphertext, the most frequent letters are: R(8), D(7), E(5),
H(5), K(5).

These are good candidates for E and T (the two most frequent
letters in English texts).
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Problem 2
In the cyphertext, the most frequent letters are: R(8), D(7), E(5),
H(5), K(5).

These are good candidates for E and T (the two most frequent
letters in English texts).

Guess 1: R — E, D — T. Then E4(4) = 17, and E,(19) = 3, that
is,

4a+ b =17 mod 26,
19a+ b =3 mod 26.

Subtraction gives
15a =12 mod 26,

but then a must be even, so gcd(a,26) > 1 — incorrect guess.



Problem 2

Guess 2: R - E,E —= T. Then

4a+ b=17 mod 26,
19a4+b=4 mod 26.

Then

15a =13 mod 26,
a=13 mod 26,

so gcd(a,26) > 1 again — incorrect guess.



Problem 2
Guess 3: R — E, K — T. Then

4a+ b=17 mod 26,
19a+ b =10 mod 26.

Then

152 =19 mod 26,
a=3 mod 26,
b=5 mod 26.

k = (3,5) is a valid key.



Problem 2
Guess 3: R — E, K — T. Then

4a+ b=17 mod 26,
19a+ b =10 mod 26.

Then

152 =19 mod 26,
a=3 mod 26,
b=5 mod 26.

k = (3,5) is a valid key. We still need to check if we get
meaningful decrypted text.

De(y) =371y —371.5=9y—19 mod 26.

ALGORITHMSAREQUITEGENERALDEF
INITIONSOFARITHMETICPROCESSES



Simple cyphers Il

Permutation cypher: the message is cut into blocks of equal
length, and the letters within each block are reordered according to
the key permutation.

Example.

1234567
2147356

Cypher: MORNING — OMIRNGN

— (12)(34765)



Simple cyphers Il
Permutation cypher: the message is cut into blocks of equal
length, and the letters within each block are reordered according to

the key permutation.

Example.

1234567
2147356

Cypher: MORNING — OMIRNGN

One time pad (OTP): both the sender and the receiver have the
same random bit sequence k; the encryption is bitwise addition of
the message and the key. Example:

— (12)(34765)

x = 01001101 01011101 ...
+k = 11010000 11101011 ...
y = 10011101 10110110 ...

As long as the key is used only once, OTP offers perfect secrecy.
(Also, it is essentially the only such method.)



Problem 3

Using OTP encryption with key k = (110011000001111), we
receive the cyphertext y = (011100010100011). Compute the
plaintext c.



Problem 3

Using OTP encryption with key k = (110011000001111), we

receive the cyphertext y = (011100010100011). Compute the
plaintext c.

Solution. x =y 4+ kmod 2, so
y 011100010100011

+k 110011000001111
x = 101111010101100




Problem 4 — OTP without key exchange

A and B want to communicate using OTP without a common
secret key. Assume A has key ks and B has key kg. A has a
message x to send; he sends the message y1 = x + ka to B, then B

returns y» = y1 + kg, finally, A returns y3 = y» + ka. From the
information

y1 = (0111000100), y» = (1000100100), y3 = (1000111011),

derive the plain text x and keys k4 and kg.
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message x to send; he sends the message y1 = x + ka to B, then B
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vi+y+ys=x+ka+x+ka+ks+x+ ks =x.



