
Binary Golay codes, CRC codes, LDPC codes

Coding Technology

Illés Horváth

2025/09/26



The binary linear coding scheme

message

Gk×n
u ⊕c

codeword

e
error vector

•
v

received vector

H(n−k)×n

s e

syndrome
decoding

table

s

syndrome
vector

⊕e
′

detected
error
vector

trunc

c ′

detected
codeword

u′

detected
message



Perfect binary codes

A binary code is perfect if it can correct t errors and the Hamming
bound holds with equality:

t∑
i=0

(
n

i

)
= 2n−k .

We have already seen two types of perfect binary codes:

I the n× repeater codes (for odd values of n) that can correct
t = bn−12 c errors;

I Hamming codes can correct t = 1 error.

Are there any more perfect codes?

Theorem (Tietäväinen)

Apart from the above codes, the only perfect binary linear code is
the C (23, 12) Golay code that can correct t = 3 errors.

(No proof.)



Binary Golay codes

Golay designed two pairs of codes, a pair of binary codes and a
pair of ternary codes (with digits 0, 1 and 2). We only consider the
binary Golay codes now.

The binary Golay codes are two specific codes:

I the C (23, 12) perfect binary Golay code, and

I the C (24, 12) extended binary Golay code.

Similar to Hamming codes, the C (24, 12) code can be obtained
from the C (23, 12) code by adding a parity bit, and the C (23, 12)
code can be obtained from the C (24, 12) by puncturing a bit.

Golay codes are highly symmetric, and there are several different
ways to design them (resulting in the same code).



Binary Golay codes – Turyn’s construction

The following is Turyn’s construction, deriving the C (24, 12) Golay
code from the C (8, 4) extended Hamming code.

Consider the following two matrices (both generate codes
equivalent to the C (8, 4) extended Hamming code):

G1 =


1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 0
0 1 1 0 0 1 1 0
1 0 1 0 1 0 1 0

 G2 =


1 1 1 1 1 1 1 1
0 0 0 1 1 1 0 1
0 1 1 1 0 1 0 0
1 0 1 1 1 0 0 0


The generator matrix G of the C (24, 12) Golay code has the
following block form (all blocks are 4× 8):

G =

G1 0 G1

0 G1 G1

G2 G2 G2





Binary Golay codes – Turyn’s construction

Theorem
For the C (24, 12) code with generator G,

dmin = min
c 6=0

w(c) = 8.

Proof 1. List all 212 codewords and check that every nonzero
codeword c has w(c) ≥ 8.

Proof 2. We explore the properties of this code step by step.

Proving minc 6=0 w(c) = 8 will be done in two main steps:

1. For every codeword c , w(c) is divisible by 4.

2. There is no codeword c with w(c) = 4.



Binary Golay codes – Turyn’s construction

I The only common codewords for G1 and G2 are (00000000)
and (11111111).

I All other codewords in both codes have weight 4.

I If a is a codeword from the first code and b a codeword from
the second code, then a and b are orthogonal.

I G1 is self-dual (G1G
T
1 = 0), so any two rows of G1 are

orthogonal. Same for G2.

I Any two codewords of G1 are orthogonal. Same for G2.

I Any two rows of G are orthogonal.

I Any two codewords of G are orthogonal.

I If c and c ′ are orthogonal vectors with 4|w(c) and 4|w(c ′),
then 4|w(c + c ′).

I Any row of G has weight divisible by 4.

I Any codeword of G has weight divisible by 4.



Binary Golay codes – Turyn’s construction
Due to the block structure of G , all codewords have the form

c = (a + b|a′ + b|a + a′ + b)

where a and a′ are codewords from the first code (G1), and b is a
codeword from the second code (G2).

The vectors a + b, a′ + b, a + a′ + b all have even weight; if
w(c) = 4, then this is possible only of one of the three vectors has
0 weight.

I if w(a + b) = 0, then a = b, but the only common codewords
are (00000000) and (11111111), so either c = (0|a′|a′) or
c = (0|a′ + 1|a′), and for both cases, w(c) 6= 4.

