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Reminder: nonbinary block codes, GF(q) for q prime

q-ary symmetric channel.

General nonbinary block coding scheme.

Hamming bound, perfect codes. Singleton bound, MDS codes.

Galois fields: finite fields with q elements.

I q prime → mod q arithmetic

I q = pm prime power → different arithmetic, to be defined
later



Linear nonbinary codes

A function ψ between two linear spaces is linear if for any u1, u2
vectors and s1, s2 scalars,

ψ(s1u1 + s2u2) = s1ψ(u1) + s2ψ(u2).

If ψ is a GF(q)k → GF(q)n linear function, then there exists a
k × n matrix G over GF(q) such that

ψ(u) = uG .

If, for some (nonbinary) error correction code, the ψ : u → c
function is linear, then we call it a linear code.

The matrix G is called the generator matrix of the code.
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Linear nonbinary codes

For linear nonbinary codes, we define the parity check matrix H the
same as for linear binary codes. For a C (n, k) linear code with
generator matrix G , we call an (n− k)× n matrix H a parity-check
matrix if the rows of H are linearly independent, and

G · HT = 0.

Theorem
For any generator matrix G, there always exists an H parity-check
matrix.

For any linear nonbinary code,

dmin = min
c 6=0

w(c).
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Systematic linear nonbinary codes

For systematic linear codes, G and H have a nice structure.

Theorem
Assume we have a linear code with generator matrix G. The
following three properties are equivalent:

I the code is systematic;

I the leftmost k × k block of G is the identity matrix;

I the rightmost (n − k)× (n − k) block of H is the identity
matrix.

Moreover,

G = [Ik |B] =⇒ H = [−BT |In−k ].

(B is of size k × (n − k)).
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Tetracode

Example. The tetracode is a C (4, 2) ternary (q = 3) code.

(0 0)→ (0 0 0 0)
(0 1)→ (0 1 1 2)
(0 2)→ (0 2 2 1)
(1 0)→ (1 0 1 1)
(1 1)→ (1 1 2 0)
(1 2)→ (1 2 0 2)
(2 0)→ (2 0 2 2)
(2 1)→ (2 1 0 1)
(2 2)→ (2 2 1 0)

The tetracode is a linear code with generator matrix

G =

[
1 0 1 1
0 1 1 2

]
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Syndrome decoding

Decoding is syndrome-based:

I from the received vector v , we compute the syndrome vector
s = vHT ;

I from s, we guess the detected error vector e ′ using the
syndrome decoding table;

I the detected codeword is c ′ = v ⊕ e ′;

I if the code is systematic, u′ is obtained by truncation.

The general coding scheme is the following:

message

Gk×n
u ⊕c

codeword

e
error vector

•
v

received vector

H(n−k)×n

s e

syndrome
decoding

table

s
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⊕e
′

detected
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vector

trunc

c ′

detected
codeword
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message
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Reed-Solomon codes

Next we consider the C(n, k) Reed-Solomon code over GF(q),
generated by the primitive element α ∈ GF(q).

I 1 ≤ k < n ≤ q − 1

Its generator matrix is

G =


1 1 1 . . . 1
1 α α2 . . . αn−1

...
. . .

...

1 αk−1 α2(k−1) . . . α(n−1)(k−1)

 .
(It is not systematic.)
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Reed-Solomon codes

Example. The generator matrix of the C(4,2) RS code over GF(5),
using the primitive element 2:

G =

[
1 1 1 1
1 2 4 3

]
Compute the codewords corresponding to the message vectors
(1, 1) and (3, 0):

(1 1) ·
[

1 1 1 1
1 2 4 3

]
= (2 3 0 4)

(3 0) ·
[

1 1 1 1
1 2 4 3

]
= (3 3 3 3)

(What is their Hamming distance?)
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Reed-Solomon codes

G =


1 1 1 . . . 1
1 α α2 . . . αn−1

...
. . .

...

1 αk−1 α2(k−1) . . . α(n−1)(k−1)


Theorem
Reed-Solomon codes are MDS, that is,

dmin = n − k + 1.

Proof. Let u = (u0u1 . . . uk−1) be a nonzero message vector and
c = uG = (c0c1 . . . cn−1) the corresponding codeword. Then

c0 = u0 + u1 + · · ·+ uk−1

c1 = u0 + u1α
1 + · · ·+ uk−1α

k−1

c2 = u0 + u1α
2 + · · ·+ uk−1α

2(k−1)

...

cn−1 = u0 + u1α
n−1 + · · ·+ uk−1α

(n−1)(k−1)
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Reed-Solomon codes

Using the notation

u(x) := u0 + u1x + u2x
2 + . . . uk−1x

k−1,

this can be written as

c0 = u(1)

c1 = u(α)

c2 = u(α2)

...

cn−1 = u(αn−1)



Reed-Solomon codes

Then

w(c) = #{nonzero coordinates of c} =

= n −#{zero coordinates of c} ≥
≥ n −#{roots of u(x)} ≥
≥ n − deg(u) = n − k + 1,

while the Singleton bound states

dmin = min
c 6=0

w(c) ≤ n − k + 1,

so
dmin = n − k + 1

and RS codes are MDS.
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Reed-Solomon codes

Reed-Solomon codes are MDS:

dmin = n − k + 1,

so a C(n, k) RS code can

I detect n − k errors, and

I correct
⌊
n−k
2

⌋
errors.