Problem 4 — OTP without key exchange

A and B want to communicate using OTP without a common
secret key. Assume A has key ks and B has key kg. A has a
message x to send; he sends the message y1 = x + ka to B, then B
returns y» = y1 + kg, finally, A returns y3 = y» + ka. From the
information

y1 = (0111000100), y, = (1000100100), y3 = (1000111011),
derive the plain text x and keys k4 and kg.
Solution.
nn=x+tka y2=x+katks, y3s=x+kg
Nn+y+ys=x+kat+x+ka+ks+x+ kg =x.
From this,
x=y1+y»+ys = (0111011011),

ka = x +y1 = (0000011111),
kg = x + y3 = (1111100000).
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Pr(a) =1/3,Pr(b) = 2/3.
» the space of the cyphertext is {1,2,3,4,5}.
» the keys are {1,2,3,4,5}, chosen with probability
{2/5,1/5,1/5,1/10,1/10} respectively.
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Problem 5 — stochastic encryption
For stochastic encryption, the key k is chosen randomly. The
plaintext — cyphertext assignment depends on the key. Consider
the following setup:
» the space of the plaintext is {a,b} with probabilities
Pr(a) =1/3,Pr(b) = 2/3.
» the space of the cyphertext is {1,2,3,4,5}.
» the keys are {1,2,3,4,5}, chosen with probability
{2/5,1/5,1/5,1/10,1/10} respectively.
The plaintext — cyphertext assignment is the following:
k=1: a—=1l b2
k=2: a—=2 b—4
k=3: a—=3 b—l
k=4: a—5 b—3
k=5: a—4 b5

(a) Compute the cyphertext distribution.
(b) Are the plaintext and cyphertext independent (is this a perfect
encryption)?



Problem 5 — stochastic encryption

Solution.

(a) The cyphertext distribution can be computed using total
probability:

Pr(Y =1)=Pr(Y =1|X =a)Pr(X =a)+Pr(Y =1|X =b)Pr(X =b) =
=2/5-1/3+1/5-2/3 = 4/15 = 0.2667

Pr(Y =2)=Pr(Y =2|X =a)Pr(X =a)+Pr(Y =2|X =b)Pr(X =b) =
=1/5-1/3+2/5-2/3 = 5/15 = 0.3333

Pr(Y =3)=Pr(Y =3|X=a)Pr(X =a)+Pr(Y =3|X =b)Pr(X =b) =
—1/5-1/3+1/10-2/3 = 4/30 = 0.1333

Pr(Y =4)=Pr(Y =4|X =a)Pr(X =a) + Pr(Y =4|X =b)Pr(X =b) =

1/10-1/3 +1/5-2/3 = 5/30 = 0.1667

Pr(Y =5)=Pr(Y =5|X =a)Pr(X =a)+Pr(Y =5|X =b)Pr(X =b) =
=1/10-1/3+1/10-2/3 = 1/10 = 0.1



Problem 5 — stochastic encryption

Solution.

(a) The cyphertext distribution can be computed using total
probability:

Pr(Y =1)=Pr(Y =1|X =a)Pr(X =a)+Pr(Y =1|X =b)Pr(X =b) =
=2/5-1/3+1/5-2/3 = 4/15 = 0.2667

Pr(Y =2)=Pr(Y =2|X =a)Pr(X =a)+Pr(Y =2|X =b)Pr(X =b) =
=1/5-1/3+2/5-2/3 = 5/15 = 0.3333

Pr(Y =3)=Pr(Y =3|X=a)Pr(X =a)+Pr(Y =3 X =b)Pr(X =b) =
—1/5-1/3+1/10-2/3 = 4/30 = 0.1333

Pr(Y =4)=Pr(Y =4|X =a)Pr(X =a) + Pr(Y =4|X =b)Pr(X =b) =
=1/10-1/3 +1/5-2/3 = 5/30 = 0.1667

Pr(Y =5)=Pr(Y =5|X =a)Pr(X =a)+Pr(Y =5|X =b)Pr(X =b) =
=1/10-1/3+1/10-2/3 = 1/10 = 0.1

(b) No, e.g.

Pr(Y = 1|X =a) =2/5 £ Pr(Y = 1|X = b) = 1/5.



Extended Euclidean Algorithm

The Extended Euclidean Algorithm can be used to find gcd(a, b)
and also to solve
gcd(a,b)=s-a+t-b.



