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Shannon’s limit

Previously, we looked at upper bounds of binary codes in terms of
n, k and dmin (Singleton bound, Hamming bound).

Next we look at an upper bound that takes into account the pb bit
error probability of the channel, too. Intuitively, for a noisier
channel, only a lower code rate can be obtained with low block
error probability.

This is indeed the case, and is known as the Noisy-channel coding
theorem or Shannon’s limit.
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Shannon’s limit

Define the channel entropy function as

H(pb) = −(pb log2 pb + (1− pb) log2(1− pb)).

Theorem (Shannon’s limit)

Assume we have a BSC with bit error probability pb.

(a) For any ε > 0 and any r < 1− H(pb), there is an n0 such
that for any n > n0, there exists a C (n, k) code with code
rate k

n ≥ r and block error probability < ε.

(b) For any r > 1− H(pb) there exists an ε > 0 such that any
C (n, k) code with code rate k

n > r has block error probability
≥ ε.

We omit the proof here, but the proof is non-constructive anyway,
which means that it does not design any specific code, just shows
that it exists.
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Shannon’s limit

Shannon’s limit essentially states that the code rate 1− H(pb) can
be reached with arbitrarily small block error probability.

On the other hand, for any code with code rate > 1−H(pb), there
will inherently be errors.
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Linear functions

A function ψ between two linear spaces is linear if for any u1, u2
vectors and s1, s2 scalars,

ψ(s1u1 + s2u2) = s1ψ(u1) + s2ψ(u2).

The above definition is for general linear spaces. For binary spaces,
it can be simplified a little.

A function ψ : {0, 1}n → {0, 1}k is called linear if for any u1, u2
vectors,

ψ(u1 + u2) = ψ(u1) + ψ(u2).

(For binary vectors, s1 and s2 could only be either 0 or 1, with only
s1 = s2 = 1 meaningful.)
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Linear functions

Example. This is the coding function of the C(5,2) code seen
before. Is ψ linear?

ψ :

u c

00 00000
01 00111
10 11100
11 11011

Actually, the only thing we really need to check is

ψ(01) + ψ(10) = ψ(11)

(00111) + (11100) = (11011),

which holds, so ψ is linear.
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Linear functions

Theorem
If ψ is a ψ : {0, 1}n → {0, 1}k linear function, then there exists a
k × n binary matrix G such that

ψ(u) = uG .

The rows of G are the vectors ψ(e1), . . . , ψ(ek), where the ei ’s are
the unit vectors, that is,

ei = [0 . . . 0 1︸︷︷︸
i

0 . . . 0].

Vice versa, for any k × n binary matrix G, the function u → uG is
linear.
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Linear maps
Proof.

u =
k∑

i=1

uiei ,

where ui denotes the i-th coordinate of u.

ψ(u) =
k∑

i=1

uiψ(ei );

for coordinates where ui = 1, we use the linear property of ψ, and
terms where ui = 0 just cancel out.

For the matrix G with rows ψ(e1), . . . , ψ(ek), computing the
matrix-vector product uG gives exactly

uG =
k∑

i=1

uiψ(ei ).
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Linear maps

Example. Compute the G matrix for the ψ function.

ψ :

u c

00 00000
01 00111
10 11100
11 11011

According to the theorem, we have to put together the codewords
corresponding to the unit vectors (01) and (10):

G =

[
0 0 1 1 1
1 1 1 0 0

]
Linear codes inherently map the all 0 message to the all 0
codeword, e.g. (00)→ (00000).
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Linear codes

If, for some (binary) error correction code, the ψ : u → c function
is linear, then we call it a (binary) linear code.

The matrix G is called the generator matrix of the code.

For linear codes, the matrix G is a very efficient representation of
the code. The table containing all (u, c) pairs has 2k rows;
instead, G is a k × n matrix, which is significantly smaller.