I Same if w(a′ + b) = 0.
I if w(a + a′ + b) = 0, then c = (a′|a|0);

I if w(a′) = 0, then a = b, and we get back the first case;
I if w(a) = 0, then a′ = b, and we get back the second case;
I if neither w(a′) and w(a) are 0, then w(c) ≥ 8.



Binary Golay codes – Turyn’s construction

Now we have
dmin = min

c 6=0
w(c) = 8

for the C (24, 12) binary Golay code.

G1 and G2 are both self-dual, and so is G :

G · GT =

G1 0 G1

0 G1 G1

G2 G2 G2

 ·
GT

1 0 GT
2

0 GT
1 GT

2

GT
1 GT

1 GT
2

 =

=

2G1G
T
1 G1G

T
1 2G1G

T
2

G1G
T
1 2G1G

T
1 2G1G

T
2

2G2G
T
1 2G2G

T
1 3G2G

T
2

 =

0 0 0
0 0 0
0 0 0





Binary Golay codes – Turyn’s construction

An equivalent generator of G , in systematic form (only the 1’s are
shown, other elements are 0):

G =



1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1


This is the C (24, 12) extended binary Golay code.



Binary Golay codes – Turyn’s construction

To obtain the C (23, 12) perfect binary Golay code, we puncture
the last bit from the C (24, 12) code. Then dmin changes from 8 to
7, so the resulting code can still correct b7−12 c = 3 errors.

What remains is to check the Hamming bound with t = 3:(
23

0

)
+

(
23

1

)
+

(
23

2

)
+

(
23

3

)
= 1+23+253+1771 = 2048 = 223−12

which holds, so the C (23, 12) binary Golay code is perfect.



Binary Golay codes – icosahedron construction
Another possible construction for the C (24, 12) binary Golay code
is the following.

Let N be the adjacency matrix of the graph of an icosahedron
(regular polyhedron with 12 vertices).

Theorem
Let J denote the 12× 12 all-1 matrix. The code with 12× 24
generator matrix

G =
[
I |J − N

]
is equivalent to the C (24, 12) Golay code.

(No proof.)



Cyclic Redundancy Check (CRC)

The Cyclic Redundancy Check (CRC) generalizes the addition of a
parity bit. It is used almost exclusively for error detection (but not
correction).

The CRC code adds r bits to the original message vector. For a
fixed message length k and r , CRC is a systematic, linear
C (k + r , k) code.

However, it is often used for varying message lengths (with the
same r), so instead of the generator matrix, we give a general
coding scheme applicable for any message length.



CRC coding scheme

The CRC code that adds r bits to the message has a parameter: a
nonzero binary vector d ∈ {0, 1}r .

Coding is equivalent to binary polynomial division (with remainder
term). We make a binary polynomial out of both the message
vector, then divide the message polynomial by the parameter
polynomial, and the added r bits correspond to the remainder
polynomial.



CRC coding scheme

Example. Let u = (10010110) and d = (011).

We first add a single 1 bit to the beginning of d , and add r 0 bits
to the end of u.

The corresponding extended vectors are (10010110000) and
(1011).

The corresponding binary polynomials are

u(x) = 1 · x10 + 0 · x9 + 0 · x8 + 1 · x7 + 0 · x6 + 1 · x5 + 1 · x4 + 0 · x3,
d(x) = 1 · x3 + 0 · x2 + 1 · x + 1.

The polynomials go from highest to lowest degree.

(For some other situations where we convert vectors to
polynomials, the order of coefficients might be reversed; pay
attention to each specific application!)



Polynomial division

We want to divide the polynomial u(x) by d(x). How to do that?

The general setup for polynomial division is

u(x) = q(x)d(x) + r(x),

where r(x) is the remainder term with deg r(x) < deg d(x).

q(x) is computed step-by-step, first matching the highest degree
term of u(x), then proceeding to lower degree terms.