Extended Euclidean Algorithm

The Extended Euclidean Algorithm can be used to find gcd(a, b)
and also to solve
gcd(a,b)=s-a+t-b.

Assume a > b; initialize ry = a,n = b and also
so=1,t =0,s1 = 0,t; = 1. In each step, we write

rk—1 = Ik * Qk+1 + k+1 rk = Sk-a+tx- b,
where 0 < r41 < r, and s, and ty, 1 are computed from

Sk+1 = Sk—1 — GkSk, 1 = tk—1 — Qi tk.
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gcd(a,b)=s-a+t-b.

Assume a > b; initialize ry = a,n = b and also
so=1,t =0,s1 = 0,t; = 1. In each step, we write

rk—1 = Ik * Qk+1 + k+1 rk = Sk-a+tx- b,
where 0 < r41 < r, and s, and ty, 1 are computed from
Sk+1 = Sk—1 — GkSk, tet1 = tk—1 — Qktk.

The algorithm stops when r1 = 0; then ry = gcd(a, b), and
ged(a, b) = sk - a+ ty - b; at most logy go(min(a, b)) steps are
needed.



Extended Euclidean Algorithm

The Extended Euclidean Algorithm can be used to find gcd(a, b)
and also to solve
gcd(a,b)=s-a+t-b.

Assume a > b; initialize ry = a,n = b and also
so=1,t =0,s1 = 0,t; = 1. In each step, we write
rk—1 = Tk " Qk+1 + Fkt1 rk = Sk-a+tk- b,

where 0 < r41 < r, and s, and ty, 1 are computed from

Sk+1 = Sk—1 — GkSk, 1 = tk—1 — Qi tk.

The algorithm stops when r1 = 0; then ry = gcd(a, b), and
ged(a, b) = sk - a+ ty - b; at most logy go(min(a, b)) steps are
needed.

For gcd(n, €) = 1, the algorithm gives 1 = gcd(n,e) =s-n+t-e,
so e ! = tmod n.
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Compute the greatest common divisor (gcd) of b = 8387 and
¢ = 1243, and also compute s and t so that
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Problem 5

Compute the greatest common divisor (gcd) of b = 8387 and
¢ = 1243, and also compute s and t so that

gcd(8387,1243) = 5 - 8387 + t - 1243.

Solution.
8387 =1243-6 + 929 029 = b —6¢
1243 =029-1 + 314 314 =—-bp+7c
029 =314-2+ 301 301 =3b—20c
314 =301-1+13 13 = —4b+27c

301 =13-23+2 2 =095b—641c



Problem 5

Compute the greatest common divisor (gcd) of b = 8387 and
¢ = 1243, and also compute s and t so that

Solution.

8387
1243
929
314
301
13

gcd(8387,1243) = s -

= 1243 -6 + 929
=0929-14 314
=314-24301
=301-1+413
=13-2342
=2-6+1

929
314
301
13
2

1

8387 + t - 1243.

=b—6¢C
=—b+7c
=3b—20c

= —4b+ 27c
=95b—641c

= —574b + 3873c¢



Problem 5

Compute the greatest common divisor (gcd) of b = 8387 and
¢ = 1243, and also compute s and t so that

gcd(8387,1243) = 5 - 8387 + t - 1243.

Solution.
8387 =1243-6+ 929 9029 =b—6¢C
1243 =929-1+4 314 314 =—-b+7c
929 =314-2+4 301 301 =3b—20c
314 =301-1+13 13 = —4b+27c
301 =13-23+42 2 =95b—641c
13 =2-6+1 1 = —-574b+ 3873c
2 =1-2+0.
Finally,

gcd(8387,1243) = —574 - 8387 + 3873 - 1243,



Public key cryptography

Instead of a common key k which is known by both the sender and
the receiver, public key cryptography works the following way:

» the receiver has a (d, e) pair of keys
» d is a private key known only by the receiver

» e is a public key known by everyone

(S (S S

. H | cyphertext Bl x
f

d

Receiver’s
protected region

Sender’s
protected region

Adversary




RSA algorithm

The steps of the RSA algorithm are the following:
> Key generation:
» select 2 large primes p and g; n = pq.