RS codes are versatile: any desired error correction capability can
be obtained by setting n and k accordingly.

Example. The C(4,2) RS code over GF(5) has

dmin = n − k + 1 = 3

and it can correct
⌊
n−k
2

⌋
= 1 error.
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Reed-Solomon codes

Often (but not always) n is set to the maximal possible value
n = q − 1.

For a fixed k , this choice offers the highest error correction
capability.

RS codes with n = q − 1 have further nice properties (e.g. nice
structure for the parity check matrix H), coming soon.

RS codes with n < q − 1 are punctured versions of the RS code
with n = q − 1; that said, Reed-Solomon code can refer to either.

In this course, we will generally assume n = q − 1, but also
highlight the specific differences in properties of RS codes for
n = q − 1 and n < q − 1 whenever relevant.
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Reed-Solomon codes

Elements of the second row of G ,[
1 α α2 . . . αn−1]

are called evaluation points (see the previous proof). If n < q − 1,
sometimes different evaluation points are used. Such codes are also
called Reed-Solomon codes, but we do not pursue this direction.

RS codes are sometimes called evaluation codes for the same
reason.
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Reed-Solomon codes

Theorem
In case n = q − 1, the following H is a good parity check matrix
for G:

H =


1 α α2 . . . αn−1

1 α2 α4 . . . α2(n−1)

...
. . .

...

1 αn−k α2(n−k) . . . α(n−k)(n−1)



Proof. Based on G , the codeword c = (c0c1 . . . cn−1)
corresponding to message u = (u0u1 . . . uk−1) has coordinates

ci =
k−1∑
j=0

ujα
ij , 0 ≤ i ≤ n − 1.
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Reed-Solomon codes

Then we need to show cHT = 0; coordinate ` of cHT is

n−1∑
i=0

ciα
i` =

n−1∑
i=0

k−1∑
j=0

ujα
ijαi` =

k−1∑
j=0

uj

n−1∑
i=0

αi(j+`)

Here, 0 ≤ j ≤ k − 1 and 1 ≤ ` ≤ n − k , so 1 ≤ j + ` ≤ n − 1, so
αj+` 6= 1, and

n−1∑
i=0

αi(j+`) =
αn(j+`) − 1

αj+` − 1
=

1j+` − 1

αj+` − 1
= 0.

This implies

n−1∑
i=0

ciα
i` = 0 (` = 1, . . . , n − k),

so H is indeed a valid parity check matrix for G .
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RS decoding

Syndrome-based decoding is fine for small RS codes, but the
syndrome decoding table can get large. What is the size of the
table as a function of q, n and k?

Syndrome vectors have length n − k , so the syndrome decoding
table has qn−k rows. Already for values like q = 7 and n − k = 4,
the table has several thousand rows, which is not very practical.

We look for more efficient decoding methods.
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Error locator algorithm

For RS decoding, we are going to use the Error locator algorithm
(also known as the Peterson-Gorenstein-Zierler algorithm).

To reconstruct the error vector e, we need

I the number of errors t = w(e) (we assume t ≤
⌊
n−k
2

⌋
);

I the location of the errors 0 ≤ i1 < i2 · · · < it ≤ n − 1;

I the value of the errors ei1 , ei2 , . . . , ein .

Preparations first. We use the notation

Xj = αij , Yj = eij .

Xj are referred to as error locators.

The coordinates of the syndrome vector s = eHT = vHT are
s = (s1 s2 . . . sn−k).
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Error locator algorithm

The goal is to find the e with minimal weight that satisfies
s = eHT .

The coordinates of this equation are

n−1∑
i=0

eiα
`i =

t∑
j=1

eijα
`ij = s` (` = 1, 2, . . . , n − k);

with the Xj ,Yj notation, this is

t∑
j=1

YjX
`
j = s` (` = 1, 2, . . . , n − k).

This is a nonlinear system of equations with unknowns
t,X1, . . . ,Xt ,Y1, . . . ,Yt .
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Error locator algorithm

We aim to reduce the solution of this system to two systems of
linear equations which can be solved consecutively.

The solution of the first system will provide the values of
X1, . . . ,Xt .

Introduce the error location polynomial

L(x) =
t∏

i=1

(1− xXi ) = 1 + L1x + · · ·+ Ltx
t .

We aim to compute the polynomial L(x); once L(x) is known,
compute its roots, which are X−11 , . . . ,X−1t , to get X1, . . . ,Xt .

Once X1, . . . ,Xt are available, the equation is linear in the Yj ’s,
and has a unique solution.
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Error locator algorithm

Since X−1j is a root of L(x), for any ` and j we have

YjX
`+t
j L(X−1j ) = 0,

t∑
j=1

YjX
`+t
j L(X−1j ) = 0,

t∑
j=1

Yj(X
`+t
j + L1X

`+t−1
j + · · ·+ LtX

`
j ) = 0,

which simplifies to

L1s`+t−1 + L2s`+t−2 + · · ·+ Ltst = −s`+t (` = 1, . . . , t)
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Error locator algorithm

Introducing more notation:

Ur =


s1 s2 . . . sr
s2 s3 . . . sr+1
...