Vector-matrix multiplication is fast (often with a dedicated Digital
Signal Processor (DSP) unit involving multiply-accumulate
operations), so we can compute c = uG online, there is no need to
store all (u, c) pairs.
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Parity-check matrix

For a C (n, k) linear code with generator matrix G , we call an
(n − k)× n matrix H a parity-check matrix if the rows of H are
linearly independent, and

G · HT = 0.

Theorem
For any generator matrix G, there always exists an H parity-check
matrix.

Proof (sketch). In the linear space {0, 1}n, consider the
k-dimensional subspace spanned by the rows of G . The orthogonal
complement of this subspace is (n − k)-dimensional. Any n − k
linearly independent vectors from this subspace are suitable as the
rows of H.

The parity check matrix H will be useful for decoding.
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Systematic linear codes

For systematic linear codes, G and H have a nice structure.

Theorem
Assume we have a linear code with generator matrix G. The
following three properties are equivalent:

I the code is systematic;

I the leftmost k × k block of G is the identity matrix;

I the rightmost (n − k)× (n − k) block of H is the identity
matrix.

Moreover,

G = [Ik |B] =⇒ H = [BT |In−k ].

(B is of size k × (n − k)).



Systematic linear codes

For systematic linear codes, G and H have a nice structure.

Theorem
Assume we have a linear code with generator matrix G. The
following three properties are equivalent:

I the code is systematic;

I the leftmost k × k block of G is the identity matrix;

I the rightmost (n − k)× (n − k) block of H is the identity
matrix.

Moreover,

G = [Ik |B] =⇒ H = [BT |In−k ].

(B is of size k × (n − k)).



Systematic linear codes

Proof. If G = [Ik |B], then

u · G = [u · Ik |uB] = [u|uB],

so the code is systematic.

The other way round, the only k × k matrix that leaves every
vector unchanged is Ik .

For the second part, we compute G · HT in block form:

G · HT = [Ik |B] · [B|In−k ] = [Ik · B + B · In−k ] = [B + B] = [0].

Finally, the rows of H are linearly independent because the rows of
the In−k block are already linearly independent.
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Example

Consider the binary linear code with generator matrix

G =

[
0 0 1 1 1
1 1 1 0 0

]
.

Is the code systematic?

No, because the leftmost 2× 2 block of G is not

[
1 0
0 1

]
.

This can be fixed by exchanging columns 1 and 5 in G :

G =

[
1 0 1 1 0
0 1 1 0 1

]
.
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Example

Compute a good parity-check matrix H for the generator matrix

G =

[
1 0 1 1 0
0 1 1 0 1

]
.

Since the code is now systematic, we write

G =

[
1 0 1 1 0
0 1 1 0 1

]
,

I2 B

and then H can be computed as

H = (BT , In−k) =

 1 1 1 0 0
1 0 0 1 0
0 1 0 0 1

 .
BT I3
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dmin

Theorem
For linear codes, the codewords form a linear subspace of {0, 1}n.

For linear codes,
dmin = min

c 6=0
w(c).

Proof. First part. If c = uG and c ′ = uG ′, then

c + c ′ = (u + u′)G .

For the second part,

dmin = min
c ′ 6=c ′′

d(c ′, c ′′) = min
c ′ 6=c ′′

w(c ′ − c ′′) = min
c

w(c).
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Syndrome vector

For general binary block codes, decoding was done by minimizing
d(v , c) for the received vector v .

For binary linear codes, decoding is done using a different method,
known as syndrome decoding.

For any received vector v , the corresponding syndrome vector (or
just syndrome) s is defined as

s = vHT .
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Syndrome vector

For every codeword c ,

cHT = uGHT = u · 0 = 0.

This implies that a syndrome vector s corresponding to a received
vector v depends only on the error vector e, but not the codeword
c (hence the name). That is, for v = c + e,

vHT = (c + e)HT = cHT + eHT = eHT .