Polynomial division

Example. For the previous u(x) and d(x), we first have

x10 + x7 + x5 + x4 = (x3 + x + 1)(x7 + . . . );

to match the x10 term on both sides, then polynomial division goes
as follows:

x10 + x7 + x5 + x4 − (x3 + x + 1) · x7 = x8 + x5 + x4,

x8 + x5 + x4 − (x3 + x + 1) · x5 = x6 + x4

x6 + x4 − (x3 + x + 1) · x3 = x3

x3 − (x3 + x + 1) · 1 = x + 1.

The end result is

x10 + x7 + x5 + x4 + x3 = (x7 + x5 + x3 + 1)(x3 + x + 1) + (x + 1)



Polynomial division

This means that for u(x) = x10 + x7 + x5 + x4 + x3 and
d(x) = x3 + x + 1,

u(x) = q(x)d(x) + r(x),

where
q(x) = x7 + x5 + x3 + 1 r(x) = x + 1,

then r(x) is converted back to a binary vector of length 3:

1 + x → (011),

and the codeword is
(10010110011).

Only r(x) is relevant, q(x) is not.



Fast polynomial division

Polynomial division can be done fast:

1 0 0 1 0 1 1 0 0 0 0
1 0 1 1

0 0 1 0 0 1 1 0 0 0 0
→ 1 0 1 1

0 0 0 0 1 0 1 0 0 0 0
→ 1 0 1 1

0 0 0 0 0 0 0 1 0 0 0
→ 1 0 1 1

0 0 0 0 0 0 0 0 0 1 1

v = (u|d) = (10010110|011)



Error detection

Example. Assume the codeword c = (10010110011) was sent
through the channel, and the error vector is e = (00010000000).
Then the received vector is

v = c + e = (10000110011).

How do we check if there were any errors?

For the received vector v , we execute the exact same polynomial
division, and check whether the remainder term is 0 or not.



Error detection

1 0 0 0 0 1 1 0 0 0 0
1 0 1 1

0 0 1 1 0 1 1 0 0 0 0
→ 1 0 1 1

0 0 0 1 1 0 1 0 0 0 0
→ 1 0 1 1

0 0 0 0 1 1 0 0 0 0 0
→ 1 0 1 1

0 0 0 0 0 1 1 0 0 0 0
→ 1 0 1 1

0 0 0 0 0 0 1 1 1 0 0
→ 1 0 1 1

0 0 0 0 0 0 0 1 0 1 0
→ 1 0 1 1

0 0 0 0 0 0 0 0 0 0 1

The remainder vector is not 0 → error detected!



Error detection

Theorem
The CRC code can always detect ≥ 1 error for any value of k.

Proof. Codewords correspond to polynomials which are multiples
of d(x).

If there was a codeword with weight 1, then it would correspond to
a polynomial with a single term x i .

But the divisor polynomial d(x) always has more than 1 terms (x r ,
plus whatever lower order terms correspond to the vector d), and
x i can never be a multiple of a polynomial with more than 1 terms.
(By the way, this is the reason the vector d was assumed nonzero.)



Error detection

Depending on the value of k and the polynomial d(x), codewords
with weight 2 are possible. For example,

x7 + 1 = (x + 1)(x3 + x + 1)(x3 + x2 + 1).

We do not strive to determine dmin for every possible choice of
message size k and parameter vector d , but in general, the
situation is the following: for a fixed vector d , as k is increased,
dmin will decrease and eventually reach dmin = 2.

While according to our usual definition of error detection, CRC
codes can detect only 1 error, they have a different type of error
detection property which is often useful.



Error detection

Theorem
The CRC code can detect multiple errors as long as all errors are
within a block of r consecutive bits.

Proof. Any such error vector can be written as

x i + · · ·+ x j = x j(x i−j + . . . ),

where i − j ≤ r − 1.

A polynomial of the form xd + . . . can divide neither the term x j ,
nor the term (x i−j + . . . ).

For the BSC channel model, errors could be anywhere (they are as
likely to be close or far from each other), but for certain
applications, ’batch errors’ could happen, and CRC codes are good
for detecting those.



Low-density parity-check (LDPC) codes

Next we will discuss LDPC codes, but only the very basics. Some
further related ideas will be addressed briefly, but not in full detail.

