
The binary block coding scheme

Coding Technology

Illés Horváth

2025/09/12



Binary Symmetric Channel

For the Binary Symmetric channel, each transmitted bit is flipped
with probability Pb, independently from the input bit and other
bits.

The bit flipping can be mathematically described as an additive
error: if an input vector u is sent through the channel, the output
vector is

v = u ⊕ e,

where the e error vector contains 1’s in positions which are flipped:

u = [1 1 0 1 0 1] ⊕

e = [0 1 0 0 1 0]
error vector

v = [1 0 0 1 1 1]



Error probability

If the error vector has length n and the bit error probability is Pb,
then

P(w(e) = i) =

(
n

i

)
P i
b(1− Pb)n−i =

(
n

i

)(
Pb

1− Pb

)i

(1− Pb)n.

Pb is typically small, and P(w(e) = i) decreases fast in i .

Example. If n = 3, Pb = 0.01, then

i 0 1 2 3

P(w(e) = i) 0.970 0.0294 2.970× 10−4 10−6



Error probability

Example. We want to transmit a single bit of information through
a channel with Pb = 0.01. What is the probability that the bit will
be received correctly? What if we use a 3× repeater (repetition)
code?

If we just transmit the single bit through the channel,

P(received correctly) = 1− Pb = 0.99.

If we use a 3× repeater code, then we transmit the original bit 3
times. The 3× repeater code can correct 1 error, which means that
if w(e) ≤ 1, the receiver will be able to decode the original bit, so

P(received correctly) = P(w(e) ≤ 1) = 0.970 + 0.0294 = 0.9994.



Error probability

The ’cost’ of using the 3× repeater code is that the channel
capacity C is effectively reduced to C/3 (because we send 3 bits
over the channel to transmit a 1-bit message).

This is a general tradeoff when using error correction codes: we
can obtain higher probability of correct reception at the cost of
reducing channel capacity.

(We will discuss more of this later, for specific codes.)



Block coding

For the repeater code, the original message is a single bit,
transmitted several times through the channel.

What if the message to transmit consists of more than 1 bit?

We transmit it bit-by-bit, repeating each bit the same number of
times.

We can make more efficient error correction codes if we code
blocks of several bits simultaneously.



Block coding
The general setup for block coding is the following: for a C (n, k)
code, we first cut up the original message into sections of length k ,
then for each message section u, we apply a given map
ψ : {0, 1}k → {0, 1}n, and transmit

c = ψ(u)

through the channel.

Then the channel adds an error e, and the received vector on the
other end is

v = c ⊕ e

Based on v , the receiver will have to guess what c was sent
through the channel using another function φ : {0, 1}n → {0, 1}n:

c ′ = φ(v)

Finally, decoding is
u′ = ψ−1(c ′)

Then this process is repeated for further message sections.



Block coding

u ψ ⊕c

e

φ
v

ψ−1
c ′

u′

Glossary:

I u: message vector

I c : codeword or code vector

I e: error vector

I v : received vector

I c ′: detected codeword

I u′: detected or decoded message

Remark. n > k always holds for any error correction code.



Block coding

Example. For the 3× repeater code, the ψ function is according to
the following table:

u c

0 000
1 111

After c goes through the channel, v = c ⊕ e is received on the
output, but v can be any binary vector of length 3, and based on
v , we have to make a guess as to what c could be (φ function).

For the repeater code, it is the majority decision: if there are more
1’s than 0’s in v , then c ′ =

[
1 1 1

]
, and if there are more 0’s

than 1’s in v , then c ′ =
[
0 0 0

]
.



Block coding

How to guess the codeword in general?

Theorem
Assume all message vectors have equal probability. Then, for a
given received vector v , the most likely codeword c is the one for
which d(c , v) is minimal.

Proof. Bayes tells us that for any possible codeword c ,

P(c |v) =
P(c and v)

P(v)
=

P(c and e = c − v)

P(v)
=

P(c)P(e = c − v)

P(v)
.

P(c) is constant due to the assumption, P(v) is the same for all c ,
and P(e = c − v) is minimal when w(c − v) = d(c , v) is minimal.



Block coding scheme

Based on that, we can now update the coding scheme:

u ψ ⊕c

e

min d(c ′, v)
v

ψ−1
c ′

u′

How many errors can such a coding scheme detect and correct?



Error detection and correction capabilities

Theorem
Let dmin be the minimal Hamming-distance among codewords.
Then the above coding scheme can. . .

I detect dmin − 1 errors, and

I correct bdmin−1
2 c errors.

Proof. Within the space {0, 1}n, the codewords are points such
that the minimal distance between any two codewords is dmin.

If we start from a codeword and change at most dmin − 1 bits, we
cannot reach any of the other codewords as they are just too far.
So either we end up between two codewords (error detected), or
stay at the original codeword (no errors).

Error correction: for each codeword c , consider the sets
{u : d(c , u) ≤ bdmin−1

2 c} (’balls’ of radius bdmin−1
2 c).

These balls are disjoint, so if we start from a codeword and change
at most bdmin−1

2 c bits, we stay within the same ball.



Example

Example. Design a C(5,2) code with dmin = 3.

For a C(5,2) code, the codewords are n = 5 bits long.

The first codeword could be (00000).

The weight of every other codeword must be 3 or more. (00111) is
a natural choice.

The next codeword also needs to have weight 3 or more, but it
also has to differ from the previous codeword in at least 3 digits.
(11100) is a suitable choice.

(11111) is not suitable for the final codeword, because its
Hamming distance from the previous two codewords is just 2.But if
we change the third bit to 0, it works: (11011).

dmin = 3, so the code can detect dmin − 1 = 2 errors and correct
bdmin−1

2 c = 1 error.