For decoding of linear codes, we are going to replace finding the c ′

with minimal d(v , c ′) by syndrome decoding: we compute the
syndrome vector s, then try to guess what the error vector e was
based on the syndrome s.
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Syndrome vector

Syndrome vectors have length n − k . For a C (n, k) linear code,

I the number of possible syndrome vectors is 2n−k , while

I the number of possible error vectors is 2n,

so some of the error vectors will give the same syndrome vector.

We look to group error vectors according to what syndrome they
give.

The naive approach to do that is to compute the syndrome vectors
s = eHT for every possible error vector e, then group the error
vectors according to the value of eHT .
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Example
Example. For the C (5, 2) code with

G =

[
1 0 1 1 0
0 1 1 0 1

]
H =

1 1 1 0 0
1 0 0 1 0
0 1 0 0 1

 ,
compute the syndrome vectors corresponding to the error vectors
(10000), (00001), (11010) respectively.

[
1 0 0 0 0

]
·


1 1 0
1 0 1
1 0 0
0 1 0
0 0 1

 =
[
1 1 0

] [
0 0 0 0 1

]
·


1 1 0
1 0 1
1 0 0
0 1 0
0 0 1

 =
[
0 0 1

]

[
1 1 0 1 0

]
·


1 1 0
1 0 1
1 0 0
0 1 0
0 0 1

 =
[
0 0 1

]

So (00001) and (11010) belong to the same error group, but
(10000) belongs to a different error group.
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Example

Overall, the syndromes and their corresponding error groups for
this code are the following:

(000) → {(00000), (10110), (01101), (11011)}
(001) → {(00001), (10111), (01100), (11010)}
(010) → {(00010), (10100), (01111), (11001)}
(100) → {(00100), (10010), (01001), (11111)}
(101) → {(01000), (11110), (00101), (10011)}
(110) → {(10000), (00110), (11101), (01011)}
(011) → {(00011), (10101), (01110), (11000)}
(110) → {(01010), (11100), (00111), (10001)}

Due to cHT = 0 for any codeword c , the error groups have a nice
structure: for any e error vector, its error group is

{e + c1, . . . , e + c2k},

where c1, . . . , c2k are the codewords.
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Example

When doing syndrome decoding, we first compute the syndrome s
from the received vector v ; from the syndrome, we know that the
actual error vector of the channel e must belong to the syndrome
group corresponding to s.

Example. If the received vector is v = (11010), then

s = vHT =
[
1 1 0 1 0

]
·


1 1 0
1 0 1
1 0 0
0 1 0
0 0 1

 =
[
0 0 1

]
,

and the error group corresponding to s = (001) is
{(00001), (10111), (01100), (11010)}.

One of these 4 vectors is the actual error of the channel; we need
to make a guess. Which one should we pick?
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Error groups

The best guess is the error vector with minimal weight, because
that has the highest probability.

Accordingly, in every error group, mark the error vector with
minimal weight (red):

(000) → {(00000), (10110), (01101), (11011)}
(001) → {(00001), (10111), (01100), (11010)}
(010) → {(00010), (10100), (01111), (11001)}
(100) → {(00100), (10010), (01001), (11111)}
(101) → {(01000), (11110), (00101), (10011)}
(110) → {(10000), (00110), (11101), (01011)}
(011) → {(00011), (10101), (01110), (11000)}
(110) → {(01010), (11100), (00111), (10001)}

The red vectors are called the group leaders (or coset leaders).
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Syndrome decoding

Ties are possible for the group leaders (blue). In case of a tie, we
may select either error vector tied for minimal weight as the group
leader, but we generally fix one.

The code can correct ≥ t errors ⇐⇒ in groups with minimal
weight ≤ t, the group leaders are unique (no ties).

The code is perfect ⇐⇒ there are no ties for group leader in any
of the groups.

For perfect codes, the decoding will be correct if there bdmin
2 c

errors, but the decoding will be erroneous if there are more errors.