For a general (N − K )× N binary matrix H, we expect that the
number of 1’s in H is about 1

2(N − K )N. For example this is the
case for the Hamming code.

LDPC codes (also known as Gallager codes) utilize very large but
low-density parity-check matrices, where

I N and K typically range from 103 to 107, and

I the number of 1’s in each row is small, typically below 10.

As a consequence, the total number of 1’s in H is proportional to
(N − K ).



LDPC codes

Example.

H =



1 1 1 1 1
1 1 1 1 1

1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1 1

1 1 1 1
1 1 1 1 1

1 1 1 1
1 1 1 1 1

1 1 1 1 1
1 1 1 1





LDPC codes

As usual, the main challenge is decoding; for the received vector v ,
we want to find the closest codeword c .

Codewords satisfy cHT = 0; a possible interpretation for this is
that the rows of H correspond to linear constraints on the bits of
the codeword.

The Tanner graph is defined as a bipartite graph; one class of
vertices (called bits) correspond to the bits of the codeword, and
the other class (called checks) corresponds to the rows of H.

A bit is connected to a check if the corresponding element of H is
1.



LDPC codes
Example.

H =



1 1 1 1 1
1 1 1 1 1

1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1 1

1 1 1 1
1 1 1 1 1

1 1 1 1
1 1 1 1 1

1 1 1 1 1
1 1 1 1


The Tanner graph has two classes of vertices: N − K checks
(boxes) and N bits (circles).



Bit-flipping algorithm

Decoding: for the received vector v , we want to find the closest
codeword c .

This is done by the bit-flipping algorithm:

1. Initialization: put the bits of the received vector into the bit
nodes.

2. For each check node, compute the sum of its neighboring bit
nodes and put the result in the check node (green for 0, red
for 1).

3. For each bit node, count how many neighboring checks are
red.

4. For the bit with the most red check neighbors, flip the value
of the bit.

5. Repeat from step 2 until all checks are green.

6. Read the detected codeword from the bit nodes.



Bit-flipping algorithm

Example. Assume

c = (011001001101100100),

e = (010000000000001000),

v = c ⊕ e = (001001001101101100).

We initialize the bit nodes with the bits of v .

0 0 1 0 0 1 0 0 1 1 0 1 1 0 1 1 0 0



Bit-flipping algorithm

Example. Assume

c = (011001001101100100),

e = (010000000000001000),

v = c ⊕ e = (001001001101101100).

Then

0 0 1 0 0 1 0 0 1 1 0 1 1 0 1 1 0 0
↑ ↑



Bit-flipping algorithm

Example. Assume

c = (011001001101100100),

e = (010000000000001000),

v = c ⊕ e = (001001001101101100).

Then

0 0 1 0 0 1 0 0 1 1 0 1 1 0 1 1 0 0
↑ ↑



Bit-flipping algorithm

Example. Assume

c = (011001001101100100),

e = (010000000000001000),

v = c ⊕ e = (001001001101101100).

The errors cause some checks to become red.

0 0 1 0 0 1 0 0 1 1 0 1 1 0 1 1 0 0
↑ ↑



Bit-flipping algorithm

Example. Assume

c = (011001001101100100),

e = (010000000000001000),

v = c ⊕ e = (001001001101101100).

The receiver only sees the red and green check nodes.

0 0 1 0 0 1 0 0 1 1 0 1 1 0 1 1 0 0



Bit-flipping algorithm

Example. Assume

c = (011001001101100100),

e = (010000000000001000),

v = c ⊕ e = (001001001101101100).

For each bit node, count its red neighbors.

0 0 1 0 0 1 0 0 1 1 0 1 1 0 1 1 0 0

1 3 1 2 1 1 1 1 1 1 2 0 1 1 3 2 2 2



Bit-flipping algorithm

Example. Assume

c = (011001001101100100),

e = (010000000000001000),

v = c ⊕ e = (001001001101101100).

Select the maximum (either maximum in case of a tie).

