
Introduction

Coding Technology

Illés Horváth

2025/09/10

General information

Lecturer: Illés Horváth

E-mail: horvath.illes.antal@gmail.com

Homepage of the course:

https://webspn.hit.bme.hu/˜illes/ct/

Office hours: Wednesdays 14:00-15:00, building I, room IB115.

Lectures:

I Wednesdays 10:15-11:45, room QBF09

I Fridays 10:15-11:45 on odd weeks, room QBF09

Practical classes (problem solving):

I Fridays 10:15-11:45 on even weeks, room QBF09, 70%
attendance required

https://webspn.hit.bme.hu/~illes/ct/

Requirements
Final mark is based on a midterm test (50 points) and an exam
(50 points).

For the midterm test, 20 points is required to pass. The midterm
test can be retaken once for free, and once for an extra fee.

Midterm test: 7 Nov. 2025, 10:15, QBF09 (lecture).
Retake: 20 Nov. 2025, 18:00, room TBA.
Re-retake: 16 Dec. 2025, 12:00, room TBA.

For the exam, 20 points is required to pass.

Maximal total score is 50+50=100. Marks based on the total
score are as follows:

I 0–39: 1 (fail)

I 40–54: 2 (pass)

I 55–69: 3 (satisfactory)

I 70–84: 4 (good)

I 85–100: 5 (excellent)

Introduction

Data is an important resource of modern societies. It is an
important challenge to store and transmit data in ways that are . . .

I reliable → Error Control,

I efficient → Data Compression,

I private → Cryptography.

Coding Theory is the study of codes and their properties for the
above applications; it is a very practical scientific field.

Information Theory is more theoretical; it deals with the general
study of the quantification and properties of information. That
said, Coding Theory and Information Theory are not exclusive.

Introduction
During the Coding Technology codes, our main focus will be on
various types of codes:

I Error correction codes adding redundancy to the messages
that allow detection and/or correction of errors, allowing
reliable communication over noisy channels. Also known as
Error Control, or Channel Coding.

I Data compression codes identify patterns and eliminate
redundancies in data. Also known as Source Coding.

I Cryptography protocols that turn readable information into
unintelligible text, allowing secure private communication over
public channels.

In addition to that, we will also discuss the following:

I necessary mathematical background (basic probability, linear
algebra, combinatorics. . .)

I architectural considerations (how to implement various
methods on modern computer architectures).

Introduction
During the Coding Technology codes, our main focus will be on
various types of codes:

I Error correction codes adding redundancy to the messages
that allow detection and/or correction of errors, allowing
reliable communication over noisy channels. Also known as
Error Control, or Channel Coding.

I Data compression codes identify patterns and eliminate
redundancies in data. Also known as Source Coding.

I Cryptography protocols that turn readable information into
unintelligible text, allowing secure private communication over
public channels.

In addition to that, we will also discuss the following:

I necessary mathematical background (basic probability, linear
algebra, combinatorics. . .)

I architectural considerations (how to implement various
methods on modern computer architectures).

General setup

General data transmission scheme (without any coding):

transmitter channel receiver

Problem: the channel is noisy, it is possible that the message
arrives with some errors. How can we make sure that the receiver
gets the original message?

One possible approach is the Automatic Repeat Request (ARQ):
the transmitter keeps resending the same message until the
receiver acknowledges receiving it without errors.

Properties:

I the receiver must be able to detect if there are errors;

I needs a back channel;

I potentially high latency;

I potentially reduced channel capacity.

Error-correcting codes

Another approach: using error-correcting codes. These codes add
some redundant information to the message that allows recovery of
the original message even if there are some errors:

transmitter coding channel decoding receiver

Properties:

I no back channel required;

I reduced channel capacity;

I no extra latency;

I the message can be recovered in case of errors (up to a
certain number of errors, depending on the coding – tradeoff
with reduction in channel capacity!)

It is also important how easy or hard coding and decoding is
(computational complexity, memory requirements etc.)

Repeater code

Example. Bob is going to the market. His wife tells him what to
buy.