...
. . .

...
sr sr+1 . . . s2r−1


then we obtain the system of linear equations[

Lt Lt−1 . . . L1
]
· UT

t =
[
−st+1 −st+2 . . . −s2t

]
.

detUt 6= 0, but detUr = 0 if r > t (no proof, but based on
Vandermonde structure).
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Error locator algorithm
Based on the above, the Error locator algorithm is the following:

1. Compute s1, s2, . . . sn−k .

2. Find the largest r for which Ur is invertible. This will give the
value of t.

3. Solve[
Lt Lt−1 . . . L1

]
· UT

t =
[
−st+1 −st+2 . . . −s2t

]
.

to obtain the L1, . . . , Lt values.

4. Find the roots of L(x), then the inverse of the roots are
X1,X2, . . . ,Xt .

5. Solve the system of equations

t∑
j=1

YjX
`
j = s` (` = 1, 2, . . . , n − k)

which is linear for Yj since the Xj ’s are available.

6. Compute the error vector e from the Xj ’s and Yj ’s.



Error locator algorithm

For small n− k , the Error locator algorithm is computationally fast.

The Error locator algorithm can be used to replace syndrome
decoding; it is fast enough to be used online to compute the
detected error e ′.

For larger values of n − k , some of the steps of the algorithm can
be replaced by more efficient calculations. Steps 2 and 3 can be
replaced by the Berlekamp-Massey algorithm, and Step 5 can be
replaced by the Forney-algorithm. We do not pursue these results.

Similar versions of the algorithm can be used for other codes, not
just RS.

We will also discuss another decoder for RS codes - after some
more preparation.
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Reed-Solomon codes

Example. The codewords of the C(4,2) RS code over GF(5) using
the primitive element 2:

(0 0)→ (0 0 0 0) (2 0)→ (2 2 2 2) (4 0)→ (4 4 4 4)
(0 1)→ (1 2 4 3) (2 1)→ (3 4 1 0) (4 1)→ (0 1 3 2)
(0 2)→ (2 4 3 1) (2 2)→ (4 1 0 3) (4 2)→ (1 3 2 0)
(0 3)→ (3 1 2 4) (2 3)→ (0 3 4 1) (4 3)→ (2 0 1 3)
(0 4)→ (4 3 1 2) (2 4)→ (1 0 3 4) (4 4)→ (3 2 0 1)
(1 0)→ (1 1 1 1) (3 0)→ (3 3 3 3)
(1 1)→ (2 3 0 4) (3 1)→ (4 0 2 1)
(1 2)→ (3 0 4 2) (3 2)→ (0 2 1 4)
(1 3)→ (4 2 3 0) (3 3)→ (1 4 0 2)
(1 4)→ (0 4 2 3) (3 4)→ (2 1 4 0)



Cyclic codes

A code is cyclic if for any codeword

c = (c0 c1 c2 . . . cn−1),

its cyclically shifted version

Sc = (cn−1 c0 c1 . . . cn−2)

is also a codeword. S is the cyclic shift operator.

Example. The previous C(4,2) RS code over GF(5) is cyclic.

Motto: the more highly structured a code is, the more efficiently it
can be represented and calculated – with the proper tools.

Linear cyclic codes can be described very efficiently using code
polynomials.
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Code polynomials

So far, the language used to describe linear codes has been vectors
and matrices. But there is another language to do that, with
polynomials, which can be even better.

We assign polynomials over GF(q) to messages and codewords.

For any message vector u = (u0u1 . . . uk−1) ∈ GF(q)k ,

u(x) = u0 + u1x + · · ·+ uk−1x
k−1.

For any codeword c = (c0c1 . . . cn−1) ∈ GF(q)n,

c(x) = c0 + c1x + · · ·+ cn−1x
n−1

is the corresponding code polynomial.

We can similarly assign polynomials to error vectors, received
vectors etc.

Note that the terms are in increasing order of degree.
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Polynomials over GF(q)

Brief summary of polynomials over GF(q).

a(x) = a0 + a1x + a2x
2 + · · ·+ amx

m; a0, a1, a2, . . . , am ∈ GF(q)

Roots: x1, . . . , xm ∈ GF(q): a(xi ) = 0, i = 1, . . . ,m

If deg(a(x)) = m, then a(x) has ≤ m roots.

If deg(a(x)) = m and a(x) has m roots x1, . . . , xm, then

a(x) = am

m∏
i=1

(x − xi ).
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Polynomials over GF(q)
Polynomial division with remainder: given a(x) and d(x) with
deg(a(x)) = m > deg(d(x)) = k ,

∃q(x), r(x) : a(x) = q(x)d(x) + r(x); deg(r(x)) < k .

We also use the notation

a(x) mod d(x) = r(x).

Calculating polynomial division is similar to CRC coding, but in
each step, we may also need to adjust the main coefficient by
multiplication.

