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Reminder: quantization

Irreversible data compression. Distortion vs compression ratio.

Quantization: rounding values from a large set to a small set.
Quantizer, levels, domains.

Nearest neighbour rule, Center of gravity rule, Lloyd-Max property.

Optimal quantizer. Lloyd-Max algorithm.
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Quantization and entropy

For an X discrete random variable, the entropy of X is

Z P(X = k) log,(P(X = k)).

Theorem
For any function Q,

H(Q(X)) < H(X).

(No proof.)
Basically, by quantization, we lose information.

Note that the theorem only applies for X discrete.



Uniform quantizer

Let X be a continuous random variable with probability density
function f(x).

Assume f(x) is continuous on [0, A] and 0 outside it (so X is
concentrated on [0, A]).

The uniform N-level quantizer Qu for the interval [0, A] is the

following;:
TP A A .
domains: B; = [(/ 1)N,/N] , i=1,...,N,
levels: x; = (2i — Uﬁ’ i=1,...,N.

The uniform quantizer is a simple quantizer (but not optimal
except if X has uniform distribution on [0, A]).
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Uniform quantizer

Theorem
For the distortion of Qy, we have

2 A2
lim N2D(Qp) = —
aim N7D(Qn) = 75

Essentially, the theorem says that for large N,
A2
12N2
Proof (sketch). For large N, the conditional distribution of X
assuming X € B; is close to the uniform distribution on B; since f

is continuous. The uniform distribution on an interval of length L
has variance [?/12, so

A/N A2 A A2
= f(x)dx =
D(Qw) ~ Z/ =Nz /A (x)dx = 1oz

D(QN) =~




Differential entropy

If X is a continuous random variable with probability density
function f(x), its differential entropy is

H(f) = — /R £(x) log, (x)dx



Differential entropy

If X is a continuous random variable with probability density
function f(x), its differential entropy is

H(f) = — /R £(x) log, (x)dx

Differential entropy is similar to entropy, but it lacks some of the
nice properties of entropy. For example, it can be negative.



Differential entropy

If X is a continuous random variable with probability density
function f(x), its differential entropy is

H(f) = — /R £(x) log, (x)dx

Differential entropy is similar to entropy, but it lacks some of the
nice properties of entropy. For example, it can be negative.

Theorem

lim (H(Qn(X)) + loga(A/N)) = H(f)

N—o00

(No proof.)
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Differential entropy

The previous theorem essentially says that

H(Qn(X)) = H(f) — logy(A) + loga N

Example. Consider the uniform distribution on [0, 1]. For the
uniform quantization with levels N = 2, we basically get the value
of X with k bits precision. The bits are independent since the
distribution is uniform.

Accordingly, the above formula gives

1/2
H(f):/ 1-0dx =0
~-1/2

log»(A) = logy(1) =0
logy(N) =k

and H(Qn(X)) = k, which is indeed the entropy of k bits.



Lloyd-Max algorithm

Reminder: Lloyd-Max algorithm.
1. Initialize the levels.
2. Update the domains using the nearest neighbour property.
3. Compute D(Q), if the decrease is below a given threshold,
stop.
4. Update the levels using the center of gravity rule, repeat from
step 2.
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Lloyd-Max algorithm

Does the Lloyd-Max algorithm always find the optimal quantizer?

It always finds a locally optimal quantizer, but when there are more
than one local optima, it can converge to either one.

For unimodal signal distributions (where the probability density
function has a single local maximum), typically there is only one
locally optimal quantizer, and the Lloyd-Max algorithm will find it.
What to do when there are multiple local optima?

» Start from a reasonably good initial condition.

» Start from multiple initial conditions, and select the best
obtained quantizer.
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Vector quantization

Vector quantization is relevant when we need to quantize a
multi-dimensional source with correlated coordinates.

Example. The height and weight of people in a population is
typically dependent. If we quantize them jointly, the quantizer can
utilize the joint distribution.

If 50kg and 100kg have the same relative frequency within the
population, they will typically be quantized with similar distortion.

However, the pair (200cm, 50kg) is less frequent than (200cm,
100kg), so it can be quantized with higher distortion.

