Reed-Solomon codes Il, GF(2™) arithmetics

Coding Technology

[llés Horvath

2025/10/10

Reminder: cyclic codes
Reminder: cyclic codes.

Cyclic linear codes can be generated by a single generator
polynomial.

Reed-Solomon codes are MDS codes (dmin = n — k + 1) over
GF(qg). RS codes are cyclic linear codes generated using a primitive
element . We assume n = g — 1. RS codes can be obtained
either by generator matrix

(n—D(k-1)

or by generator polynomial g(x) = []7=f(x — &) (which gives the

same set of codewords but a different message—codeword
mapping).

Decoding: error locator algorithm.

Binary linear cyclic codes

The result that linear cyclic codes can be generated using a
generator polynomial is valid for binary codes as well.

So are any of the binary codes we have seen previously cyclic?

» repeater codes are clearly cyclic; the C(n, 1) repeater code has
generator polynomial g(x) =1+ x + --- + x"1,

» Hamming codes are also cyclic (at least for some orderings of
the columns of the parity check matrix H). Generator
polynomials:

C(7,4): g(x) =1+ x+ x5

v

» C(15,11): g(x) =1+ x+x* or g(x) = 1 + x3 + x*
» C(31,26): g(x) =1+ x>+ x>.
> etc.

» the C(23,12) Golay code is also cyclic with either
g(x) =14+ x®+x* +x% + x% + x19 + x or
g(x) =14+ xt + x5+ x5+ x7 4+ x% + x11.

Not cyclic: Hadamard.

Code generation with generator polynomials

What do we gain by using polynomials to describe codes?

» Polynomials are smaller than matrices. E.g. the C(6,4) RS
code over GF(7) generated by the primitive element 5 has

111111
c_|1 54623
1421 42
161616

and
g(x) = 6+ 5x + x°.

» The computational cost of polynomial multiplication is
comparable to matrix-vector multiplication.

» Efficient decoding methods for polynomials (coming soon).

Brief summary of code polynomials (so far)

Every cyclic linear C(n, k) code over GF(q) has a generator
polynomial g(x) over GF(q) such that

» c(x) is a code polynomial < g(x)|c(x);
- g()x" — 1,

» deg(g(x)) = n— k, and

» the main coefficient of g(x) is g,—x = 1.

We can generate codewords from message vectors with

This gives a u — ¢ mapping different from matrix-vector
multiplication.

Decoding with generator polynomials

For encoding in polynomial form, we will stick to using

Next we prepare for decoding using code polynomials.

The syndrome polynomial assigned to a received code polynomial
v(x) is
s(x) = v(x) mod g(x)

A received polynomial v(x) is a codeword <= s(x) = 0.

Error trapping algorithm

Next we present the Error trapping algorithm for decoding RS
codes. It has more limited error correction capability than the Error
locator algorithm, but it is much faster at any parameter setup.

Notably the Error trapping algorithm can correct L”;kj errors for a

C(n, k) RS code as long as all of the errors fall close to each other.

This restriction is outside our usual definition of error correction
capabilities over a symmetric channel, but for some physical
channels, errors typically occur in bursts, and the Error trapping
algorithm is very relevant in such situations.

Error trapping algorithm

We have a C(n, k) RS code over GF(q). Assume that the error
vector e is such that
> wle) <[54
» all errors in e occur within an interval of (n — k) consecutive
digits.

The received polynomial is

due to the channel model.

Dividing the polynomial v(x) by g(x) yields
v(x) = a(x)g(x) + r(x)

where deg(r(x)) < deg(g(x)) =n— k.

Do the two equations imply r(x) = e(x)?

Error trapping algorithm

No, r(x) = e(x) is not implied. We know that deg(r(x)) < n— k,
but deg(e(x)) can be higher, up to n — 1.

However, we assumed that e has all errors within coordinates
[i,i4+ n— k —1] for some i. Assume for a moment that the value
of i is available. Then applying S~/ in advance for the previous
calculations shifts the nonzero terms of e(x) to the front; in other
words, deg(S~"e(x)) < n— k.

Then

"u(x)g(x) + S7"e(x)
'a(x)g(x) + r(x),

Sy S
STv(x) =S~
and now S~7e(x) = r()(x) is implied since S~"e(x) — r()(x) is a
codeword, so it is a multiple of g(x), but

deg(S—7e(x) — r)(x)) < deg(g(x)), so S~7e(x) — r()(x) must be
0.