We will also discuss dedicated architectures for polynomial
multiplication and division.

For polynomials, the cyclic shift operator is

Sc(x) = xc(x) mod xn − 1
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Linear cyclic codes

Theorem
For any C(n, k) cyclic linear code, there is a unique g(x) of degree
n − k with main coefficient gn−k = 1 such that for any vector c of
length n,

c is a codeword ⇐⇒ g(x)|c(x).

g(x) is called the generator polynomial of the code.
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Linear cyclic codes

Proof. Assume a code is linear and cyclic. From among the
codewords, select the one whose code polynomial has minimal
degree. Due to linearity, we can assume the main coefficient is 1
(otherwise we just divide by the main coefficient).

Let this polynomial be g(x), with deg(g(x)) = r . We aim to prove
the following:

(a) for any polynomial u(x) with deg(u(x)) ≤ n − r − 1, g(x)u(x)
is a code polynomial;

(b) g(x) divides every code polynomial;

(c) there is no other g ′(x) with these properties;

(d) deg(g(x)) = r = n − k .
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Linear cyclic codes

(a) The code is cyclic and g(x) is a code polynomial, so

g(x), xg(x), x2g(x), . . . , xn−r−1g(x)

are all code polynomials, and due to linearity, for any
u(x) = u0 + u1x + · · ·+ un−r−1x

n−r−1,

u(x)g(x) = u0g(x) + u1xg(x) + · · ·+ un−r−1x
n−r−1g(x)

is also a code polynomial.



Linear cyclic codes

(b) For any c(x) code polynomial, either g(x)|c(x), or the
polynomial division

r(x) = c(x) mod g(x)

has a nonzero remainder r(x) with deg(r(x)) < deg(g(x)).
But then r(x) is also a code polynomial (due to linear and
cyclic code), which contradicts g(x) having minimal degree.
So g(x)|c(x).

(c) If there was another g ′(x) with the same properties as g(x),
then g(x)− g ′(x) would be a code polynomial that divides all
code polynomials, which once again contradicts deg(g(x))
being minimal.

(d) If deg(g(x)) = r , then g(x) has qn−r multiples, which must be
equal to the number of codewords, which is qk for a C(n, k)
code, and r = n − k follows.
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has a nonzero remainder r(x) with deg(r(x)) < deg(g(x)).
But then r(x) is also a code polynomial (due to linear and
cyclic code), which contradicts g(x) having minimal degree.
So g(x)|c(x).
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being minimal.

(d) If deg(g(x)) = r , then g(x) has qn−r multiples, which must be
equal to the number of codewords, which is qk for a C(n, k)
code, and r = n − k follows.



Linear cyclic codes

Theorem
For any C(n, k) linear cyclic code,

g(x)|xn − 1.

Conversely, for any polynomial g(x)|xn − 1 with deg(g(x)) = n− k
and main coefficient gn−k = 1, there is a C(n, k) linear cyclic code
with generator polynomial g(x).

Proof. Since g has degree n − k,

Sk−1g(x) = xk−1g(x),

Skg(x) = xk−1g(x)− (xn − 1)

are both code polynomials, so divisible by g(x), but then

g(x)|Sk−1g(x)− Skg(x) = xn − 1.
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Linear cyclic codes

For the converse, consider a polynomial g(x)|xn − 1 with
deg(g(x)) = n − k . Then the set of codewords corresponding to
multiples of g(x) is. . .

I clearly linear, and

I has qk elements,

I so we only need to prove that it is cyclic.

Take a polynomial c(x) = a(x)g(x) from this set. We need to
prove Sc(x) is also a multiple of g(x).

I If deg(a(x)) < k − 1, then Sc(x) = xc(x) = xa(x)g(x).

I If deg(a(x)) = k − 1, then Sc(x) = xc(x)− ak−1(xn − 1),
which is also divisible by g(x) due to g(x)|xn − 1.
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Linear cyclic codes

Basically, the previous two theorems say that there is a one-to-one
correspondence between cyclic linear codes and generator
polynomials.

So, are RS codes cyclic linear codes? If yes, then g(x) is a code
polynomial with minimal degree and main coefficient 1.

The list of code polynomials can be obtained by converting all
codewords into polynomials, for example,

(1 2 4 3)→ 1 + 2x + 4x2 + 3x3

(4 2 3 0)→ 4 + 2x + 3x2
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C(4,2) RS code
Can you find the vector corresponding to the generator polynomial
from the list of codewords of the C(4,2) RS code over GF(5) using
the primitive element 2?

(0 0)→ (0 0 0 0) (2 0)→ (2 2 2 2) (4 0)→ (4 4 4 4)
(0 1)→ (1 2 4 3) (2 1)→ (3 4 1 0) (4 1)→ (0 1 3 2)
(0 2)→ (2 4 3 1) (2 2)→ (4 1 0 3) (4 2)→ (1 3 2 0)
(0 3)→ (3 1 2 4) (2 3)→ (0 3 4 1) (4 3)→ (2 0 1 3)
(0 4)→ (4 3 1 2) (2 4)→ (1 0 3 4) (4 4)→ (3 2 0 1)
(1 0)→ (1 1 1 1) (3 0)→ (3 3 3 3)
(1 1)→ (2 3 0 4) (3 1)→ (4 0 2 1)
(1 2)→ (3 0 4 2) (3 2)→ (0 2 1 4)
(1 3)→ (4 2 3 0) (3 3)→ (1 4 0 2)
(1 4)→ (0 4 2 3) (3 4)→ (2 1 4 0)

It should end with as many 0’s as possible, with a 1 before that →
g = (3 4 1 0) and

g(x) = 3 + 4x + x2.