Bob is not sure he heard it correctly, so his wife repeats it. What
can happen?

What if Bob hears ’broccoli’ once, and ’zucchini’ for the second
time? He can tell there was an error, but he cannot tell which is
the original message.

If Bob hears ’broccoli’ both times, then he can be sure he received
the message correctly – unless he heard it wrong both times!

Sending the original message repeated is called the Repeater Code.

The 2× repeater code can detect 1 error, but cannot correct 1
error.

Error detection and correction

What if the message is repeated 3×?

As long as there are at most 2 errors, Bob can detect that there
were errors.

As long as there is at most 1 error, Bob can detect it – and even
recover the original message! (How?)

We say that the 3× repeater code can detect 2 errors and correct
1 error.

What about the n× repeater code? It can detect n − 1 errors and
correct bn−12 c errors.

The repeater code is the most simple error-correcting code, but not
very efficient. We aim to study much more efficient error-correcting
codes. (However, the repeater code will often be the most simple
special case of more complicated error-correcting codes.)

Binary operations

We are going to work with binary numbers (bits): GF(2)={0, 1}.
The standard operations are as follows:

+ 0 1

0 0 1

1 1 0

× 0 1

0 0 0

1 0 1

A binary vector is an ordered list of 0’s and 1’s:

v =
[
0 1 0 1 1

]
n elements → n-dimensional vector.

Scalar: a single bit.

Vector operations

Addition is element-by-element:[
0 1 0 1 1

]
+
[
1 0 0 0 1

]
=
[
1 1 0 1 0

]
Only defined if the sizes are identical.

Properties are the same as for usual addition of numbers:

I commutativity: u + v = v + u

I associativity: (u + v) + w = u + (v + w)

Scalar-vector addition a + v – not defined!

Scalar-vector multiplication a · v : each element of v is multiplied
by a.

Weight and Hamming-distance

The weight of a binary vector is equal the number of 1’s it
contains:

w([0 1 0 1 1 1 0 1 0]) = 5.

The Hamming-distance of two binary vectors is equal to the
number of positions in which they differ:

d([0 1 0 1 1 1 0], [1 1 0 1 1 0 0]) = 2.

Equivalently, the Hamming-distance can also be written as

d(u, v) = w(u − v).

Transpose, inner product

I The transpose of a vector v is a column vector vT :

[
1 1 0

]T
=

1
1
0


I Transposing twice returns the original vector: (vT)T = v .

I The inner product (dot product/scalar product) of u and v is

u · vT =
n∑

i=1

uivi = u1v1 + . . .+ unvn

I Only defined if the vectors are of the same dimension.

I The result of the inner product is a scalar.

Linear combinations, linear independence

I The linear combination of v1, . . . , vk is the vector

k∑
i=1

civi = c1v1 + . . .+ ckvk

for some c1, . . . , ck scalars.

I v1, . . . , vk are linearly independent if

k∑
i=1

civi = 0 (all 0 vector!)

only if c1 = . . . = ck = 0.

Vector space, linear subspaces

The vector space {0, 1}n contains all binary vectors of length n. It
is a finite vector space with size 2n.

A linear subspace is a set of vectors that is closed under linear
combinations.

Given a set of vectors v1, . . . , vk , the set of all linear combinations
of v1, . . . , vk is a linear subspace called the span of v1, . . . , vk . The
size of the subspace is equal to 2k where k ≤ n is the maximal
number of linearly independent vectors among v1, . . . , vk . We call
k the dimension of the spanned linear subspace.

(Geometry analogy: in the regular 3D space, 1-dimensional
subspaces are lines going through the origin, and 2-dimensional
subspaces are planes going through the origin.)

Orthogonality

u and v are orthogonal if uvT = 0. Example.

u =
[
1 0 0 1

]
v =

[
1 1 0 1

]
uT v = 1 · 1 + 0 · 1 + 0 · 0 + 1 · 1 = 0.

If the non-zero v1, . . . , vk are pairwise orthogonal, then they are
linearly independent.