Example

So the coding function is

ψ :

u c

00 00000
01 00111
10 11100
11 11011

We receive the vector 10111. Which should be our guess?
The Hamming-distance from each of the 4 codewords is

d(10111, 00000) = 4,

d(10111, 00111) = 1,

d(10111, 11100) = 3,

d(10111, 11011) = 2.



Block coding

For ψ−1, we can use the table for ψ, just reversed. Example:

ψ :

u c

00 00000
01 00111
10 11100
11 11011

→ ψ−1 :

c ′ u′

00000 00
00111 01
11100 10
11011 11

We can make computing ψ−1 even easier with a little trick.

We say that a coding is systematic if the first k bits of each
codeword c are the corresponding message u. The remaining n− k
bits are called parity bits.

For systematic codes, ψ−1 is simply truncation: to get u′, we
truncate c ′ and keep only the first k bits.

Is the above code systematic?

No, because for example ψ(01) = 00111.



Systematic codes

Can we change this code to make it systematic?

ψ :

u c

00 00000
01 00111
10 11100
11 11011

Yes, we can! In several ways, actually.

I We can rearrange how the codewords are assigned to the
messages. This operation will not change any of the key
parameters of the code (n, k , dmin).

I We can flip all bits in the same position in all of the
codewords.

I We may permute the bits of the codewords (same
permutation for all codewords).



Summary (so far)

The coding scheme:

u ψ ⊕c

e

min d(c ′, v)
v

ψ−1
c ′

u′

For a C (n, k) code, n is the codeword length, k is the message
length. n > k always holds.

The redundancy of a C(n, k) code is the value n − k.

The code rate of a C(n, k) code is k
n ; this describes the reduction

in channel capacity due to using an error correction code.

A code can detect dmin − 1 errors and correct bdmin−1
2 c errors,

where dmin is the minimal Hamming-distance between codewords.

For a systematic code, ψ−1 is truncation.



Computational cost

What is the computational cost of the scheme?

On the transmitter side, there are two main approaches to
computing the code ψ(u):

I For small k , all (u, ψ(u)) pairs can be computed in advance
and stored in a table (size 2× 2k).

I If ψ is easy to compute, then ψ(u) can be computed online,
even if k is large.

On the receiver side, computing min d(c ′, v) takes 2k steps – as
this is exponential in k, it is only feasible for relatively small values
of k.

(Truncation for systematic codes is fast.)



Parity check bit

Parity check bit: we add a single parity check bit to a message of
length k ; the value of the bit is equal to the sum of all bits in the
message.

This will result in a C (k + 1, k) code with dmin = 2, so the code
can detect 1 error but cannot correct it.

Decoding the codeword is not possible for this code, but the error
detection is still relevant for some applications:

I if resending the message is possible;

I another example is promotional codes, where we only want to
check if a codeword is correct, but if not, correcting it is not
required.

E.g. the TCP/IP protocol stack contains two error detection codes
in different layers; one is a 16-bit parity checksum, the other is a
CRC code. Neither is used for error correction; instead, erroneous
packets are retransmitted.



Theoretical upper bounds

How good can a code be?

Generally, we would want k
n to be as close to 1 as possible, while

we want dmin to be as high as possible simultaneously.

A high dmin corresponds to the codewords being far away from
each other (in Hamming-distance).

But the space {0, 1}n is finite; it has 2n points total, and the
biggest distance between points is n.

If we want many codewords (high value of k), then some of them
will be close to each other (low dmin), so there are limitations.



Singleton bound

Theorem (Singleton bound)

dmin ≤ n − k + 1.

Proof. Take all 2k codewords, and delete the last dmin− 1 bits from
each codeword. The resulting truncated codewords must still be all
different since originally their Hamming-distance was at least dmin.

The 2k truncated codewords have length n − dmin + 1, and there
are 2n−dmin+1 different vectors in {0, 1}n−dmin+1, so

2k ≤ 2n−dmin+1

must hold, and dmin ≤ n − k + 1 is obtained by rearranging.



Singleton bound

According to the Singleton bound, dmin ≤ n − k + 1 always holds.

Codes where dmin = n − k + 1 holds with equality are called
Maximum Distance Separable (MDS) codes.

Is the previous C (5, 2) code MDS?

dmin = 3 < 5− 2 + 1 = 4,

so no, it is not an MDS code.

Are repeater codes MDS?

For the n× repeater code, k = 1, dmin = n, and

dmin = n = n − k + 1 = n − 1 + 1 = n,

so yes, repeater codes are MDS.



Hamming bound

Theorem (Hamming bound)

Assume a C (n, k) code can correct t = bdmin−1
2 c errors. Then

t∑
i=0

(
n

i

)
≤ 2n−k .

Proof. As before, consider all 2k codewords and balls of radius t
around them.

Each ball contains
∑t

i=0

(n
i

)
points, and the balls must be disjoint,

so they contain 2k
∑t

i=0

(n
i

)
points total, while there are 2n points

in the entire space {0, 1}n, so

2k
t∑

i=0

(
n

i

)
≤ 2n

must hold.



Hamming bound

Codes where the Hamming bound has equality are called perfect
codes. (As the balls cover the entire space perfectly.)

Is the earlier C (5, 2) code with t = 1 perfect?

1∑
i=0

(
5

i

)
= 1 + 5 = 6 < 25−2 = 8,

so it is not a perfect code.

Is the 5× repeater code perfect?

For the 5× repeater code, n = 5, k = 1, t = bn−12 c = 2, and

2∑
i=0

(
5

i

)
= 1 + 5 + 10 = 25−1 = 16,

so it is a perfect code. (Actually, the n× repeater code is perfect
for every odd value of n.)