C(4,2) RS code
Can you find the vector corresponding to the generator polynomial
from the list of codewords of the C(4,2) RS code over GF(5) using
the primitive element 2?

(0 0)→ (0 0 0 0) (2 0)→ (2 2 2 2) (4 0)→ (4 4 4 4)
(0 1)→ (1 2 4 3) (2 1)→ (3 4 1 0) (4 1)→ (0 1 3 2)
(0 2)→ (2 4 3 1) (2 2)→ (4 1 0 3) (4 2)→ (1 3 2 0)
(0 3)→ (3 1 2 4) (2 3)→ (0 3 4 1) (4 3)→ (2 0 1 3)
(0 4)→ (4 3 1 2) (2 4)→ (1 0 3 4) (4 4)→ (3 2 0 1)
(1 0)→ (1 1 1 1) (3 0)→ (3 3 3 3)
(1 1)→ (2 3 0 4) (3 1)→ (4 0 2 1)
(1 2)→ (3 0 4 2) (3 2)→ (0 2 1 4)
(1 3)→ (4 2 3 0) (3 3)→ (1 4 0 2)
(1 4)→ (0 4 2 3) (3 4)→ (2 1 4 0)

It should end with as many 0’s as possible, with a 1 before that

→
g = (3 4 1 0) and

g(x) = 3 + 4x + x2.



C(4,2) RS code
Can you find the vector corresponding to the generator polynomial
from the list of codewords of the C(4,2) RS code over GF(5) using
the primitive element 2?

(0 0)→ (0 0 0 0) (2 0)→ (2 2 2 2) (4 0)→ (4 4 4 4)
(0 1)→ (1 2 4 3) (2 1)→ (3 4 1 0) (4 1)→ (0 1 3 2)
(0 2)→ (2 4 3 1) (2 2)→ (4 1 0 3) (4 2)→ (1 3 2 0)
(0 3)→ (3 1 2 4) (2 3)→ (0 3 4 1) (4 3)→ (2 0 1 3)
(0 4)→ (4 3 1 2) (2 4)→ (1 0 3 4) (4 4)→ (3 2 0 1)
(1 0)→ (1 1 1 1) (3 0)→ (3 3 3 3)
(1 1)→ (2 3 0 4) (3 1)→ (4 0 2 1)
(1 2)→ (3 0 4 2) (3 2)→ (0 2 1 4)
(1 3)→ (4 2 3 0) (3 3)→ (1 4 0 2)
(1 4)→ (0 4 2 3) (3 4)→ (2 1 4 0)

It should end with as many 0’s as possible, with a 1 before that →
g = (3 4 1 0) and

g(x) = 3 + 4x + x2.



Reed-Solomon codes

Theorem
A C(n, k) RS code over GF(q) with n = q − 1 using primitive
element α is a cyclic linear code with generator polynomial

g(x) =
n−k∏
i=1

(x − αi ).

Remark. For n < q − 1, the code is not cyclic.

Example. For the C(4,2) RS code over GF(5) using the primitive
element 2, the generator polynomial is

g(x) = (x − 2)(x − 22) = (3 + x)(1 + x) = 3 + 4x + x2.

A few code polynomials:

(1 2 4 3)→ 1 + 2x + 4x2 + 3x3 = (2 + 3x)(3 + 4x + x2),

(0 3 4 1)→ 3x + 4x2 + x3 = x(3 + 4x + x2),

(4 4 4 4)→ 4 + 4x + 4x2 + 4x3 = (3 + 4x)(3 + 4x + x2).
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Reed-Solomon codes

Proof. The generator matrix G and parity check matrix H of the
C(n, k) RS code with n = q − 1, generated by primitive element α
are

G =


1 1 1 . . . 1
1 α α2 . . . αn−1

...
. . .

...

1 αk−1 α2(k−1) . . . α(n−1)(k−1)



H =


1 α α2 . . . αn−1

1 α2 α4 . . . α2(n−1)

...
. . .

...

1 αn−k α2(n−k) . . . α(n−k)(n−1)





Reed-Solomon codes

For a codeword c = (c0c1 . . . cn), cHT = 0 means

n−1∑
j=0

cjα
ij = 0 i = 1, . . . , n − k

But this means that α1, . . . , αn−k are roots of c(x), so

g(x) =
n−k∏
i=1

(x − αi )
∣∣∣c(x)

for every code polynomial.

The main coefficient of g(x) is 1, so it is the generator polynomial
of the RS code.

It also follows directly that RS codes with n = q − 1 are indeed
cyclic.