For a given set of vectors v1, . . . , vk , all vectors orthogonal to
v1, . . . , vk form a linear subspace called the orthogonal
complement.

The dimensions of the span and orthogonal complement of
v1, . . . , vk always add up to the dimension of the entire space.

(Geometry analogy: in the regular 3D space, the orthogonal
complement of a line going through the origin is the plane
orthogonal to the line and going through the origin.)

Binary matrices

A binary matrix is a 2D array of 0’s and 1’s, e.g.,

A =

[
1 0 1
0 0 1

]
The size of the matrix is #rows×#columns, e.g. 2× 3.

Element (i , j) is in row i , column j , e.g., A13 = 1.

A 1× n matrix is a (row) vector.

An n × 1 matrix is a column vector.

Matrix addition and transpose

Matrix addition is element-by-element (same as for vectors); only
defined if the sizes are identical.

Its properties are also the same:

I Commutativity: A + B = B + A

I Associativity: (A + B) + C = A + (B + C)

The transpose of an m × n matrix A is the n ×m matrix AT ,
defined such that

AT
ij = Aji , ∀i = 1, . . . , n, j = 1, . . . ,m

Example. [
1 0 1
0 0 1

]T
=

1 0
0 0
1 1


From the definition: (AT)T = A.

Matrix-matrix multiplication

I The product of m × n matrix A and n × p matrix B is the
m × p matrix D such that

Dij =
n∑

`=1

Ai`B`j

I Basically inner products between the rows of A and the
columns of B.

I The number of columns in A and the number of rows in B
have to match

Properties:

I Associativity: (AB)C = A(BC)

I Transpose: (AB)T = BTAT

I but NOT commutative: AB 6= BA in general!

Identity matrix

Identity matrix: square matrix with 1’s in the top left to bottom
right diagonal, 0’s everywhere else.

I =

1 0 0
0 1 0
0 0 1


For any square matrix A (of the same size),

AI = IA = A.

Basic probability

A probability space is an (Ω,P,F) triple, where

I Ω is the set of outcomes,

I F is the set of events, which are subsets of Ω, and

I P is the probability function, defined on F .

Example

Example. We flip a fair coin 3 times. Then

Ω = {HHH,HHT ,HTT ,HTH,THH,THT ,TTH,TTT}

where H denotes heads, T denotes tails. Example events:

A = “the first flip is heads” = {HHH,HHT ,HTH,HTT},
B = “all three flips are the same” = {HHH,TTT}.

P(HHH) = · · · = P(TTT) =
1

8
,

while

P(A) =
4

8
and P(B) =

2

8
.

Properties of the probability function

The probability function always satisfies the following:

P(∅) = 0,

P(Ω) = 1,

and if A1,A2, . . . are disjoint events, then

P
(∞⋃

i=1

Ai

)
=
∞∑
i=1

P(Ai).

(This property is called σ-additivity.)

Example

Example. We select a random point from the interval [0, 1]
uniformly. Then

Ω = [0, 1],

and

P({0.5}) = 0,

P([0.5, 0.7]) = 0.2,

P([0.5, 0.7] ∪ [0.9, 1]) = 0.3.

Conditional probability

For A and B events, the conditional probability of A assuming B is
defined as

P(A|B) =
P(A ∩ B)

P(B)
.

A and B are independent if

P(A ∩ B) = P(A)P(B),

or, equivalently,
P(A|B) = P(A).

Independence is symmetric.

Example

Example. We flip a fair coin three times. What is the conditional
probability that the first flip is heads, assuming there are at least 2
heads?

A = “the first flip is heads” = {HHH,HHT ,HTH,HTT},
B = “there are at least 2 heads” = {HHH,HHT ,HTH,THH},

and so

A ∩ B = {HHH,HHT ,HTH}.

Then

P(A|B) =
P(A ∩ B)

P(B)
=

3/8

4/8
=

3

4
.

Conditional probability

Theorem (Bayes)

P(B|A) =
P(A|B)P(B)

P(A)
.