Quantizing height and weight jointly can do that. Quantizing them
separately cannot do that.
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Vector quantization

Similar to the 1-dimensional case, a vector quantizer Q : RY — R¢
is described by the collection of output vectors x() € R? and
domains B() C R such that

Q(x) = x1) vx e B

We use the Euclidean distance between points x,y € RY:

d(x,y) =[x =yl = /(1 — 02+ (2 = y2)? -+ (xd — y9)?

For coordinates of different units (e.g. kg vs cm), we usually apply
a linear scaling to bring all coordinates to the same order of
magnitude first!

The distortion can now be defined as

D(Q) = E(IX — Q(X Z/ I — X2 (x)dlx

where f(x) is the d-dimensional density function of X.
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Vector quantization

The nearest neighbour rule and the center of gravity rule must
hold for any optimal quantizer also in higher dimensions.

Nearest neighbour rule:
Bi = {x : llx = xll < x — x| for any j # i}.
Center of gravity rule:

B g, xf (x)dx
B Jg, f(x)dx

A quantizer satisfies the Lloyd-Max property if it satisfies both the
nearest neighbour rule and the center of gravity rule.

Xj = E(X’X S B,')
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Optimal quantizer

A quantizer is optimal if it has minimal distortion.

Finding the optimal quantizer explicitly in higher dimension is
generally a difficult problem.

Example. How does the optimal quantizer for N = 4 output
vectors look like over a square domain with uniform density?

This is a good candidate:

How could we find an optimal quantizer numerically?



Lloyd-Max algorithm in higher dimensions

The Lloyd-Max algorithm works the same for higher dimensions.
1. Initialize the levels.
2. Compute the domains for the output vectors using the nearest
neighbour property.
3. Compute D(Q), compare it to the old value of D(Q) from the
previous iteration, and if the difference is below a given
threshold, stop.

4. Otherwise, from the domains, compute new values for the
output vectors according to the center of gravity rule, then
repeat from step 2.



Lloyd-Max algorithm in higher dimensions

The nearest neighbor rule leads to the so-called Voronoi cells:

In d = 2 dimensions, the Voronoi cells are polygon-shaped.

DA
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The Lloyd-Max algorithm will converge to a locally optimal
quantizer.

In higher dimensions, there are possibly many different local
optima even for simple distributions such as a uniform distribution
over a square.

Also, in higher dimensions, the Lloyd-Max algorithm may have
unstable fixed points; in practice, the algorithm will eventually
move away from such fixed points, but it might take many
iterations.
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Lloyd-Max algorithm in higher dimensions

How could the optimal quantizer with N = 7 output vector look
like for a uniform distribution over a square?

Let's see what the Lloyd-Max algorithm does! (We will test several
different initializations to see if they converge to the same
quantizer.)
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Lloyd-Max algorithm in higher dimensions

In general, the result of the Lloyd-Max algorithm in higher
dimensions depends highly on the initialization.

Similar to the 1-dimensional case, this can be addressed by running
the algorithm from many different initializations, then selecting the
best result.

Depending on the application, we might also settle for a locally
optimal quantizer.
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Outlook: structured quantizers

The Lloyd-Max algorithm converges to a locally optimal quantizer,
which can often be relatively random-looking.

Structured quantizers, on the other hand, search for a quantizer in
a specific subset of quantizers where optimization is easier. This
will result in finding a quantizer that is typically not optimal, but
reasonably close, and has some specific structure.

Tree-structured vector quantizers. First, only one coordinate is
quantized, then for each domain, the next coordinate is quantized
(possibly in a different manner), and so on.

Energy-form quantizers: in voice or music compression, usually
there is a natural energy (volume) of the signal. The energy and
the normalized signal (form) are quantized separately.
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Outlook: finite samples

In many applications, the d-dimensional probability density
function is not available; instead a finite sample of signals is
available.

The Lloyd-Max algorithm and other optimizers all have versions
adapted to such a finite sample instead of a theoretical density
function.

We do not chase this direction.
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Transform coding

The general concept of transform coding is similar to text
transforms: a transform is a reversible mapping of a signal such
that the transformed signal is easier to compress than the original
signal.

The most widely used such transform is the Discrete cosine
transform (DCT), designed for image and video processing
(accordingly, it is the basis of JPEG and MPEG), but also used in
many other applications.