> ¢(n) =(p—1)(q - 1).

» Select a coding exponent e so that ged(e, ¢(n)) =1 and
1<e<¢(n).

Solve de =1 mod ¢(n) to obtain the decoding key d.
(n, e) is the public key;

> p,q,o(n) and d are kept secret.

v

v
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RSA algorithm

The steps of the RSA algorithm are the following:
> Key generation:
» select 2 large primes p and g; n = pq.
> ¢(n)=(p—1)(q—1).
» Select a coding exponent e so that ged(e, ¢(n)) =1 and
1<e<¢(n).
Solve de =1 mod ¢(n) to obtain the decoding key d.
(n, e) is the public key;
> p,q,o(n) and d are kept secret.
» Encryption (using the public key):
» the plaintext is cut into sections which can be turned into
numbers x such that 0 < x < n.
» the cyphertext is ¢ = x°* mod n.

v

v

> Decryption:

d

» x =c? mod n.
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Why does the RSA algorithm work?



RSA algorithm

Why does the RSA algorithm work?

Key generation is easy:

» Primality testing (checking whether a given number is a prime
or not) is computationally fast.

» There are many primes even among large numbers: the Prime
Number Theorem says that among numbers of order N, on
average 1 out of log(/N) numbers is a prime.

» So we can just start prime checking large numbers randomly,
and we will soon find two primes for p and gq.

» gcd and de =1 mod ¢(n) can be solved fast using the
Extended Euclidean Algorithm.
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Decryption and encryption are indeed inverse operations due to
Euler's Theorem:

de=1 mod ¢(n) = x% =x mod n.
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RSA algorithm

Decryption and encryption are indeed inverse operations due to
Euler's Theorem:

de=1 mod ¢(n) = x% =x mod n.

Modular exponentiation (for x€ or c¢) can be computed fast along
the exponents 1,2, 4,8, 16, ...

On the other hand, integer factorization (to a product of primes) is
computationally difficult for large numbers. So even though n is
public, p and g are difficult to compute, and without p and g, we
cannot compute ¢(n) and d either. Overall, if p and g are
sufficiently large, attacking RSA is computationally infeasible.
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Example. p=3,9g=11 — n=33.
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Example. p=3,9g=11 — n=33.
Then ¢(n) = (p—1)(g — 1) = 20. We select e = 3. Solving
de =1 mod 20

gives d =T.
Public key: (n, e) = (20,3). Private key: d =7.
Encrypting x = 4 gives

c=x%=4% mod33=31.



RSA algorithm
Example. p=3,9g=11 — n=33.
Then ¢(n) = (p—1)(g — 1) = 20. We select e = 3. Solving
de =1 mod 20

gives d =T.
Public key: (n, e) = (20,3). Private key: d =7.
Encrypting x = 4 gives

c=x*=4> mod 33 =31.
Decryption gives

x=c?=31"=(-2)" = —128 = 4 mod 33.
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The parameters of RSA are generated by p=7,q9 = 17.

(a) What is the smallest possible choice of the coding exponent e?
(b) What is the cyphertext belonging to the plaintext x = 117
(c) What is the decoding key d?
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(a) é(n) = (p—1)(q—1) =616 = 9.
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Solution.

(a) ¢(n)=(p—1)(¢—1) =616 = 96.
We need e to have gcd(e,96) =1 and 1 < e < 96, so the
smallest possible choice for e is e = 5.

(b) ¢ = x®mod n = 11°mod 119 = 160051 mod 119 = 44,

(c) We need to solve de = 1 mod ¢(n) where e =5 and
@(n) = 96. We use the Extended Euclidean Algorithm for
b=096and c =5:

96 =5-194+1 1=5b-19c

so d = —19 = 77 mod 96.
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We use RSA with p =73,q = 151.

