Adaptive Huffman code, Dictionary coders

Coding Technology

Illés Horvath

2025,/10/29

Reminder: character encodings

Character codings: prefix codes, code tree for decoding.

Fixed length encoding, Shannon—Fano code, Huffman code.
Huffman is optimal among character codings.

Entropy as a measure of information. Theoretical lower bound.

Arithmetic coding is not a character encoding, but it is
asymptotically optimal (also called an entropy coding).

Adaptive Huffman code

Shannon—-Fano coding, Huffman coding and Arithmetic coding all
use the source distribution. What if this information is not
available?

Main idea of Adaptive Huffman coding: instead of using the source
distribution, build the code tree based on the number of characters
seen so far in the text, then change the tree as the text progresses.
This is a possible algorithm:

1. Initialize the code tree (e.g. 1 occurrence for each character).

2. Read the next character from the text and code it according to
the current state of the code tree.

3. Increase the count for the current character by 1.
4. Rebuild the code tree according to the new character counts.

5. Move ahead to the next character and repeat from step 2.

Adaptive Huffman code

When reading a new character, why is it important to code first
(using the old code tree), then increase the count for the new
character after?

The order of these steps is important for decoding:

1. Initialize the code tree (e.g. 1 occurrence for each character).

2. Decode 1 character according to the current state of the code
tree.

3. Increase the count for the decoded character by 1.
4. Rebuild the code tree according to the new character counts.

5. Move ahead in the bit sequence and repeat from step 2.

Adaptive Huffman code

This is essentially the Adaptive Huffman code; however, we will
improve it a little bit.

The main issue is that rebuilding the entire code tree after every
character is very costly computationally.

If the source characters do actually have an asymptotic frequency
(just unknown), then the code tree will typically converge fast and
remain unchanged after a while.

So instead of rebuilding the tree in every step, it would be nice to
have a simple check whether the code tree needs to be changed at
all.

Also, even if the tree has to be changed, maybe we can do some
local changes to fix it instead of entirely rebuilding it.

Huffman trees

We want to understand the structure of code trees obtained using

Huffman coding better.

During the construction of the tree, probabilities are summed up
and assigned to internal nodes of the tree; the tree, along with the
probabilities for every node, are collectively referred to as a

Huffman tree.

Example.

A | 0.40
B | 0.32
C|0.18
D | 0.10

Sibling property

It will be convenient to depict a Huffman tree from top to bottom
instead of left to right:

We say that two nodes are siblings if they have a common parent
node.

A tree has the sibling property (sometimes called the sibling pair
property) if listing the nodes from bottom level to top level, going
from left to right within each level, the weights of the nodes are
increasing, except possibly for sibling pairs.

Sibling property
It will be convenient to depict a Huffman tree from top to bottom
instead of left to right:

Does this tree have the sibling property?

List the nodes from bottom level to top level, left to right within
each level (sibling pairs marked with (,)):

(0.18,0.10), (0.32, 0.28), (0.40, 0.60), 1.00

Apart from some sibling pairs, the list is increasing, so the sibling
property holds for this tree.

Sibling property

The sibling property can be formulated in several equivalent ways:

» The sibling property holds for a tree if sibling pairs can be
listed in an order such that their weights are increasing
(non-decreasing, so equality is allowed).

» When listing the nodes according to increasing weight, sibling
pairs are consecutive elements of the list, and nodes from a
level closer to the root come later in the list.

Despite the name, the sibling property is not so much about sibling
pairs; it is more about the tree being balanced (with respect to the
weights in the nodes).

Sibling property

Example. This is a tree that does not have the sibling property.

&

We can fix it by exchanging two nodes (along with their entire
subtrees).

Sibling property

Example. Now the tree does have the sibling property.

Note that after the exchange of two nodes, we also have to
recalculate the weights of internal nodes, starting from the leaves
(nodes at the edge of the tree).

Adaptive Huffman code

Theorem
Every code tree obtained from a source by using the Huffman code
has the sibling property.

Every weighted tree that has the sibling property can be obtained
by using the Huffman code for some source.

Proof (sketch). During every step of the algorithm for Huffman
coding, the two smallest probabilities are summed, so the
corresponding nodes will be siblings, and nodes coming later during
the algorithm will have larger weights.

(For each sibling pair, the two nodes can be ordered either
way.) O

Adaptive Huffman code

We are going to use the sibling property as the check for whether
the Huffman tree needs updating, and exchanging nodes as the
local fix to restore the sibling property if necessary.