Error trapping algorithm

Based on the previous calculation, if we knew the position i/ where
the errors start in e(x), we could do the following:
» compute the polynomial division

S7iv(x) = S~"a(x)g(x) + r(x), and

» the detected error polynomial is €'(x) = S'r(x).
The issue is that the position i is not known in advance.
So how can we obtain /7

Let i be any position (not necessarily where the errors in e(x)
start), and compute the polynomial division

S7iv(x) = ST a(x)g(x) + r')(x)
anyway.

The polynomial S~e(x) — r()(x) = S~v(x) — rl)(x) is a code
polynomial, which means that either

STvx)—rD(x)=0 or w(STv(x)—rD(x))>n—k+1

because the RS code has minimal codeword distance n — k + 1.

Error trapping algorithm

Based on this, the Error trapping algorithm is the following:
> For each value of i from 0 to n — 1, compute the polynomial
division S~'v(x) = S~a(x)g(x) + r)(x).
» Compute w(S~v(x) — r(x)).
» If w(S~v(x) — r)(x)) > n— k + 1, move on to the next
value of i.
» If w(S7v(x) — rl)(x)) < n— k, then we stop, and the
detected error polynomial is
e(x) = S'r(x).
If e(x) indeed contains all < | 2% | errors within an interval of
length < n — k, then the algorithm is guaranteed to stop for at
least one choice of i. (It is possible that several i positions are
good, then we can use either of them.)

Decoding for cyclic codes other than RS

We have discussed two different decoding methods for RS codes:
the Error locator method and the Error trapping method.

Both methods are general enough that they can be adapted to
other cyclic linear codes, not just RS.

Error trapping methods are typically used for burst error situations,
when the error digits are close to each other.

Architectures for polynomial calculations

Coding and decoding using code polynomials rely heavily on
calculations with polynomials.

We want to make sure that polynomial calculations are fast.

Some of the operations (like addition) are straightforward; next we
look at architectures for polynomial multiplication and polynomial
division with remainder.

Polynomial multiplication by LFFSR

The Linear FeedForward Shift Register architecture for
multiplication by 2 4 3x + x2.

Compute (4 + 2x + x3)(2 + 3x + x?) over GF(5).

1,0,2,4) Sy
BN
| +

—

Polynomial multiplication by LFFSR

The Linear FeedForward Shift Register architecture for
multiplication by 2 4 3x + x2.

Compute (4 + 2x + x3)(2 + 3x + x?) over GF(5).

ror o

—

Polynomial multiplication by LFFSR

The Linear FeedForward Shift Register architecture for
multiplication by 2 4 3x + x2.

Compute (4 + 2x + x3)(2 + 3x + x?) over GF(5).

ror o

—3

Polynomial multiplication by LFFSR

The Linear FeedForward Shift Register architecture for
multiplication by 2 4 3x + x2.

Compute (4 + 2x + x3)(2 + 3x + x?) over GF(5).

ror oy

—3

Polynomial multiplication by LFFSR

The Linear FeedForward Shift Register architecture for
multiplication by 2 4 3x + x2.

Compute (4 + 2x + x3)(2 + 3x + x?) over GF(5).

ror oy

—— 1,3

Polynomial multiplication by LFFSR

The Linear FeedForward Shift Register architecture for
multiplication by 2 4 3x + x2.

Compute (4 + 2x + x3)(2 + 3x + x?) over GF(5).

ror oy

—— 1,3

Polynomial multiplication by LFFSR

The Linear FeedForward Shift Register architecture for
multiplication by 2 4 3x + x2.

Compute (4 + 2x + x3)(2 + 3x + x?) over GF(5).

Polynomial multiplication by LFFSR

The Linear FeedForward Shift Register architecture for
multiplication by 2 4 3x + x2.

Compute (4 + 2x + x3)(2 + 3x + x?) over GF(5).

Polynomial multiplication by LFFSR

The Linear FeedForward Shift Register architecture for
multiplication by 2 4 3x + x2.

Compute (4 + 2x + x3)(2 + 3x + x?) over GF(5).

ror oy

—— 4,0,1,3

Polynomial multiplication by LFFSR

The Linear FeedForward Shift Register architecture for
multiplication by 2 4 3x + x2.

Compute (4 + 2x + x3)(2 + 3x + x?) over GF(5).

ror oy

—— 4,0,1,3

Polynomial multiplication by LFFSR

The Linear FeedForward Shift Register architecture for
multiplication by 2 4 3x + x2.

