Data compression, character encoding

Coding Technology

Illés Horvath

2025/10/22

Source coding

We have a source that generates a sequence of characters from a
given finite set X called source alphabet (of size N).

During source coding, we want to assign a bit sequence
(codeword) to each character:

Xi — ¢, iZl,...,N.

The most natural character encoding is to assign a codeword of the
same length to each character. This is called fixed length encoding.

When the probabilities of each character are close to each other,
this is a reasonable choice, but when the probabilities are very
different, variable-length encoding may be better.

Character encoding

Let's construct a variable-length code! (Keep in mind that we also
want to be able to decode fully.)

Alphabet: {A, B, C, D}.

AlO
B | 110
C | 1111
D|O

Character encoding

Let's construct a variable-length code! (Keep in mind that we also
want to be able to decode fully.)

Alphabet: {A, B, C, D}.

AlO
B | 110
C | 1111
D |1

Character encoding

Let's construct a variable-length code! (Keep in mind that we also
want to be able to decode fully.)

Alphabet: {A, B, C, D}.

AlO
B | 110
C | 1111
D |11

Character encoding

Let's construct a variable-length code! (Keep in mind that we also
want to be able to decode fully.)

Alphabet: {A, B, C, D}.

AlO
B | 110
C | 1111
D | 10

Coding Technology

General setup.

During the Coding Technology course, our main focus is on various
types of codes:

» Error correction codes adding redundancy to the messages
that allow detection and/or correction of errors, allowing
reliable communication over noisy channels. Also known as
Error Control, or Channel Coding.

> Data compression codes identify patterns and eliminate
redundancies in data. Also known as Source Coding.

» Cryptography protocols that turn readable information into
unintelligible text, allowing secure private communication over
public channels.

Data compression

Source coding generally refers to the process of encoding
information by a bit sequence as short as possible.

The term data compression means generally the same as source
coding, but it is often used when the original information is also
represented as a bit sequence.

There are two main branches of data compression:

» in lossless data compression, we want to be able to decode the
original information perfectly;

P in lossy data compression, unnecessary or less important parts
of the original information may be lost.

We will start with lossless methods.

Memoryless stationary source

An information source is an object or process that generates
information that we would like to communicate.

We will use the following model for the information source, called
memoryless stationary source:

P the source generates a sequence of characters from a given
finite set X’ called source alphabet;

» the characters are random and independent from each other
(memoryless);

» the probability of each character remains constant over the
sequence (stationary).

We assume that the probability distribution of the source alphabet
is known.

Memoryless stationary source

Examples (source alphabet):
» a sequence of dice rolls ({1, 2, 3, 4, 5, 6})
» computer files (bytes)
» English text (English alphabet)
» DNA sequence ({G, A, T, C})
» sheet music (notes)

Are the assumptions justified? That depends on the source. ..
A fixed alphabet and stationarity are usually justified.

The memoryless property might not be justified; it's rather a
simplifying assumption/approximation ensuring we do not have to
worry about long-term structures in the source, only characters.

(But we will look for long-term structures later.)

The memoryless property is sometimes replaced by weaker
assumptions (e.g. Markov source).

Character encoding
Character encoding is when we assign a bit sequence (codeword)
to each character of the source alphabet:

f: X — ¢, i=1,...,N

(where N denotes the size of the source alphabet X'.)

There are other types of source coding; for example, we could code
several characters together (block coding). We will also explore
this later.

When using character encoding, the code corresponding to a string
(multiple characters) is coded as the concatenation of the
codewords.

We say that a character encoding is uniquely decodable if, for any
finite two distinct character sequences x1,...,x, and y1, ..., ¥m,

Fxa). - f(xa) # £(y1) - - Fym)

(where f(x1)f(x2) denotes concatenation).

Character encoding

A character encoding is called fixed length encoding if it assigns a
codeword of the same length to each character. All fixed length
encodings are uniquely decodable.

We will refer to fixed length codeword assignments as 'no
compression’. For a source alphabet of size N, the necessary length

is [logy NJ.

When the probabilities of each character are close to each other,
this is a reasonable choice, but when the probabilities are very
different, variable-length encoding may be better.

Character encoding

A character encoding is called a prefix code (also called prefix-free
code) if none of the codewords is a prefix (initial segment) of
another codeword.