Reed-Solomon codes

For a codeword c = (c0c1 . . . cn), cHT = 0 means

n−1∑
j=0

cjα
ij = 0 i = 1, . . . , n − k

But this means that α1, . . . , αn−k are roots of c(x), so

g(x) =
n−k∏
i=1

(x − αi )
∣∣∣c(x)

for every code polynomial.

The main coefficient of g(x) is 1, so it is the generator polynomial
of the RS code.

It also follows directly that RS codes with n = q − 1 are indeed
cyclic.



Reed-Solomon codes

For a codeword c = (c0c1 . . . cn), cHT = 0 means

n−1∑
j=0

cjα
ij = 0 i = 1, . . . , n − k

But this means that α1, . . . , αn−k are roots of c(x), so

g(x) =
n−k∏
i=1

(x − αi )
∣∣∣c(x)

for every code polynomial.

The main coefficient of g(x) is 1, so it is the generator polynomial
of the RS code.

It also follows directly that RS codes with n = q − 1 are indeed
cyclic.



Reed-Solomon codes

For a codeword c = (c0c1 . . . cn), cHT = 0 means

n−1∑
j=0

cjα
ij = 0 i = 1, . . . , n − k

But this means that α1, . . . , αn−k are roots of c(x), so

g(x) =
n−k∏
i=1

(x − αi )
∣∣∣c(x)

for every code polynomial.

The main coefficient of g(x) is 1, so it is the generator polynomial
of the RS code.

It also follows directly that RS codes with n = q − 1 are indeed
cyclic.



Reed-Solomon codes

The fact that every codeword is a multiple of g(x) means that it is
possible to assign the codewords to the message vectors using

c(x) = u(x)g(x).

Example. For the usual C(4,2) RS code, the codeword assigned to
the message vector u = (1 2) is:

u = (1 2) → u(x) = 1 + 2x

c(x) = (1 + 2x)(3 + 4x + x2) = 3 + 4x2 + 2x3 → c = (3, 0, 4, 2)

This assignment is different from u → c = uG . It is not systematic
either, but polynomial multiplication can be computed very
efficiently (architecture coming soon).
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Reed-Solomon codes – assignment I

Example. The C(4,2) RS code over GF(5) using the primitive
element 2, codeword assignment based on u → c = uG :

(0 0)→ (0 0 0 0) (2 0)→ (2 2 2 2) (4 0)→ (4 4 4 4)
(0 1)→ (1 2 4 3) (2 1)→ (3 4 1 0) (4 1)→ (0 1 3 2)
(0 2)→ (2 4 3 1) (2 2)→ (4 1 0 3) (4 2)→ (1 3 2 0)
(0 3)→ (3 1 2 4) (2 3)→ (0 3 4 1) (4 3)→ (2 0 1 3)
(0 4)→ (4 3 1 2) (2 4)→ (1 0 3 4) (4 4)→ (3 2 0 1)
(1 0)→ (1 1 1 1) (3 0)→ (3 3 3 3)
(1 1)→ (2 3 0 4) (3 1)→ (4 0 2 1)
(1 2)→ (3 0 4 2) (3 2)→ (0 2 1 4)
(1 3)→ (4 2 3 0) (3 3)→ (1 4 0 2)
(1 4)→ (0 4 2 3) (3 4)→ (2 1 4 0)



Reed-Solomon codes – assignment II

Example. The C(4,2) RS code over GF(5) using the primitive
element 2, codeword assignment based on c(x) = u(x)g(x):

(0 0)→ (0 0 0 0) (2 0)→ (0 1 3 2) (4 0)→ (0 2 1 4)
(0 1)→ (3 4 1 0) (2 1)→ (3 0 4 2) (4 1)→ (3 1 2 4)
(0 2)→ (1 3 2 0) (2 2)→ (1 4 0 2) (4 2)→ (1 0 3 4)
(0 3)→ (4 2 3 0) (2 3)→ (4 3 1 2) (4 3)→ (4 4 4 4)
(0 4)→ (2 1 4 0) (2 4)→ (2 2 2 2) (4 4)→ (2 3 0 4)
(1 0)→ (0 3 4 1) (3 0)→ (0 4 2 3)
(1 1)→ (3 2 0 1) (3 1)→ (3 3 3 3)
(1 2)→ (1 1 1 1) (3 2)→ (1 2 4 3)
(1 3)→ (4 0 2 1) (3 3)→ (4 1 0 3)
(1 4)→ (2 4 3 1) (3 4)→ (2 0 1 3)



Reed-Solomon codes – assignment III

Example. The C(4,2) RS code over GF(5) using the primitive
element 2, systematic codeword assignment:

(0 0)→ (0 0 0 0) (2 0)→ (2 0 1 3) (4 0)→ (4 0 2 1)
(0 1)→ (0 1 3 2) (2 1)→ (2 1 4 0) (4 1)→ (4 1 0 3)
(0 2)→ (0 2 1 4) (2 2)→ (2 2 2 2) (4 2)→ (4 2 3 0)
(0 3)→ (0 3 4 1) (2 3)→ (2 3 0 4) (4 3)→ (4 3 1 2)
(0 4)→ (0 4 2 3) (2 4)→ (2 4 3 1) (4 4)→ (4 4 4 4)
(1 0)→ (1 0 3 4) (3 0)→ (3 0 4 2)
(1 1)→ (1 1 1 1) (3 1)→ (3 1 2 4)
(1 2)→ (1 2 4 3) (3 2)→ (3 2 0 1)
(1 3)→ (1 3 2 0) (3 3)→ (3 3 3 3)
(1 4)→ (1 4 0 2) (3 4)→ (3 4 1 0)