For non-perfect codes, the decoding may still be correct with some
probability even if there are more than bdmin

2 c errors.
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Syndrome decoding

Overall, syndrome decoding consists of the following steps. These
are done offline in advance:

I Compute the error groups and select the group leader from
each group.

(For large k, this can be too much computation;
there are methods to find the group leader without computing
the entire group, but we will not discuss these right now.)

I Store the syndromes and the corresponding group leaders in a
lookup table.

During actual decoding:

I From the received vector v , compute the syndrome vector s.

I The detected error vector e ′ is the group leader corresponding
to s from the lookup table.

I Compute the detected codeword as c ′ = v − e ′.

I Compute u′ (if the code is systematic, this step is just
truncation).
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Syndrome decoding table

Example. For the previous C (5, 2) code, the syndrome decoding
table is:

s e

(000) (00000)

(001) (00001)

(010) (00010)

(100) (00100)

(101) (01000)

(110) (10000)

(011) (00011)

(110) (01010)

Errors in the same error group are called indistuingishable. If the
actual error was the group leader, then decoding will be correct,
but if it was another error from the group, decoding will be
erroneous.
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Syndrome decoding

message

Gk×n
u ⊕c

codeword

e
error vector

•
v

received vector

H(n−k)×n

s e

syndrome
decoding

table

s

syndrome
vector

⊕e
′

detected
error
vector

trunc

c ′

detected
codeword

u′

detected
message

For any binary linear code, this decoding scheme always gives the
same u′ as min d(v , c) in the binary block coding scheme
previously.

So did we accomplish anything? That is, is this decoding scheme
more efficient to compute?

It is! The syndrome decoding table has 2n−k rows, while for
finding min d(v , c), we needed to do 2k steps online.

n − k is typically much smaller than k for codes that are used in
practice (the good stuff, coming soon. . . )
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Communication engineering

Quality-of-Service (QoS) approach: using error correction codes,
we can decrease the probability of decoding error.

Errors which are one of the group leaders can be corrected:

(00000) (00001) (00010) (00100)
(01000) (10000) (00011) (01010)

These include all error vectors with weight 0 and 1, and 2 error
vectors with weight 2. All other error vectors cannot be corrected,
so the block error probability is

pe =

((
5

2

)
− 2

)
p2b(1− pb)3 +

(
5

3

)
p3b(1− pb)2 + 5p4b(1− pb) + p5b;

for pb = 0.1,
pe ≈ 0.0669.
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Improvement in QoS

What do we gain by using an error correcting code?

Consider what happens when we transmit messages with no coding
on the same channel. For a 2-bit block, the probability of
erroneous decoding is

1− (1− pb)2 = 0.19,

while it is 0.0669 when using error correcting code. (On the other
hand, the code rate is 2/5, so using the code effectively reduces
the channel capacity to 2/5 of the original capacity. Tradeoff.)
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Improvement in QoS

Another possible comparison is to compare to another channel with
different bit error probability p′b where messages of block length 5
are transmitted without any coding. Compute p′b so that the block
error probability is the same as for the original channel with coding.

For the original channel, block error probability is 0.0669; for the
channel with no coding, it is

1− (1− p′b)5 = pe = 0.0669 → p′b ≈ 0.0137.

By using the error correcting code, we can obtain the same block
error probability over a noisier channel (pb = 0.1 > 0.0137 = p′b).
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Architectural implementation

Next we look at how the syndrome decoding table (or any lookup
table) can be implemented using an Arithmetic-Logic Unit (ALU).

First, for every row of the lookup table (e.g. s = (011)) take this
ALU:
S1 S2 S3

•

•

•

0

1

1

match (1) → output: (00011)
mismatch (0) → output: (00000)
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Architectural implementation

Syndrome bits are directed into each such unit, and outputs are
added as binary vectors (only 1 output will be nonzero).

⊕

S1 S2 S3

•

•

•

S1 S2 S3

•

•

•

...