Example. Our original code is a prefix code:

A0

B | 110
C | 1111
D | 10

Actually, all fixed length encodings are also prefix codes.

Character encoding

Theorem
Any prefix code is uniquely decodable.

Proof. Prefix codes can be decoded easily using a code tree:

A0

B | 110
Cc | 111
D |10

For prefix codes, codewords appear only in leaves (nodes at the
edge of the tree); we decode a bit sequence by starting from the
current position and progressing along the tree until we reach a
codeword. Then one character is decoded, and we restart from the
next position and the root of the tree. O

Kraft-McMillan inequality

Are prefix codes the only uniquely decodable codes?

No; for example prefix codes written backwards (suffix codes) are
also uniquely decodable.

But no other uniquely decodable codes are better.
Theorem (Kraft-McMillan)

(a) For any uniquely decodable code with codeword lengths

b1, 0y,
N
Zﬂf <1.
=1

(b) For any prescribed codeword lengths (1, ..., 0y such that

N
» oti<,
i=1

there exists a prefix code with codeword lengths 01, ..., 0y.

Kraft-McMillan inequality
Proof.

(a) Let k be a positive integer, and let Ay denote the number of
bit sequences of length ¢ that can be obtained by
concatenating k codewords.

Since the code is uniquely decodable, A, < 2.
Let Lax := max(41,...,0n).

N k k k kLmax
(o) =3 Yt 3 it < b
i=1 =1 iy=1 (=1

But then, taking e

N
ZQ‘K" < Vk Slpax — 1 as k — oo,
i—1 v

-1

so Z,N:l 274 < 1 must hold.

Kraft-McMillan inequality

Proof.

(b) Assume the prescribed codeword lengths are in increasing
order:

b <<y

Start from a full binary tree of depth
Lmax(= £n), and going from bottom to
top in the tree, for each /; in increasing
order, set a node at depth ¢;, truncating
deeper nodes.

Example: 2,3,3,3,4,4,4.

Finally, we truncate unused branches.

Kraft-McMillan inequality

(b) (cont.) Do we ever get stuck with the previous algorithm?

Calculate the number of nodes at depth L.y 'covered’ by
each codeword. A codeword of length ¢; covers 2tmax—ti nodes
at depth Liax. Altogether, they cover

N

N
Z lmax—€i _ plmax Z o—¢i < olmax | 1

i=1 i=1

nodes at depth Lnax according to the assumption, and there
are 2Lmax nodes at depth Liax, so there is enough room to
accommodate all nodes corresponding to the prescribed
codeword lengths, and the algorithm will not get stuck before
finishing.

It is also important that we go in increasing order of codeword
length, so each node covers an entire branch of the tree. [

Average codeword length

The typical way to measure the efficiency of a character encoding
is via the average codeword length

Generally, we want L to be as low as possible.

Example. Assume we have a source with source alphabet
{A,B,C,D} and character probabilities

pa =040, pg=032, pc=0.18 pp=0.10.

Average codeword length

PA — 0.4-07 PB — 0.32, pPc = 0.].87 PD = 0.10
The coding

110
1111
10

O|0O| W >

gives average codeword length

L=040-1+032-3+0.18-440.10-2 = 2.28.

Shannon—Fano code

How to construct an efficient prefix code (or, equivalently, the
corresponding code tree) in general, assuming the character
probability distribution p1, ..., py is known?

One possible approach is the following. Order the characters in
decreasing order of probability: p; > --- > py.

For the character X;, the codeword length is going to be

li = [—logy pil-
Then
N N N N
B N Y e Pt
i=1 i=1 i=1 i=1

so the Kraft—-McMillan construction can be applied.

This is known as the Shannon—Fano code.

Shannon—Fano code
Example. For the previous example

pa =040, pg=032 pc=0.18, pp=0.10,
the codeword lengths according to the Shannon—Fano code are

ly =[—logy0.40] =2, {p=[—log,0.32] =2,
{3 =[—1log;0.18] =3, {4 =[—log,0.10] = 4,

00
01
100
1010

Ol N W >

and the average codeword length is

L=040-2+0.32-2+0.18-3+40.10-4 = 2.44.

Huffman coding

Huffman coding builds the coding tree by adding the two smallest
p;i probabilities in each step.

Example. p1 =0.40, p»=0.32, p3=0.18, ps=0.10.
p1 = 0.40 0.40 0.40 1
p2 =0.32 0.32 7 0.60 7

p3 = 0.18 7 0.28
P4 = 0.10

The average codeword length is

L=040-1+032-240.18-340.10-3 =1.88.