Systematic generation

In general, a cyclic linear code with generator polynomial
g(x) = g0 + g1x + · · ·+ gn−kx

n−k can be generated systematically
by the generator matrix

G =


1 g ′1 g ′2 . . . g ′n−k−1 g ′n−k 0 . . . 0 0
0 1 g ′1 . . . gn−k−2 g ′n−k−1 g ′n−k . . . 0 0
...

...
...

. . .
...

...
...

. . .
...

0 0 0 . . . 1 g ′1 g ′2 . . . g ′n−k 0
0 0 0 . . . 0 1 g ′1 . . . g ′n−k−1 g ′n−k


where g ′i = gi/g0. (g0 cannot be 0 since g(x)|xn − 1.)

For code
polynomials, the formula for systematic assignment is

c(x) = u(x)xn−k − (u(x)xn−k mod g(x)).
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Binary linear cyclic codes

The result that linear cyclic codes can be generated using a
generator polynomial is valid for binary codes as well.

So are any of the binary codes we have seen previously cyclic?

I repeater codes are clearly cyclic; the C(n, 1) repeater code has
generator polynomial g(x) = 1 + x + · · ·+ xn−1.

I Hamming codes are also cyclic (at least for some orderings of
the columns of the parity check matrix H). Generator
polynomials:

I C(7,4): g(x) = 1 + x + x3;
I C(15,11): g(x) = 1 + x + x4 or g(x) = 1 + x3 + x4;
I C(31,26): g(x) = 1 + x2 + x5.
I etc.

I the C(23,12) Golay code is also cyclic with either
g(x) = 1 + x2 + x4 + x5 + x6 + x10 + x11 or
g(x) = 1 + x1 + x5 + x6 + x7 + x9 + x11.

Not cyclic: Hadamard.
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Code generation with generator polynomials

What do we gain by using polynomials to describe codes?

I Polynomials are smaller than matrices. E.g. the C(6,4) RS
code over GF(7) generated by the primitive element 5 has

G =


1 1 1 1 1 1
1 5 4 6 2 3
1 4 2 1 4 2
1 6 1 6 1 6


and

g(x) = 4 + 2x + 3x2 + 6x3 + x4.

I The computational cost of polynomial multiplication is
comparable to matrix-vector multiplication.

I Efficient decoding methods for polynomials (coming soon).
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Brief summary of code polynomials (so far)

Every cyclic linear C(n, k) code over GF(q) has a generator
polynomial g(x) over GF(q) such that

I c(x) is a code polynomial ⇐⇒ g(x)|c(x);

I g(x)|xn − 1;

I deg(g(x)) = n − k , and

I the main coefficient of g(x) is gn−k = 1.

We can generate codewords from message vectors with

c(x) = u(x)g(x).

This gives a different u → c assignment than matrix-vector
multiplication.
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Decoding with generator polynomials

For encoding in polynomial form, we will stick to using

c(x) = u(x)g(x).

Next we prepare for decoding using code polynomials.

The syndrome polynomial assigned to a received code polynomial
v(x) is

s(x) = v(x) mod g(x)

A received polynomial v(x) is a codeword ⇐⇒ s(x) = 0.
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Error trapping algorithm

Next we present the Error trapping algorithm for decoding RS
codes. It has more limited error correction capability than the Error
locator algorithm, but it is much faster at any parameter setup.

Notably the Error trapping algorithm can correct
⌊
n−k
2

⌋
errors for a

C(n, k) RS code as long as all of the errors fall close to each other.

This restriction is outside the usual definition of error correction
capabilities, but for some physical channels (not the q-ary
symmetric channel), errors typically occur in bursts, and the Error
trapping algorithm is very relevant in such situations.
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Error trapping algorithm

Assume we have a C(n, k) RS code over GF(q), and the error
vector e is such that

I w(e) ≤ n−k
2 ;

I all errors in e occur within an interval of (n − k) consecutive
digits.

The received polynomial is

v(x) = u(x)g(x) + e(x)

due to the channel model.

Dividing the polynomial v(x) by g(x) yields

v(x) = a(x)g(x) + r(x)

where deg(r(x)) < deg(g(x)) = n − k .

Do the two equations imply r(x) = e(x)?



Error trapping algorithm

Assume we have a C(n, k) RS code over GF(q), and the error
vector e is such that

I w(e) ≤ n−k
2 ;

I all errors in e occur within an interval of (n − k) consecutive
digits.

The received polynomial is

v(x) = u(x)g(x) + e(x)

due to the channel model.

Dividing the polynomial v(x) by g(x) yields

v(x) = a(x)g(x) + r(x)

where deg(r(x)) < deg(g(x)) = n − k .

Do the two equations imply r(x) = e(x)?