(a) Compute n and ¢(n).

(b) Is e =11 a possible choice?

(c) Compute d.

Solution.

(2) n=73-151 = 11023 and ¢(n) = 72 - 150 = 10800.

(b) e=11is a possible choice because gcd(10800,11) = 1.
(c) Compute d.

10800 =11-981+9 9 =1-10800—-981-11
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(b) Is e =11 a possible choice?

(c) Compute d.

Solution.

(2) n=73-151 = 11023 and ¢(n) = 72 - 150 = 10800.

(b) e=11is a possible choice because gcd(10800,11) = 1.
(c) Compute d.

10800 =11-981+9 9 =1-10800—981-11
11 =9-1+42 2 = (—1)-10800 + 98211



Problem 6

We use RSA with p =73,q = 151.

(a) Compute n and ¢(n).

(b) Is e =11 a possible choice?

(c) Compute d.

Solution.

(2) n=73-151 = 11023 and ¢(n) = 72 - 150 = 10800.

(b) e=11is a possible choice because gcd(10800,11) = 1.
(c) Compute d.

10800 =11-981+9 9 =1-10800—981-11
11 =9-1+42 2 = (—1)-10800 + 98211
9 =2.-4+1 1 =5-10800 — 4909 - 11



Problem 6

We use RSA with p =73,q = 151.

(a) Compute n and ¢(n).

(b) Is e =11 a possible choice?

(c) Compute d.

Solution.

(2) n=73-151 = 11023 and ¢(n) = 72 - 150 = 10800.

(b) e=11is a possible choice because gcd(10800,11) = 1.
(c) Compute d.

10800 =11-981+9 9 =1-10800—981-11
11 =9-1+42 2 = (—1)-10800 + 98211
9 =2.-4+1 1 =5-10800 — 4909 - 11

2 =1-240.



Problem 6

We use RSA with p =73,q = 151.

(a) Compute n and ¢(n).

(b) Is e =11 a possible choice?

(c) Compute d.

Solution.

(2) n=73-151 = 11023 and ¢(n) = 72 - 150 = 10800.

(b) e=11is a possible choice because gcd(10800,11) = 1.
(c) Compute d.

10800 =11-981+9 9 =1-10800—981-11
11 =9-1+42 2 = (—1)-10800 + 98211
9 =2.-4+1 1 =5-10800 — 4909 - 11
2 =1-2+40.

So d = —4909 = 5891 mod 10800.
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the plaintext x = 17.
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172 = 289 mod 11023
17* = 2892 = 83521 = 6360 mod 11023
178 = 63602 = 40449600 = 6213 mod 11023.
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Using the RSA code of the Problem 6, compute the cyphertext for
the plaintext x = 17.

Solution. We need to compute 17'! mod 11023.

172 = 289 mod 11023
17* = 2892 = 83521 = 6360 mod 11023
178 = 63602 = 40449600 = 6213 mod 11023.

11=8+2+1,s0 x11 =x%.x2.x, and we have

y =171 = 6213289 - 17 = 30524469 = 1782 mod 11023.



Problem 7

Using the RSA code of the Problem 6, compute the cyphertext for
the plaintext x = 17.

Solution. We need to compute 17'! mod 11023.

172 = 289 mod 11023
17* = 2892 = 83521 = 6360 mod 11023
178 = 63602 = 40449600 = 6213 mod 11023.

11=8+2+1,s0 x11 =x%.x2.x, and we have
y =171 = 6213289 - 17 = 30524469 = 1782 mod 11023.
(In actual applications, e = 216 41 = 65537 is often chosen; it is a

prime, so gcd(¢(n), e) > 1 is unlikely, and x€ = X2 x only has 2
terms.)