Entropy

Huffman code gave the best average codeword length L for the
running example so far. But how low can we go anyway?

The entropy of a source is

N
H(X) = pilogs(1/p;)-
i=1

The main theoretical result for today: entropy is a theoretical lower
bound on the average codeword length L.

Theorem (Shannon's source coding theorem)

For any prefix code with codeword lengths ¢; (i = 1,..., N),

L > H(X).

Entropy

Before proving the theorem, we address entropy.
How to measure information?

Usually we measure information in bits; for example, learning the
value of a fair coin flip is 1 bit of information.

We consider two things:

» The information learned from a random event depends on the
probability of that event. Generally, a lower probability event
occurring contains more information.

» The probability of independent random events is

multiplicative, but we want to measure information in an
additive manner.

Both of these issues are solved if we take — log, of the probabilities
(base 2 is just for convenience).

Entropy

(The — sign is included since probabilities are between 0 and 1, so
log, of a probability is negative.)

For a memoryless stationary source, learning that the next
character is X; corresponds to

— log, pi = logy(1/pi)

bits of information.

With all that in mind, the entropy

N
H(X) =) pilog(1/pi)

i=1

is the average amount of information obtained by learning one
character of the source.

Convexity, Jensen’s inequality

To prove Shannon's source coding theorem, we need some
mathematical tools.

We say that f : [a, b] — R is convex if Vx, y € [a, b] and
VO < A <1,

FOx + (1= N)y) < M(x) + (1= Nf(y).

Theorem (Jensen's inequality)

Let Z be a random variable that takes values from [a, b], and f be
a convex function on [a, b]. Then

f(E(2)) < E(f(2)).

No proof.

Gibbs' inequality
The following result is a consequence of Jensen's inequality.
Lemma (Gibbs' inequality)
Ifpi,....pn >0, q1,...,9v > 0, and

N N
Z pi = Z qi =1,
i=1 i=1
then

N N
_ZPI|0gPi < —Zpi log q;
i=1 i=1
Proof (sketch). Apply Jensen's inequality to the random variable

pi

and the convex function f(x) = — log, x, then rearrange.

Shannon'’s source coding theorem
Proof (Shannon's source coding theorem).

Assume we have a prefix code with codeword lengths ¢4, ..., /p.

Apply the previous Lemma with

274

N ~_p
>im12 b

pi = p(Xi), qi =

Then

N _el_
—prbgzp;_ Zpllog2<z,\, - £>=

—Zp,logQ —|—|0g2 225 <L+logyl=1L

¢ H/—/
< 1 due to
Kraft-McMillan

Shannon'’s source coding theorem

There are other versions of Shannon's source coding theorem that
apply not only to character encodings, but any other types of
encodings that are uniquely decodable. We do not pursue this
direction (so 'no proof").

The main takeaway from Shannon’s source coding theorem is that
a source cannot be compressed into a number of bits fewer than
the amount of information (as defined by entropy) if we want it to
be fully decodable.

Moreover, Shannon's source coding theorem also applies not only
to memoryless stationary sources, but other types of sources too
(although entropy may have a slightly different definition,
depending on the type of the source).

Entropy

For the running example
p1 =0.40, p,=0.32, p3=0.18, ps=0.10,
the entropy of the source is

H(X) =0.40 - log,(1/0.40) + 0.32 - log,(1/0.32)
+0.18 - log,(1/0.18) + 0.10 - log,(1/0.10) ~ 1.832.

Reminder: for this source,

Lyufr = 1.88,
Lsp = 2.44,
Lfixed = 2.

Entropy

For any prefix code, L > H(X); the efficiency of the code is the
ratio H(X)/L.

Lemma
H(X) < Ls.p < H(X)+ 1.
Proof. Directly follows from

—log, pi < [—log, pi] < —logy pi + 1,

averaged out according to the distribution p; (i = 1,..., N). O]

So the Shannon—-Fano code gives average codeword length L within
a distance of 1 bit from the theoretical lower bound.

Huffman is optimal

Theorem
Huffman coding gives the minimal average codeword length L from
among all uniquely decodable character encodings.

Proof (sketch). Assume p; > --- > py > 0 for simplicity. Due to
Kraft-McMillan, it is sufficient to prove Huffman is optimal among
prefix codes.