0 0 1 0 0 1 0 0 1 1 0 1 1 0 1 1 0 0

1 3 1 2 1 1 1 1 1 1 2 0 1 1 3 2 2 2



Bit-flipping algorithm

Example. Assume

c = (011001001101100100),

e = (010000000000001000),

v = c ⊕ e = (001001001101101100).

Flip the corresponding bit.

0 1 1 0 0 1 0 0 1 1 0 1 1 0 1 1 0 0

1 3 1 2 1 1 1 1 1 1 2 0 1 1 3 2 2 2



Bit-flipping algorithm

Example. Assume

c = (011001001101100100),

e = (010000000000001000),

v = c ⊕ e = (001001001101101100).

And repeat.

0 1 1 0 0 1 0 0 1 1 0 1 1 0 1 1 0 0



Bit-flipping algorithm

Example. Assume

c = (011001001101100100),

e = (010000000000001000),

v = c ⊕ e = (001001001101101100).

Then

0 1 1 0 0 1 0 0 1 1 0 1 1 0 1 1 0 0



Bit-flipping algorithm

Example. Assume

c = (011001001101100100),

e = (010000000000001000),

v = c ⊕ e = (001001001101101100).

Then

0 1 1 0 0 1 0 0 1 1 0 1 1 0 1 1 0 0

0 0 1 1 0 0 0 1 1 0 1 0 1 0 3 1 1 2



Bit-flipping algorithm

Example. Assume

c = (011001001101100100),

e = (010000000000001000),

v = c ⊕ e = (001001001101101100).

Then

0 1 1 0 0 1 0 0 1 1 0 1 1 0 0 1 0 0

0 0 1 1 0 0 0 1 1 0 1 0 1 0 3 1 1 2



Bit-flipping algorithm

Example. Assume

c = (011001001101100100),

e = (010000000000001000),

v = c ⊕ e = (001001001101101100).

Then

0 1 1 0 0 1 0 0 1 1 0 1 1 0 0 1 0 0



Bit-flipping algorithm

Example. Assume

c = (011001001101100100),

e = (010000000000001000),

v = c ⊕ e = (001001001101101100).

Then

0 1 1 0 0 1 0 0 1 1 0 1 1 0 0 1 0 0



Bit-flipping algorithm

Example. Assume

c = (011001001101100100),

e = (010000000000001000),

v = c ⊕ e = (001001001101101100).

Then

0 1 1 0 0 1 0 0 1 1 0 1 1 0 0 1 0 0

Finished: c ′ = (011001001101100100).



Properties of LDPC codes

Properties of LDPC codes (intuitive explanations only, no theorems
and proofs).

Why do LDPC codes work? The general idea is that few errors
change only few checks (since the matrix is low-density), and the
probability that the affected checks overlap is small, so errors can
be easily identified.

LDPC codes work best when H is large, and its structure is
somewhat ’random’. This brings a challenge: how to design a large
but random-looking matrix? Usually it is done by a scalable block
structure.

Apart from being ’random-looking’, what kind of low-density
matrices are good candidates for H with strong error correction
capabilities?



Soft decoding

The bit-flipping algorithm is reasonably efficient, but actually there
is an even better decoding algorithm; we discuss some of the ideas
related to that next.

So far, we were doing hard decoding, where the received vector is
decoded to a single codeword with minimal Hamming-distance.
The motivation for minimal Hamming-distance is that that
corresponds to the error vector with highest probability.

Soft decoding, on the other hand, calculates conditional
probabilities for multiple possible codewords, or for each bit of the
codeword separately.

Theoretically soft decoding could lead to wrong decoding, but in
practice, the probability of this is negligible.



Soft decoding

For LDPC decoding, initially each check is treated as an
independent parity check bit. Then for each bit node, the
probability that it is a 1 is estimated in several rounds, improving
the estimate with each iteration by factoring in the information
from nearby check nodes and bit nodes.

Computations for the bit nodes can be run parallel within a round.

A main component of the algorithm is how the information from
nearby nodes is calculated to update probabilities. The approach
used is known as belief propagation or sum–product message
passing.