Compute (4 + 2x + x3)(2 + 3x + x?) over GF(5).

ror oy

—— 3,4,0,1,3

Polynomial multiplication by LFFSR

The Linear FeedForward Shift Register architecture for
multiplication by 2 4 3x + x2.

Compute (4 + 2x + x3)(2 + 3x + x?) over GF(5).

ror oy

—— 3,4,0,1,3

Polynomial multiplication by LFFSR

The Linear FeedForward Shift Register architecture for
multiplication by 2 4 3x + x2.

Compute (4 + 2x + x3)(2 + 3x + x?) over GF(5).

ror oy

—— 1,3,4,0,1,3

Polynomial multiplication by LFFSR

The Linear FeedForward Shift Register architecture for
multiplication by 2 + 3x + x2.

Compute (4 + 2x + x3)(2 + 3x + x?) over GF(5).

Py
f

j3 T?l

——— 1,3,4,0,1,3

Result: 34+ 1-x+0-x24+4x3+3x*+1-x°.

Polynomial division by LFBSR

The Linear Feedback Shift Register architecture for division by
g(x) =2+ 3x + x? over GF(5). We assume the main coefficient of

g(x)is 1.
Compute (4 +2x + x3) : (2 + 3x + x?) over GF(5).

4,2,0,1 lo}—e—{0]

Polynomial division by LFBSR

The Linear Feedback Shift Register architecture for division by
g(x) =2+ 3x + x? over GF(5). We assume the main coefficient of

g(x)is 1.
Compute (4 +2x + x3) : (2 + 3x + x?) over GF(5).

4,2,0 [1}—e—{0]

Polynomial division by LFBSR

The Linear Feedback Shift Register architecture for division by
g(x) =2+ 3x + x? over GF(5). We assume the main coefficient of

g(x)is 1.
Compute (4 +2x + x3) : (2 + 3x + x?) over GF(5).

[0l [1]
4,2 [0} —e—{1]

Polynomial division by LFBSR

The Linear Feedback Shift Register architecture for division by
g(x) =2+ 3x + x? over GF(5). We assume the main coefficient of

g(x)is 1.
Compute (4 +2x + x3) : (2 + 3x + x?) over GF(5).

Polynomial division by LFBSR

The Linear Feedback Shift Register architecture for division by
g(x) =2+ 3x + x? over GF(5). We assume the main coefficient of

g(x)is 1.
Compute (4 +2x + x3) : (2 + 3x + x?) over GF(5).

O} —{a e 2

Polynomial division by LFBSR

The Linear Feedback Shift Register architecture for division by
g(x) = 2+ 3x + x2 over GF(5). We assume the main coefficient of

g(x)is 1.
Compute (4 +2x + x3) : (2 + 3x + x?) over GF(5).

[0l (4]
[0} —o—14] 2.1

Result: (24 3x + x2)(2 + x) + 0 + 4x.

Irreducible polynomials over GF(q)

We say that a polynomial p(x) is irreducible over GF(q) if it
cannot be written as the product of two polynomials of smaller
degree. (Otherwise it is called reducible.)

Example. The binary polynomials of degree 2 are

irreducible
v v+l iy,

Which of theséd are irreducib

One way to apswer that is to consi
and list all pogssible products:

all polynomials of degree 1,

vy, yly+1), (y+1ly, (++1)

and match them to the degree 2 polynomials.

GF(p™) arithmetics

For a finite field GF(q), g can be either a prime or p™ (with p
prime and m > 2).

Now we focus on the case g = 2.

GF(q) ={0,1,...,9 — 1}

Each element of GF(2™) has 3 representations:

element binary polynomial
0 (0...00) 0
1 (0...01) 1
o (am-1,.-.a1,00) | a(y) = am1y™ '+ + o1y + ag

We will typically use the polynomial representation.

GF(2™) arithmetics

Elements of GF(2™) are binary polynomials of degree m — 1 or less.

Addition is polynomial addition mod 2. (This is equivalent to
addition of binary vectors of length m.)

Multiplication in GF(2™) will be polynomial multiplication mod
p(y), where p(y) is a fixed irreducible polynomial of degree m.

Degree m makes sense for p(y), since we want the result of a
multiplication to be an element of the field, and only polynomials
of degree < m — 1 are elements of the field.

Why is p(y) irreducible? If p(y) = a(y)b(y), then a(y) is a
nonzero element of the field, but a(y)b(y) mod p(y) = 0, which is
an issue, as a(y) would have no multiplicative inverse.

p(y) is called the reducing polynomial of the field.

GF(2™) arithmetics

Theorem
GF(2™) with the above arithmetics satisfies the field axioms.