Error trapping algorithm

Assume we have a C(n, k) RS code over GF(q), and the error
vector e is such that

I w(e) ≤ n−k
2 ;

I all errors in e occur within an interval of (n − k) consecutive
digits.

The received polynomial is

v(x) = u(x)g(x) + e(x)

due to the channel model.

Dividing the polynomial v(x) by g(x) yields

v(x) = a(x)g(x) + r(x)

where deg(r(x)) < deg(g(x)) = n − k .

Do the two equations imply r(x) = e(x)?



Error trapping algorithm

Assume we have a C(n, k) RS code over GF(q), and the error
vector e is such that

I w(e) ≤ n−k
2 ;

I all errors in e occur within an interval of (n − k) consecutive
digits.

The received polynomial is

v(x) = u(x)g(x) + e(x)

due to the channel model.

Dividing the polynomial v(x) by g(x) yields

v(x) = a(x)g(x) + r(x)

where deg(r(x)) < deg(g(x)) = n − k .

Do the two equations imply r(x) = e(x)?



Error trapping algorithm

No, r(x) = e(x) is not implied. We know that deg(r(x)) < n − k ,
but deg(e(x)) can be higher, up to n − 1.

However, we assumed that e has all errors within coordinates
[i , i + n − k − 1] for some i . Assume for a moment that the value
of i is available. Then applying S−i in advance for the previous
calculations shifts the nonzero terms of e(x) to the front; in other
words, deg(S−ie(x)) < n − k.

Then

S−iv(x) = S−iu(x)g(x) + S−ie(x)

S−iv(x) = S−ia(x)g(x) + r(x),

and now S−ie(x) = r(x) is implied since S−ie(x)− r(x) is a
codeword, so it is a multiple of g(x), but
deg(S−ie(x)− r(x)) < deg(g(x)), so S−ie(x)− r(x) must be 0.



Error trapping algorithm

No, r(x) = e(x) is not implied. We know that deg(r(x)) < n − k ,
but deg(e(x)) can be higher, up to n − 1.

However, we assumed that e has all errors within coordinates
[i , i + n − k − 1] for some i . Assume for a moment that the value
of i is available. Then applying S−i in advance for the previous
calculations shifts the nonzero terms of e(x) to the front; in other
words, deg(S−ie(x)) < n − k.

Then

S−iv(x) = S−iu(x)g(x) + S−ie(x)

S−iv(x) = S−ia(x)g(x) + r(x),

and now S−ie(x) = r(x) is implied since S−ie(x)− r(x) is a
codeword, so it is a multiple of g(x), but
deg(S−ie(x)− r(x)) < deg(g(x)), so S−ie(x)− r(x) must be 0.



Error trapping algorithm

No, r(x) = e(x) is not implied. We know that deg(r(x)) < n − k ,
but deg(e(x)) can be higher, up to n − 1.

However, we assumed that e has all errors within coordinates
[i , i + n − k − 1] for some i . Assume for a moment that the value
of i is available. Then applying S−i in advance for the previous
calculations shifts the nonzero terms of e(x) to the front; in other
words, deg(S−ie(x)) < n − k.

Then

S−iv(x) = S−iu(x)g(x) + S−ie(x)

S−iv(x) = S−ia(x)g(x) + r(x),

and now S−ie(x) = r(x) is implied since S−ie(x)− r(x) is a
codeword, so it is a multiple of g(x), but
deg(S−ie(x)− r(x)) < deg(g(x)), so S−ie(x)− r(x) must be 0.



Error trapping algorithm
Based on the previous calculation, if we knew the position i where
the errors start in e(x), we could do the following:

I compute the polynomial division
S−iv(x) = S−ia(x)g(x) + r(x), and

I the detected error polynomial is e ′(x) = S i r(x).

The issue is that the position i is not known in advance.

So how can we obtain i?

Let i be any position (not necessarily where the errors in e(x)
start), and compute the polynomial division

S−iv(x) = S−ia(x)g(x) + r (i)(x)

anyway.

The polynomial S−ie(x)− r (i)(x) = S−iv(x)− r (i)(x) is a code
polynomial, which means that either

S−iv(x)− r (i)(x) = 0 or w(S−iv(x)− r (i)(x)) ≥ n − k + 1

because the RS code has minimal codeword distance n − k + 1.
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Error trapping algorithm

Based on this, the Error trapping algorithm is the following:

I For each value of i from 0 to n − 1, compute the polynomial
division S−iv(x) = S−ia(x)g(x) + r (i)(x).

I Compute w(S−iv(x)− r (i)(x)).

I If w(S−iv(x)− r (i)(x)) ≥ n − k + 1, move on to the next
value of i .

I If w(S−iv(x)− r (i)(x)) < n − k + 1, then we stop;
e ′(x) = S i r (i)(x) must hold, and so the detected error
polynomial is

e ′(x) = S i r (i)(x).

If e(x) indeed contains all ≤
⌊
n−k
2

⌋
errors within an interval of

length ≤ n − k, then the algorithm is guaranteed to stop for at
least one choice of i . (It is possible that several i positions are
good, then we can use either of them.)
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