B1, . . . ,Bk are a complete system (set) of events if

Bi ∩ Bj = ∅ for i 6= j ,

B1 ∪ · · · ∪ Bk = Ω.

Theorem (Total probability)

If B1, . . . ,Bk is a complete set of events, then

P(A) = P(A|B1)P(B1) + · · ·+ P(A|Bk)P(Bk).

Example
We have 2 identically-looking dice, one of which is fair (it gives the
numbers 1, 2, 3, 4, 5 and 6 with probability 1

6 −
1
6 each), but the

other one is loaded: 6 has a probability of 1
2 . We pick one of them

at random and roll it twice. What is the probability that we roll
two sixes? What is the conditional probability of the event that we
picked the loaded die, assuming we roll two sixes?

Define the events

A = {we roll two sixes},
B1 = {we pick the fair die},
B2 = {we pick the loaded die}.

The information given is the following:

P(B1) = P(B2)

because we pick at random,

P(A|B1) =

(
1

6

)2

, P(A|B2) =

(
1

2

)2

.

Example

Then we can use total probability to compute

P(A) = P(A|B1)P(B1) + P(A|B2)P(B2) =
1

2
· 1

36
+

1

2
· 1

4
=

10

72
.

Finally, to compute P(B2|A) we can use Bayes:

P(B2|A) =
P(A|B2)P(B2)

P(A)
=

1
2 ·

1
4

10
72

=
9

10
,

so we picked the loaded die with 90% probability.

Binary Symmetric Channel

Now we are ready to discuss the main mathematical model of a
noisy channel called the Binary Symmetric Channel (BSC).

In a BSC, each bit sent through the channel may be flipped
(changed from 0 to 1, or from 1 to 0).

Errors come from physical properties of the channel. We assume
the following:

I the channel is memoryless: whether a bit is changed or not is
independent from other bits;

I errors are random and symmetric: each bit will be flipped
randomly with some probability, and the probability is the
same for a 0 or a 1 bit;

I the channel is homogeneous in time, so the probability of a bit
flipping is constant in time.

The flipping probability is called bit error probability, and is
denoted by pb. It is a parameter of the channel.

Binary Symmetric Channel

The value of pb is between 0 and 1.

If pb = 0, we are happy, no errors occur, error correction is not
necessary.

What if pb = 1? The receiver can simply flip every bit back.

If 1/2 < pb < 1, the receiver can flip every bit, and this is
essentially the same as a channel with 0 < pb < 1/2.

Binary Symmetric Channel

What if pb = 1/2? Let u denote the sent bit and v denote the
received bit. Then

P(v = 0|u = 0) = 1/2, P(v = 1|u = 0) = 1/2,

P(v = 0|u = 1) = 1/2, P(v = 1|u = 1) = 1/2,

so, using total probability,

P(v = 0) = 1/2 · P(u = 0) + 1/2 · P(u = 1) = 1/2,

and
P(v = 0) = P(v = 0|u = 0),

so the events P(v = 0) and P(u = 0) are independent → we get
no information about u from knowing v .

Basically, when pb = 1/2, the output of the channel is independent
from the input (white noise). We will generally assume pb < 1/2.

Binary Symmetric Channel

The bit flipping can be mathematically described as an additive
error: if an input vector u is sent through the channel, the output
vector is

v = u ⊕ e,

where the e error vector contains 1’s in positions which are flipped:

u = [1 1 0 1 0 1] ⊕

e = [0 1 0 0 1 0]
error vector

v = [1 0 0 1 1 1]

Error probability

If the error vector has length n and the bit error probability is Pb,
then

P(w(e) = i) =

(
n

i

)
P i
b(1− Pb)n−i =

(
n

i

)(
Pb

1− Pb

)i

(1− Pb)n.

Pb is typically small, and P(w(e) = i) decreases fast in i .

Example. If n = 3, Pb = 0.01, then

i 0 1 2 3

P(w(e) = i) 0.970 0.0294 2.970× 10−4 10−6