Proof. Apart from the multiplicative inverse, every other axiom
follows from the fact that they hold for binary polynomials, and
polynomial addition and multiplication are consistent with mod

p(y)-

So we only need to check that every nonzero element of the field
has a multiplicative inverse. Let a(y) € GF(2™) be a nonzero
element.

Consider the two sets

A={f(y) : deg(f(y)) <m—1}
B = {a(y)f(y) mod p(y) : deg(f(y)) < m—1}

Obviously B C A.

GF(2™) arithmetics

The size of A is 2™; if we can prove that all elements of B are
distinct, then the size of B is also 2", which implies A = B.

Assume the opposite, that is, there exist distinct f1(y) and f(y)
such that

a(y)fi(y) mod p(y) = a(y)fa(y) mod p(y).

Then p(y)|a(y)(fi(y) — f2(y)). But p(y) is irreducible, so this is
only possible if either p(y)|a(y) or p(y)[fi(y) — f2(y).

But both a(y) and fi(y) — f2(y) have degree smaller than p(y).
a(y) is nonzero, so p(y)|a(y) is not possible, and we assumed
fi(y) and f(y) are distinct, so p(y)|fi(y) — f2(y) is not possible
either, leading to a contadiction.

So all elements of B are indeed distinct, so A = B, and since A
includes the element 1, so does B, which gives the multiplicative
inverse of a(y).

Algebra over GF(4)

Irreducible polynomial: p(y) = y? +y + 1.
Elements of GF(4):

element | binary polynomial
0 (00) 0-y'+0-y9=0
1 (01) 0-y*+1-y0=1
2 (10) | 1-y'4+0-y0=y
3 (11) |1yt +1-y9=y+1

Examples for addition:

y+(y+1)=2y+1=0-y+1=1,
1+ (y+1)=y+2=y

GF(4)

Irreducible polynomial: p(y) = y? +y + 1.
Elements of GF(4):

element | binary polynomial
0 (00) 0-yl+0-y0=
1 (01) 0-y*+1-y0=1
2 (10) 1-yl+0- 0=y
3 (A1) [1-y1+1-y0=y +1

Examples for multiplication:

yry=y?> mod p(y)=y> - (y*+y+1)=y+1,
yx(y+1)=y*+y modp(y) =y’ +y—(y*+y+1)=1

Irreducible polynomials of degree m
In order to define GF(2™), we need an irreducible binary
polynomial of degree m for the reducing polynomial p(y). We have
seen that this exists for m = 2, but what about larger values of m?

We introduce an extra property first: we call a polynomial of
degree m primitive if it is irreducible and p(y)|y* — 1 for
k=2"—1 and no k less than 2™ — 1.

Theorem

For any m, there exists a primitive binary polynomial of degree m.

No proof, but primitive polynomials for low degrees:

degree primitive polynomial degree primitive polynomial
2y +y+1 8 Yyttt +yi+l
3 yi4y+1 9 Y+ yt+l
4 yr4y+1 10 y%4+y3+1
5y 4y 41 11yl y? 41
6 yo+y+1 12 yR24ySpyti
7yl 13 yBaytty iyl

Primitive element

Theorem
For any nonzero element a(y) € GF(2™),

(ay)*" ' =1.

Proof. We had this exact same theorem for GF(q) for g prime; the
same proof works.

A nonzero element a(y) is primitive if (a(y))* = 1 for k =2m — 1
and no k smaller than 2 — 1.

Theorem
There exists a primitive element in GF(2™) for any m.

Moreover, if the reducing polynomial p(y) is primitive, then y is a
primitive element in GF(2™).

No proof.

Power table

We will always assume that the reducing polynomial is primitive,
and so y is always a primitive element. (Typically there are more
primitive elements in GF(2™), but we only need one.)

All nonzero elements of GF(2™) can be obtained as the powers of
a primitive element. This gives rise to the power table, where
nonzero elements are matched with the proper power of y.

Example. The GF(4) power table:

1] 1 [y°
20 y |yt
3ly+1 y2

(y® =1, so powers of y are 3-periodic.)

Power table

Example. The power table for GF(8) (reducing polynomial:
p(y) =y’ +y+1)

1

y
y+1
y2
y?+1
vty
71y +y+1ly

OO B W N
SIS

Gl M O N W = O

For each nonzero element, the power table contains a polynomial
form and a power form.

» Addition is typically easier in polynomial form, while
» multiplication is easier in power form.

The power table offers a quick way to switch between the two
forms.