1. Initialize the code tree (e.g. 1 occurrence for each character).

2. Read the next character from the text and code it according to
the current state of the code tree.

3. Add the character to the tree (increase the count for the current
character by 1, along with its parents etc. toward the root).

4. Check the sibling property, and if violated, restore it by
exchanging two nodes with their entire subtrees.

5. Move ahead to the next character and repeat from step 2.

Note that in this algorithm, the weights in the tree are the number

of occurrences instead of probabilities, so they do not sum up to 1
in the root. This causes no issues.

Adaptive Huffman code

The restoration step is the following:

> take the character last added to the tree (sibling property will
be violated here), and

» exchange it with the node farthest away (along the tree) with
weight 1 less.

These two nodes are going to be exchanged along with their entire
subtrees, then the weights are recalculated among all nodes
between the root and either of the exchanged nodes.

Sibling pairs can be in either order (increasing or decreasing).
Some versions of the algorithm order sibling pairs in every step -
that's also fine, it will just make changes to the tree more often.

The exact details of the algorithm are important in order to decode
correctly!

Decoding

The decompression (decoding) algorithm

1.
2. Decode 1 character according to the current state of the tree.
3.

4. Check the sibling property, and if violated, restore it by

5.

Initialize the code tree (e.g. 1 occurrence for each character).

Add the character to the tree.

exchanging two nodes with their entire subtrees.

Move ahead in the text and repeat from step 2.

Steps 1 and 4 have to be executed identically during encoding and
decoding.

Data structure

The tree is stored as a binary tree; to make checking the sibling
property easy, we add a doubly linked list of the nodes from
bottom to top level, from left to right. Sibling property is easy to
check along the doubly linked list.

(When the tree changes, both the tree and the doubly linked list
need to be maintained.)

Adaptive Huffman code

Example. For the source alphabet {A,B,C,D}, make an adaptive
Huffman code for the message DCDADD.

Initialization.

D—11

DC — 1110

Adaptive Huffman code

DCD — 111011

Adaptive Huffman code

DCD — 111011

Adaptive Huffman code

Restoration step.

Adaptive Huffman code

DCDA — 111011110

DCDAD — 1110111100

Adaptive Huffman code

DCDADD — 11101111000

DCDADD — 11101111000

Static universal codings

What to do when even the size of the alphabet is unknown?

Universal codes are character encodings that map the positive
integers to binary codewords and are prefix codes.

Since character probabilities are not available, the codewords can
not depend on the character probability distribution either, hence
static codeword assignments are used.

Static universal codings are not optimal, but are still useful in
certain settings:
» when the size of the alphabet is unknown;

» when the character probability distribution is not known to
the receiver;

> for short messages with many different characters.

Elias gamma coding
For the Elias gamma coding, the codeword assigned to a positive
integer n is the following: compute n in base 2 binary form, then
add one fewer 0's at the beginning than the length of the base 2

number.

n | ng Cn impl. prob
1 |1 1 1/2

2 |10 010 1/8

3 |11 011 1/8

4 | 100 | 00100 1/32
5 | 101 | 00101 1/32
6 | 110 | 00110 1/32
7 | 111 | 00111 1/32
8 | 1000 | 0001000 | 1/128
9 | 1001 | 0001001 | 1/128
10 | 1010 | 0001010 | 1/128

Static universal coding

Static universal codings have an implied probability distribution of
the form
Pn = 27|Cn|;

the coding is actually equivalent to a Huffman coding for the
implied probability distribution.

Technically, we cannot use the usual Huffman coding algorithm for
an infinite source alphabet, but if the character probabilities are

negative integer powers of 2, we know what the codeword lengths
should be, and construct a prefix code for those codeword lengths.

The implied probability distribution is specific to each static
universal coding; typically p, is decreasing in n, which means that
the resulting code is generally better if the actual character
distribution is also decreasing.

Sources with memory

Next we discuss algorithms that look for repeated structures within
the source. Such algorithms are typically useful for sources that are
not memoryless.

Sources with memory can exhibit very different types of behaviour,
depending on how the memory affects the output of the source.

(“All happy families are alike; each unhappy family is unhappy in
its own way.” — Leo Tolstoy, Anna Karenina)

English (or any other language) text is typically structured this
way: certain words or expressions are likely to repeat. The
repeated expressions might also depend on the topic and type of
the text (e.g. scientific, literature etc.)

The entropy of a source with memory is always less than the
entropy of a memoryless source with the same character
distribution.