For any optimal coding with codewords ¢; (i = 1,..., N) and
codeword lengths ¢; (i = 1,..., N), we may assume the following
properties:
» (1 <-.. < /{p, otherwise we could rearrange the codewords;
» /n_1 = {pn, otherwise we could truncate cy to length fp_1,
and

» cpn_1 and cy only differ in the last bit, otherwise we could
replace ¢y by cy_1 with the last bit changed.

Huffman is optimal

Proof (cont.) We do mathematical induction on the number of
characters in the source alphabet N.

Assume we have an optimal prefix coding for N source characters,
with ¢y and cy_1 only differing in the last bit. Let c,’\,71 be their
common section of length ¢5_1 — 1, and consider the coding

/
Cly---,CN-2,CN_1

for a source alphabet of N — 1 characters with probabilities
P1;---5 PN—2, PN—1 + PN-

This coding on N — 1 characters must be optimal, otherwise we
could take an optimal coding on N — 1 characters and split the
longest codeword into two codewords by adding a 0 and a 1 at the
end, obtaining a coding on N characters that would be better than
the original, which was assumed optimal.

But this merging of the two smallest probabilities is exactly what
Huffman coding does. O

Huffman is optimal

Lemma
For a given character probability distribution p1, ..., pn, Huffman

coding gives

L=H(X) < logy(1/pi)eZ" Vie{l,...,N}

Proof (sketch). During the construction of the Huffman code,
when merging the two smallest probabilities, those two smallest
probabilities have to be equal, otherwise we lose L = H(X).

This must be true in every step of the Huffman algorithm in order
to have L = H(X), which is possible if and only if every p; is a
negative integer power of 2. L]

Entropy coding

So it turns out Huffman coding reaches the theoretical lower
bound for only some source probability distributions.

Huffman coding is optimal among character encodings, so this also
means that for some sources, the theoretical lower bound cannot
be reached with any character encoding.

That said, entropy can still be reached in this cases as well — just
not with character encodings, but more complicated codings
instead.

Arithmetic coding

Shannon-Fano coding was inefficient because the [.] function was
applied to each character separately. Arithmetic coding (AC) is
based on the same idea, but instead of coding characters
separately, AC compresses the entire message at once.

Example. The alphabet is {A,B,C,D}, with

P(A) =0.40, P(B)=0.30, P(C)=020, P(D)=0.10.

For AC, the compressed message will correspond to a single point
from [0,1), obtained via consecutive sub-intervals.

Arithmetic coding — example

0.1
0.2

0.3

0.4

message: ABAC

Al CF

0.2032
0.1936

Arithmetic coding — example

The interval corresponding to the message ABAC is
[0.1936,0.2032].

We want to use the middle point of this interval (in binary form)
as the compressed message:

0.1984 = 0.00110010110.. .9

The main question: how many bits of precision do we need so we
can distinguish this interval from the other small intervals?

Arithmetic coding — example

The number of bits required is

[—loga(P(A)P(B)P(A)P(C))] +1 =8,

because then the rounding error is smaller than

P(A)P(B)P(A)P(C)/2, so even the rounded value will be inside
the same interval:

0.1936 =0.00110001100. ..
0.1984 ~0.00110011
0.2032 =0.00110100000. ..

Arithmetic coding

AC is not a character encoding, so it can be better than Huffman
coding. In fact, for long messages, the compression rate will
asymptotically converge to the entropy lower bound: for a
character sequence Cy ... Cp,

i ({— 2 (H P(c,-)ﬂ + 1) = lim " log; (H P(c,-)>
i=1 i=1
n K
= lim —% D “logy P(Ci) =) piclogy(1/pi) = H(X)
i=1 k=1

due to the Law of Large Numbers.

AC can be decoded online: decoding can be started using the
beginning of the compressed message, with more and more of the
message decoded as further sections of the compressed message
are received.

Computational complexity, data structures

We didn’t address computational complexity of the above codings
so far, but all of Huffman, Shannon—Fano and Arithmetic coding

have relatively low computational complexity for both coding and
decoding. (And of course fixed length encodings too.)

Huffman and Shannon—Fano use binary trees (for the code tree).

A binary tree is a data structure where each record contains some
information stored in the node, plus pointers to the parent and the
two (or fewer) children of the corresponding node.