The main idea of DCT is to transform a block of k values from the
signal in a way that the first few values of the transform capture
the main defining properties of the original signal block, and
subsequent elements of the transform correspond to finer and finer
details (which can then be compressed with higher distortion).
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DCT transforms a block of k x k pixels of an image jointly. In the
JPEG standard, k = 8 (the general algorithm works for any choice
of k, but is easier to compute when k is a power of 2).
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DCT

Here we will discuss the version used for image processing.

DCT transforms a block of k x k pixels of an image jointly. In the
JPEG standard, k = 8 (the general algorithm works for any choice
of k, but is easier to compute when k is a power of 2).

First, the pixels are converted into a k x k array so that every pixel
is represented by a single real value.

DCT then transforms the k x k values into another array of k x k
values called frequency coefficients. The first of these coefficients
(the DC coefficient or main coefficient) represents the average
value of the original block, and subsequent coefficients represent
deviations from the average in sinusoidal patterns with varying
frequency.



DCT




DCT

Mathematically, the formula for the DCT is the following.
X denotes the values of the original block, arranged in a k x k
matrix. Then the DCT of X is

Y = AXAT,

where the matrix A is the following:

» the first row of A is [ﬁ ﬁ ik}

» for other rows,

ajj = \/ 7 cos
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coefficient) has high variance, and the other values are gradually
decreasing in order away from the top left corner — they can be
compressed to fewer bits.



DCT

A is an orthonormal matrix:
-1 T
A =AY
so the inverse transform is also simple:

Y = AXAT — X=ATYA

The typical structure of Y is such that the top left value (the DC
coefficient) has high variance, and the other values are gradually
decreasing in order away from the top left corner — they can be
compressed to fewer bits.

Technically, the DCT does not compress; actual compression is
done after applying DCT by quantizing the frequency coefficients.



DCT

There are several variants of DCT, differing only in slight details.
There are 16 variations based on how the sinusoidal patterns are
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DCT

There are several variants of DCT, differing only in slight details.
There are 16 variations based on how the sinusoidal patterns are
arranged (8 called DCT-I to DCT-VIII and 8 called Discrete sine
transforms, DST).

The version presented above is DCT-II, and it is the most widely
used variant.

DCT is closely related to Discrete Fourier transform; the main
difference is that DCT uses real values only, making the
computation of DCT slightly easier.

Algorithmic complexity. Normally, computing the matrix product
AXAT would take O(k*) operations, but this can be reduced to
O(k?log(k)) due to the special structure of A using Fast cosine
transform (FCT).

FCT utilizes a factorization of A as a product of simple matrices
(similar to Fast Fourier transform (FFT)). We do not go into more
details here.
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Predictive coding
Another class of compression methods is called Predictive coding.

The general idea of Predictive coding is the following: if a data
source is such that each signal can be predicted from the previous
signal (or several signals) with high accuracy, then the difference of
the predicted signal and the actual signal is smaller order than the
original signal, so fewer precise bits are sufficient when compressing
it, compared to the original signal.

Example. Consider the following sequence of bytes:

147,145,141, 146, 149, 147, 143, 145

Here, it makes sense to use each signal as a predictor for the next
signal, and take the difference, so the transformed sequence is

147,-2,—-4,5,3, -2, -4,2
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bits (1 sign bit and 3 value bits).
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> the first signal is coded using 8 bits;

P> we also need to transmit the information of how many bits are
used for subsequent values (4);
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Predictive coding

147,-2,-4,5,3, -2, —4,2

All elements of the sequence except the first can be coded using 4
bits (1 sign bit and 3 value bits).

> the first signal is coded using 8 bits;

P> we also need to transmit the information of how many bits are
used for subsequent values (4);

» further signals are coded using 4 bits each.

More general versions of this idea may use predictors other than
the previous signal; in this case, the difference between the
predictor and the actual value are used for later signals.
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Predictive coding

Predictive coding can be executed in a lossless manner, or the
signals can be quantized.

When using quantizing, the order of quantization and prediction is
important. When using the intuitive version

dn = Xp — Xn—1, dn — dn,
(where d denotes quantization), the quantization errors may
accumulate during reconstruction.

It is actually better to use
dn = Xp — Xn—1, dn — dn,

where X,_1 denotes the reconstructed version of x,_1 based on
X0, 31, ey d,_1. In this order, the quantization error does not
accumulate. (Essentially, the same information is used for
compression and reconstruction.)