Dictionary coders

Instead of pursuing theoretical setups and models for different
types of sources with memory, we are going to focus on algorithms.

We are going to discuss so-called dictionary coders: sections of
text are assigned an address, and on later occurrences, are only
referenced by that address.

The exact details of how to keep track of repeated sections are
different though. Next we are going to discuss two algorithms
developed by Lempel and Ziv in the 1970’s and 1980's.

We assume the alphabet X" is known and finite, and that’s it — the
algorithms can be applied without any further information. (Due
to this reason, they are sometimes called universal codings as well,
but they are different from the previous static universal codings!)

LZ77

The LZ77 algorithm maintains two sliding windows:

search buffer look-up buffer
| text | text |
N v
sections matched
with search buffer

Parameters:
> hg: length of the search buffer
> hy: length of the look-up buffer
Output is a sequence of records containing (p, ¢, n), where:

» p: position of the beginning of matching section (backwards
from the cursor);

» /. length of the matching section

> c: next character after the matching section

LZ77

Example. Compress the source text
babracadabrarrarrad...

with LZ77. Parameter values are hg =7, hy = 6. Cursor is initially
at position 7.

> initial state:

|babracaldabrar|rarrad... output: (0,0,d)

> next step:
7

-— >

b abra cad|abra rriarrad... output: (7,4,r)

4
> next step:
<i>
cabradadabirar | rarra d‘ output: (3,5, d)

B mm—

5

LZ77

Records are then converted to bit sequences.

Size of a single record (in bits):

[logy hs| + [loga(he + hs)] + [logy [X]]

LZ77 is a naive algorithm that will typically not be asymptotically
optimal in any setting, but can offer good compression for sources
where longer sections of text repeat frequently.

LZ78 algorithm

The LZ78 algorithm also aims to identify sections of text seen
before, but this time, we arrange the sections into an
ever-expanding dictionary during coding.

We parse the text into sections that are 1 character longer than a
section seen before. The output (coding for the new section) is
(i, c), where

» i is the address of the old section (1 character shorter than
the current section),

» c is the new character (novelty factor).

The address of the current section is incremented by 1 for each
new section.

LZ78 algorithm

11(0,)

2| (0,b)

Example. 31 (1b)
ababbbbbabbab 41 (2b)

5| (4,a)

Coding. 6| (5.5)

1. "a" is a new section, so the output is (0, a).

2. “b" is a new section, so the output is (0, b).

3. "a" is an old section with address 1; the new section is “ab”,
the new character is “b", so the output is (1, b).

4. "b” is an old section with address 2; the new section is “bb",
and the new character is "b", so the output is (2, b).

5. "bb"” is an old section with address 4; the new section is “bba”,
and the new character is “a"”, so the output is (4, a).

6. “bba"” is an old section with address 5; the new section is

“bbab”

and the new character is "b", so the output is (5, b).

LZ78 algorithm

Each record is converted into a bit sequence.
» for record n, the pointer to the old address is converted into
[log, n] bits;
» the novelty factor is converted into [log, |X|]| bits.

address | record | bit sequence
1 (0,a) |0
2 (0,b) | 01
3 (1,b) | 011
4 (2,b) | 101
5 (4,a) | 1000
6 (5,b) | 1011

ababbbbbabbab — 00101110110001001

LZ78 algorithm

For short messages, LZ78 code tends to make a code longer than
the original message.

However, LZ78 is asymptotically optimal in many different
practical settings.

In practice, asymptotical optimality means that the resulting code
might still be longer compared to the entropy of the source, but for
very long messages, the difference is negligible.

In general, LZ78 is more efficient for source alphabets of size 2k for
some k integer.

LZ78 algorithm

The dictionary can also be depicted as a code tree. Each node will
have at most |X'| children (so the tree is binary only for |X| = 2).

a b

N N

ab bb

Deflate

“Whenever | want to compress data, | just use zip. So what's with
that?”

zip is actually a file format that supports several data compression
algorithms, the most widely used of which is Deflate.

High-level description of Deflate. The message is cut into blocks of
varying length, and each block uses one of the following three
methods:

» no compression (useful for short blocks or blocks that are
already compressed);

» compression by LZ77 followed by Huffman coding (code tree
included with the compressed block);

» compression by LZ77 followed by a static character coding (no
code tree necessary).

The compressor has some freedom in choosing how to cut the
message into blocks, and which method to use for each block. (We
do not go into more details about these choices.)

